Heme-Thiolate Proteins Different from Cytochromes P450 Catalyzing Monooxygenations

  • Daniel Mansuy
  • Jean-Paul Renaud


Many hemoproteins involving a histidine proximal iron ligand, like hemoglobins, myoglobins, peroxidases, cytochromes, and prostaglandin synthases, have been found in living organisms.1 On the contrary, only a limited number of hemoprotein families where the heme iron is bound to a cysteinate proximal ligand have been discovered so far. The Fe(II)-CO complex of these hemoproteins is most often characterized by a visible spectrum exhibiting a redshifted Soret peak around 450 nm, which is related to the presence of the very electron-rich cysteinate ligand in trans position to CO.2 This distinctive feature of heme-thiolate proteins has been found so far for only three classes of hemoproteins, the cytochromes P450, nitric oxide synthases, and chloroperoxidase. Another heme-thiolate protein, called protein H450, has been reported, but it remains much less known than the other three. Among these heme-thiolate proteins, the cytochromes P450 responsible for monooxygenation reactions (which will be called “classical P450s” in this chapter) have been extensively studied3 and their mechanisms of dioxygen activation and substrate hydroxylation are now well established.3,4 During these last years, some cytochromes P450 that catalyze reactions very different from monooxygenations have been discovered.5 Moreover, a new class of heme—thiolate proteins, the NO synthases, which are closely related to P450s,6–8 but which would not belong to the P450 superfamily,9 has been discovered. This chapter will focus on these “nonclassical P450s” and on NO synthases, with a special emphasis on a comparison of their biochemical and mechanistic properties with those of the two more classical heme-thiolate ins, the “classical P450s” and the chloroperoxidase from Caldariomyces fumago.


Catalytic Cycle Allene Oxide Heme Binding Electron Transfer Protein Oxygenase Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mansuy, D., and Battioni, P., 1993, Dioxygen activation at heure centers in enzymes and synthetic analogs, in: Bioinorganic Catalysis (J. Reedijk, ed.), Dekker, New York, pp. 395–424.Google Scholar
  2. 2.
    Dawson, J. H., and Sono, M., 1987, Cytochrome P-450 and chloroperoxidase-thiolate-ligated heure enzymes: Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation, Chem. Rev. 87: 1255–1276.CrossRefGoogle Scholar
  3. 3.
    Ortiz de Montellano, P. R., 1986, Cytochrome P-450: Structure, Mechanism, and Biochemistry, Plenum Press, New York.Google Scholar
  4. 4.
    Guengerich, F. P., and MacDonald, T. L., 1984, Chemical mechanisms of catalysis by cytochromes P450: A unified view, Ace. Chem. Res. 17: 9–16.CrossRefGoogle Scholar
  5. 5.
    For a short preliminary review on this subject, see: Mansuy, D., 1994, Cytochromes P450 and model systems: Great diversity of catalyzed reactions, Pure App!. Chem. 66: 737–744.Google Scholar
  6. 6.
    White, K. A., and Marietta, M. A., 1992, Nitric oxide synthase is a cytochrome P450 type hemoprotein, Biochemistry 31: 6627–6630.PubMedCrossRefGoogle Scholar
  7. 7.
    Stuehr, D. J., and Saito, M. I., 1992, Spectral characterization of brain and macrophage nitric oxide synthases, J. Bio!. Chem. 267: 20547–20550.Google Scholar
  8. 8.
    McMillan, K., Bredt, D. S., Hirsh, D. J., Snyder, S. H., Clark, J. E., and Masters, B. S. S.,1992, Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heure which binds carbon monoxide, Proc. Nat!. Acad. Sci. USA 89: 11141–11145.Google Scholar
  9. 9.
    Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, E. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W., 1993, The P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature, DNA Cell. Biol. 12: 1–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of P450cam, J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  11. 11.
    Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450 BM-3, a prototype for microsomal P450’s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  12. 12.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of cytochrome P450 terp at 2.3 A resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  13. 13.
    Koymans, L., Donne-Op Den Kelder, G. M., Koppele Te, J. M., and Vermeulen, N. P. E., 1993, Cytochromes P450: Their active site structure and mechanism of oxidation, Drug Metab. Rev. 25: 325–387.PubMedCrossRefGoogle Scholar
  14. 14.
