Advertisement

Probability Measures on Topological Semigroups

  • Göran Högnäs
  • Arunava Mukherjea
Part of the The University Series in Mathematics book series (USMA)

Abstract

This chapter forms the core of this book. It introduces and develops the key concepts, methods and results (needed for the rest of this book) that involve convolution products of probability measures and their weak convergence. Most of the results presented here are in their final form. However, there are a number of problems, as the reader will readily discover, which are natural, important and still waiting to be solved. For example, the asymptotic behavior of the sequence of convolution powers of a probability measure μ, though reasonably completely known in a compact or discrete semigroup (see Theorems 2.13 and 2.29) is not completely clear in the noncompact nondiscrete situation. Also, the problem of weak convergence of convolution products of a sequence of nonidentical probability measures, even though reasonably resolved in a compact abelian semigroup as well as in a discrete group or a discrete abelian semigroup (see Theorem 2.44, Corollary 2.50 and Theorem 2.51), is far from being resolved even in the case of compact groups.

Keywords

Probability Measure Compact Subset Compact Group Compact Subgroup Simple Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argabright, L. N., “A note on invariant integrals on locally compact semigroups,” Proc. Amer. Math. Soc. 17, 377–382 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  2. Baker, J. W., “Measure algebras on semigroups,” in: The Analytical and Topological Theory of Semigroups, (K. H. Hofmann, J. D. Lawson, and J. S. Pym, editors), p. 221–252, Walter de Gruyter, Berlin-New York (1990).Google Scholar
  3. Bartoszek