    Mansuy, D., Battioni, P., and Battioni, J. P., 1989, Chemical model systems for drug-metabolizing cytochrome P450-dependent monooxygenases, Eur. J. Biochem. 184: 267–285.PubMedCrossRefGoogle Scholar
  15. 15.
    Mansuy, D., Valadon, P., Erdelmeir, I., Lopez-Garcia, P., Amar, C., Girault, J. P., and Dansette, P., 1991, Thiophene S-oxides as new reactive metabolites: Formation by cytochrome P-450 dependent oxidation and reaction with nucleophiles, J. Am. Chem. Soc. 113: 7825–7826.CrossRefGoogle Scholar
  16. 16.
    Dansette, P. M., Thang, D. C., El Amri, H., and Mansuy D., 1992, Evidence for thiophene-S-oxide as a primary reactive metabolite of thiophene in vivo: Formation of a dihydrothiophene sulfoxide mercapturic acid, Biochem. Biophys. Res. Commun. 186: 1624–1630.PubMedCrossRefGoogle Scholar
  17. 17.
    Lopez-Garcia, P., Dansette, P., and Mansuy, D., 1994, Thiophene derivatives as new mechanism-based inhibitors of cytochromes P450: Inactivation of yeast-expressed human liver P450 2C9 by tienilic acid, Biochemistry 33: 166–175.PubMedCrossRefGoogle Scholar
  18. 18.
    Rettie, A. E., Boberg, M., Rettenmeir, A. W., and Baillie, T. A., 1988, Cytochrome P450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects and mechanistic studies, J. Bio!. Chem. 263: 13753–13758.Google Scholar
  19. 19.
    Nagata, K., Liberato, D. J., Gillette, J. R., and Sasame, M. A., 1986, An unusual metabolite of testosterone: 17a-Hydroxy-4,6-androsta-diene-3-one, Drug Metab. Dispos. 14: 559–565.PubMedGoogle Scholar
  20. 20.
    Korzekwa, K. R., Trager, W. F., Nagata, K., Parkinson, A., and Gillette, J. R., 1990, Isotope effect studies on the mechanism of the cytochrome P450IIAI-catalyzed formation of O6-testosterone from testosterone, Drug Metab. Dispos. 18: 974–979.PubMedGoogle Scholar
  21. 21.
    Akhtar, M., and Wright, J. N., 1991, A unified mechanistic view of oxidative reactions catalyzed by P450 and related Fe-containing enzymes, Nat. Prod. Rep. 1991: 527–551.CrossRefGoogle Scholar
  22. 22.
    Vaz, A. D. N., Roberts, E. S., and Coon, M. J., 1991, Olefin formation in the oxidative deformylation of aldehydes by cytochrome P450. Mechanistic implications for catalysis by oxygen-derived peroxide, J. Am. Chem. Soc. 113: 5886–5887.CrossRefGoogle Scholar
  23. 23.
    Watanabe, Y., and Ishimura, Y. J., 1989, Aromatization of tetralone derivatives by 5,10,15,20-tetrakis (pentafluorophenyl)porphyrinatoiron(III) chloride/iodosobenzene and cytochrome P-450cam: A model study on aromatase cytochrome P-450 reaction, J. Am. Chem. Soc. 111: 410–411.CrossRefGoogle Scholar
  24. 24.
    Cole, P. A., Bean, J. M., and Robinson, C. H., 1990, Conversion of a 3-desoxysteroid to 3-desoxyestrogen by human placental aromatase, Proc. Natl. Acad. Sci. USA 87: 2999–3003.PubMedCrossRefGoogle Scholar
  25. 25.
    De Master, E. G., Shirota, F. N., and Nagasawa, H. T., 1992, A Beckmann-type dehydration of n-butyraldoxime catalyzed by cytochrome P450, J. Org. Chem. 57: 5074–5075.CrossRefGoogle Scholar
  26. 26.
    Boucher, J. L., Delaforge, M., and Mansuy, D., 1994, Dehydration of alkyl and arylaldoximes as a new cytochrome P450-catalyzed reaction: Mechanism and stereochemical characteristics, Biochemistry 33: 7811–7818.PubMedCrossRefGoogle Scholar
  27. 27.
    Halkier, B. A., Olsen, C. E., and Moeller, B. L., 1989, The biosynthesis of cyanogenic glucosides in higher plants, J. Biol. Chem. 264: 19487–19494.PubMedGoogle Scholar
  28. 28.
    Fora recent review, see: Ullrich, V., and Ruf, H. H., 1994, Herne proteins in prostaglandin biosynthesis, in: Metalloporphyrins in Catalytic Oxidations (R. A. Sheldon, ed.), Dekker, New York, pp. 157–186.Google Scholar
  29. 29.
    Ullrich, V., Castle, L., and Weber, P., 1981, Spectral evidence for the cytochrome P450 nature of prostacyclin synthase, Biochem. Pharmacol. 30: 2033–2040.PubMedCrossRefGoogle Scholar
  30. 30.
    Haurand, M., and Ullrich, V., 1985, Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P450 enzyme, J. Biol. Chem. 260: 15059–15067.PubMedGoogle Scholar
  31. 31.
    De Witt, D. L., and Smith, W. L., 1983, Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography, J. Biol. Chem. 258: 3285–3293.Google Scholar
  32. 32.
    Pereira, B., Wu, K. K., and Wang, L. H., 1994, Molecular cloning and characterization of bovine prostacyclin synthase, Biochem. Biophys. Res. Commun. 203: 59–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Miyata, A., Hara, S., Yokoyama, C., Inoue, H., Ullrich, V., and Tanabe, T., 1994, Molecular cloning and expression of human prostacyclin synthase, Biochem. Biophys. Res. Commun. 200: 1728–1734.PubMedCrossRefGoogle Scholar
  34. 34.
    Yokoyama, C., Miyata, A., Ihara, H., Ullrich, V., and Tanabe, T., 1991, Molecular cloning of human platelet thromboxane A synthase, Biochem. Biophys. Res. Commun. 178: 1479–1484.PubMedCrossRefGoogle Scholar
  35. 35.
    Ohashi, K., Ruan, K., Kulmacz, R. J., Wu, K. K., and Wang, L., 1992, Primary structure of human thromboxane synthase determined from the cDNA sequence, J. Biol. Chem. 267: 789–793.PubMedGoogle Scholar
  36. 36.
    Hecker, M., Haurand, M., Ullrich, V., and Terao, S., 1986, Spectral studies on structure activity relationships of thromboxane synthase inhibitors, Eur. J. Biochem. 157: 217–223.PubMedCrossRefGoogle Scholar
  37. 37.
    Hecker, M., and Ullrich, V., 1989, On the mechanism of prostacyclin and thromboxane A2 biosynthesis, J. Biol. Chem. 264:141–150.Google Scholar
  38. 38.
    Brash, A. R., Hughes, M. A., Hawkins, D. J., Boeglin, W. E., Song, W. C., and Meijer, L., 1991, Allene oxide and aldehyde biosynthesis in starfish oocytes, J. Biol. Chem. 266: 22926–22931.PubMedGoogle Scholar
  39. 39.
    Hamberg, M., and Fahlstadi us, P., 1990, Allene oxide cyclase: Anew enzyme in plant lipid metabolism, Arch. Biochem. Biophys. 276: 518–526.PubMedCrossRefGoogle Scholar
  40. 40.
    Song, W. C., and Brash, A. R., 1991, Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P450, Science 253:781.-784.Google Scholar
  41. 41.
    Lau, S. M. C., Harder, P. A., and O’Keefe, D. P., 1993, Low carbon monoxide affinity allene oxide synthase is the predominant cytochrome P450 in many plant tissues, Biochemistry 32: 1945–1950.PubMedCrossRefGoogle Scholar
  42. 42.
    Song, W. C., Funk, C. D., and Brash, A. R., 1993, Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides, Proc. Natl. Acad. Sci. USA 90: 8519–8523.PubMedCrossRefGoogle Scholar
  43. 43.
    Song, W. C., Baertschi, S. W., Boeglin, W. E., Harris, T. M., and Brash, A. R., 1993, Formation of epoxyalcohols by a purified allene oxide synthase, J. Biol. Chem. 268: 6293–6298.PubMedGoogle Scholar
  44. 44.
    Corey, E. J., d’Alarcoa, M., Matsuda, S. P. T., Lansbury, P. T., and Yamada, Y., 1987, Intermediacy of 8-(R)-HPETE in the conversion of arachidonic acid to pre-clavulone prostanoids, J. Am. Chem. Soc. 109: 289–290.CrossRefGoogle Scholar
  45. 45.
    Brash, A. R., Baertschi, S. W., Ingram, C. D., and Harris, T. M., 1987, On non-cyclooxygenase prostaglandin synthesis in the sea whip coral, Plexaura homomalla: An 8(R)-lipoxygenase pathway leads to formation of an alpha-ketol and a racemic prostanoid, J. Bio!. Chem. 262: 15829–15839.Google Scholar
  46. 46.
    Shoun, H., and Tanimoto, T., 1991, Denitrifcation by the fungus Fusarium oxysporum and involvement of cytochrome P450 in the respiratory nitrite reduction, J. Bio!. Chem. 266: 11078–11082.Google Scholar
  47. 47.
    Nakahara, K., Tanimoto, T., Hatano, K., Usuda, K., and Shoun, H., 1993, Cytochrome P450 55A1 (P450 dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor, J. Bio!. Chem. 268: 8350–8355.Google Scholar
  48. 48.
    Kizawa, H., Tomura, D., Oda, M., Fukamizu, A., Hoshino, T., Gotoh, O., Yasui, T., and Shoun, H., 1991, Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P450 cDNA from Fusarium oxysporum, J. Bio!. Chem. 266: 10632–10637.Google Scholar
  49. 49.
    Nakahara, K., Shoun, H., Adachi, S., Tizuka, T., and Shiro, Y., 1994, Crystallisation and preliminary X-ray diffraction studies of nitric oxide reductase, cytochrome P450nor from Fusarium oxysporum, J. Mol. Bio!. 239: 158–159.CrossRefGoogle Scholar
  50. 50.
    Moncada, S., Palmer, R. M. J., and Higgs, E. A., 1991, Nitric oxide: Physiology, pathophysiology and pharmacology, Pharmacol. Rev. 43: 109–142.PubMedGoogle Scholar
  51. 51.
    Marietta, M. A., 1993, Nitric oxide synthase structure and mechanism, J. Bio!. Chem. 268: 12231–12234.Google Scholar
  52. 52.
    Feldman, P. L., Griffith, O. W., and Stuehr, D. J., 1993, The surprising life of nitric oxide, Chem. Eng. News 71: 26–38.Google Scholar
  53. 53.
    Lyons, C. R., Orloff, G. J., and Cunningham, J. M., 1992, Molecular cloning and functional expression of an inducible nitric oxide synthase from a mutine macrophage cell line, J. Bio!. Chem. 267: 6370–6374.Google Scholar
  54. 54.
    Xie, Q. W., Cho, H. J., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., Ding, A., Troso, T., and Nathan, C., 1992, Cloning and characterization of inducible nitric oxide synthase from mouse macrophages, Science 256: 225–228.PubMedCrossRefGoogle Scholar
  55. 55.
    Nunokawa, Y., Ishida, N., and Tanaka, S., 1994, Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells, Biochem. Biophys. Res. Commun. 191: 89–94.CrossRefGoogle Scholar
  56. 56.
    Adachi, H., Iida, S., Oguchi, S., Ohshima, H., Suzuki, H., Nagasaki, K., Kawasaki, H., Sugimura, T., and Esumi, H., 1993, Molecular cloning of a cDNA encoding an inducible calmodulin-dependent nitric oxide synthase from rat liver and its expression in COS1 cells, Eur. J. Biochem. 217: 37–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Wood, E. R., Berger, H., Jr., Sherman, P. A., and Lapetina, E. G., 1993, Hepatocytes and macrophages express an identical cytokine inducible nitric oxide synthase gene, Biochem. Biophys. Res. Commun. 191: 767–774.PubMedCrossRefGoogle Scholar
  58. 58.
    Geller, D. A., Lowenstein, C. J., Shapiro, R. A., Nussler, A. K., Di Silvio, M., Wang, S.C., Nakayama, D. K., Simmons, R. L., Snyder, S. H., and Billiar, T. R., 1993, Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes, Proc. Nat!. Acad. Sci. USA 90: 3491–3495.PubMedCrossRefGoogle Scholar
  59. 59.
    Charles, I. G., Palmar, R. M. J., Hickery, M. S., Bayliss, M. T., Chubb, A. R, Hall, V. S., Moss, D. W., and Moncada, S., 1993, Cloning, characterization and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte, Proc. Nati. Acad. Sci. USA 90: 11419–11423.CrossRefGoogle Scholar
  60. 60.
    Marsden, P. A., Schappert, K. T., Chen, H. S., Flowers, M., Sundell, C. L., Wilcox, J. N., Lamas, S., and Michel, T., 1992, Molecular cloning and characterization of human endothelial nitric oxide synthase, FEBS Lett. 307: 287–293.PubMedCrossRefGoogle Scholar
  61. 61.
    Lamas, S., Marsden, R A., Li, G. K., Tempest, R, and Michel, T., 1992, Endothelial nitric oxide synthase: Molecular cloning and characterization of a distinct constitutive enzyme isoform, Proc. Nat!. Acad. Sci. USA 89: 6348–6352.PubMedCrossRefGoogle Scholar
  62. 62.
    Sessa, W. C., Harrison, J. K., Barber, C. M., Zeng, D., Durieux, M. E., D’Angelo, D. D., Lynch, K. R., and Peach, M. J., 1992, Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase, J. Bio!. Chem. 267: 15274–15276.Google Scholar
  63. 63.
    Bredt, D. S., Hwang, R M., Glatt, C. E., Lowenstein, C., Reed, R. R., and Snyder, S. H., 1991, Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase, Nature 351: 714–718.PubMedCrossRefGoogle Scholar
  64. 64.
    Ogura, T., Yokoyama, T., Fujisawa, H., Kurashima, Y., and Esumi, H., 1993, Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system, Biochem. Biophys. Res. Commun. 193: 1014–1022.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakane, M., Schmidt, H. H. W., Pollock, J. S., Förstermann, J. S., and Murad, F., 1993, Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle, FEBS Lett. 316: 175–180.PubMedCrossRefGoogle Scholar
  66. 66.
    Baek, K. J., Thiel, B. A., Lucas, S., and Stuehr, D., 1993, Macrophage nitric oxide synthase subunits, J. Biol. Chem. 268: 21120–21129.PubMedGoogle Scholar
  67. 67.
    Renaud, J. P., Boucher, J. L., Vadon, S., Delaforge, M., and Mansuy, D., 1993, Particular ability of liver P450s3A to catalyze the oxidation of N°)-hydroxyarginine to citrulline and nitrogen oxides and occurrence in NO synthases of a sequence very similar to the heme-binding sequence in P450s, Biochem. Biophys. Res. Commun. 192: 53–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen, P. F., Tsai, A. L., and Wu, K. K., 1994, Cysteine 184 of endothelial nitric oxide synthase is involved in heure coordination and catalytic activity, J. Biol. Chem. 269: 25062–25066.PubMedGoogle Scholar
  69. 69.
    Clement, B., Immel, M., Pfunder, H., Schmitt, S., and Zimmerman, M., 1991, in: N-oxidation of Drugs (P. Hlavica and L. A. Damani, eds.), Chapman and Hall, London, pp. 185–204.Google Scholar
  70. 70.
    Clement, B., and Jung, F., 1994, N-hydroxylation of the antiprotozoal drug pentamidine catalyzed by rabbit liver cytochrome P450 2C3 or human liver microsomes, microsomal retroreduction, and further oxidative transformation of the formed amidoximes, Drug Metab. Dispos. 22: 486–497.PubMedGoogle Scholar
  71. 71.
    Clement, B., Schultze-Mosgau, M. H., and Wohlers, H., 1993, Cytochrome P450-dependent N-hydroxylation of a guanidine (debrisoquine), microsomal catalyzed reduction and further oxidation of the N-hydroxy-guanidine metabolite to the urea derivative, Biochem. Pharmacol. 46: 2249–2267.PubMedCrossRefGoogle Scholar
  72. 72.
    Boucher, J. L., Genet, A., Vadon, S., Delaforge, M., Henry, Y., and Mansuy, D., 1992, Cytochrome P450 catalyzes the oxidation of Nm-hydroxy-t,-arginine by NADPH and 02 to nitric oxide and citrulline, Biochem. Biophys. Res. Commun. 187: 880–886.PubMedCrossRefGoogle Scholar
  73. 73.
    Andronik-Lion, V., Boucher, J. L., Delaforge, M., Henry, Y., and Mansuy, D., 1992, Formation of nitric oxide by cytochrome P450-catalyzed oxidation of aromatic amidoximes, Biochem. Biophys. Res. Commun. 185: 452–458.PubMedCrossRefGoogle Scholar
  74. 74.
    Korth, H. G., Sustmann, R., Tahter, C., Burther, A. R., and Ingold, K. U., 1994, On the mechanism of the nitric oxide synthase catalyzed conversion of N-hydroxy-L-arginine to citrulline and nitric oxide, J. Biol. Chem. 269: 17776–17779.PubMedGoogle Scholar
  75. 75.
    Kim, I. C., and Deal, W. C., 1976, Isolation and properties of a new, soluble, hemoprotein (H-450) from pig liver, Biochemistry 15: 4925–4930.PubMedCrossRefGoogle Scholar
  76. 76.
    Omura, T., Sadano, H., Hasegawa, T., Yoshida, Y., and Kominami, S., 1984, Hemoprotein H-450 identified as a form of cytochrome P-450 having an endogenous cysteinate ligand at the 6th coordination position of the heme, J. Biochem. 96: 1491–1500.PubMedGoogle Scholar
  77. 77.
    Svastits, E. W., Alberta, J. A., Kim, I. C., and Dawson, J. H., 1989, Magnetic circular dichroism studies of the active site structure of hemoprotein H450: Comparison to cytochrome P450 and sensitivity to pH effects, Biochem. Biophys. Res. Commun. 165: 1170–1176.PubMedCrossRefGoogle Scholar
  78. 78.
    Ishihara, S., Morohashi, K. I., Sadano, H., Kawabata, S. I., Gotoh, O., and Omura, T., 1990, Molecular cloning and sequence analysis of cDNAcoding for rat liver hemoprotein H450, J. Biochem. 108: 899–902.PubMedGoogle Scholar
  79. 79.
    Griffin, B. W., 1991, in: Peroxidases in Chemistry and Biology, Vol II (J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 85–137.Google Scholar
  80. 80.
    Blanke, S. R., and Hager, L. P., 1988, Identification of the fifth axial heme ligand of chloroperoxidase, J. Biol. Chem. 263: 18739–18743.PubMedGoogle Scholar
  81. 81.
    Hahn, J. E., Hodgson, K. O., Andersson, L. A., and Dawson, J. H., 1982, Endogenous cysteine ligation in ferric and ferrous cytochrome P-450. Direct evidence from x-ray absorption spectroscopy, J. Biol. Chem. 257: 10934–10941.PubMedGoogle Scholar
  82. 82.
    Bangcharoenpaurpong, O., Champion, P. M., Hall, K. S., and Hager, L. P., 1986, Resonance Raman studies of isotopically labelled chloroperoxidase, Biochemistry 25: 2374–2378.PubMedCrossRefGoogle Scholar
  83. 83.
    Dugad, L. B., Wang, X., Wang, C. C., Lukat, G. S., and Goff, H. M., 1992, Proton nuclear Overhauser effect study of the heme active site structure of chloroperoxidase, Biochemistry 31: 1651–1655.PubMedCrossRefGoogle Scholar
  84. 84.
    Samokyszyn, V. M., and Ortiz de Montellano, P. R., 1991, Topology of the chloroperoxidase active site: Regioselectivity of heme modification by phenylhydrazine and sodium azide, Biochemistry 30:11646–111653.Google Scholar
  85. 85.
    Lambeir, A. M., Dunford, H. B., and Pickard, M. A., 1987, Kinetics of the oxidation of ascorbic acid, ferrocyanide and p-phenolsulfonic acid by chloroperoxidase compounds I and II, Eur. J. Biochem. 163: 123–127.PubMedCrossRefGoogle Scholar
  86. 86.
    Thomas, J. A., Morris, D. R., and Hager, L. P., 1970, Chloroperoxidase. 8. Formation of peroxide and halide complexes and their relation to the mechanism of the halogenation reaction, J. Biol. Chem. 245: 3135–3142.PubMedGoogle Scholar
  87. 87.
    Hollenberg, P. F., Rand-Meier, T., and Hager, L. P., 1974, The reaction of chlorite with horseradish peroxidase and chloroperoxidase. Enzymatic chlorination and spectral intermediates, J. Biol. Chem. 249: 5816–5825.PubMedGoogle Scholar
  88. 88.
    Libby, R. D., Shedd, A. L., Phipps, A. K., Beachy, T. M., and Gertsberger, S. M., 1992, Defining the involvement of HOC1 or Cl2 as enzyme-generated intermediates in chloroperoxidase-catalyzed reactions, J. Biol. Chem. 267: 1769–1775.PubMedGoogle Scholar
  89. 89.
    McCarthy, M. B., and White, R. E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate, J. Biol. Chem. 258: 9153–9158.PubMedGoogle Scholar
  90. 90.
    Geigert, J., Lee, T. D., Dalietos, D. J., Hirano, D. S., and Neidleman, S. L., 1986, Epoxidation of alkenes by chloroperoxidase catalysis, Biochem. Biophys. Res. Commun. 136: 778–782.PubMedCrossRefGoogle Scholar
  91. 91.
    Ortiz de Montellano, P. R., Choe, Y. S., De Pillis, G., and Catalano, C. E., 1987, Structure—mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish-peroxidase, J. Biol. Chem. 262: 11641–11646.Google Scholar
  92. 92.
    Fu, H., Kondo, H., Ichikawa, Y., Cook, G. C., and Wong, C. H., 1992, Chloroperoxidase-catalyzed asymmetric synthesis: Enantio-selective reaction of chiral hydroperoxides with sulfides and bromo-hydration of glycals, J. Org. Chem. 57: 7265–7270.CrossRefGoogle Scholar
  93. 93.
    Colonna, S., Gaggero, N., Casella, L., Carrea, G., and Pasta, P., 1993, Enantioselective epoxidation of styrene derivatives by chloroperoxidase catalysis, Tetrahedron Asymmetry 4: 1325–1330.CrossRefGoogle Scholar
  94. 94.
    Kobayashi, S., Nakano, M., Goto, T., Kimura, T., and Schaap, A. P., 1986, An evidence of the peroxidase dependent oxygen transfer from hydrogen peroxide to sulfides, Biochem. Biophys. Res. Commun. 135: 166–171.PubMedCrossRefGoogle Scholar
  95. 95.
    Colonna, S., Gaggero, N., Manfredi, A., Casella, L., Gullotti, M., Carrea, G., and Pasta, P., 1990, Enantioselective oxidations of sulfides catalyzed by chloroperoxidase, Biochemistry 29: 10465–10468.PubMedCrossRefGoogle Scholar
  96. 96.
    Doerge, D. R., and Corbett, M. D., 1991, Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines, Chem. Res. Taxi col. 4: 556–560.CrossRefGoogle Scholar
  97. 97.
    Boddupalli, S. S., Estabrook, R. W., and Peterson, J. A., 1990, Fatty acid monooxygenation by cytochrome P450 BM-3, J. Biol. Chem. 265: 4233–4239.PubMedGoogle Scholar
  98. 98.
    Urban, P., Werck-Reichhart, D., Teutsch, H. G., Durst, F., Regnier, S., Kazmaier, M., and Pompon, D., 1994, Characterization of recombinant plant cinnamate 4-hydroxylase produced in yeast. Kinetic and spectral properties of the major plant P450 of the phenylpropanoid pathway, Eur. J. Biochem. 222: 843–850.PubMedCrossRefGoogle Scholar
  99. 99.
    Richards, M. K., and Marietta, M. A., 1994, Characterization of neuronal nitric oxide synthase and a C415H mutant purified from a baculovirus overexpression system, Biochemistry 33: 14723–14732.PubMedCrossRefGoogle Scholar
  100. 100.
    Jousserandot, A., Boucher, J. L., Desseaux, C., Delaforge, M., and Mansuy, D., 1995, Formation of nitrogen oxides including NO from oxidative cleavage of C=N(OH) bonds: a general cytochrome P450-dependent reaction, Bioorg. Med. Chem. Len. 5: 423–426.CrossRefGoogle Scholar
  101. 101.
    Mansuy, D., Boucher, J. L., and Clement, B., 1995, On the mechanism of nitric oxide formation upon oxidative cleavage of C=N(OH) bonds by NO-synthases and cytochromes P450, Biochimie,in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniel Mansuy
    • 1
  • Jean-Paul Renaud
    • 1
  1. 1.Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRSUniversité Paris VParis Cedex 06France

Personalised recommendations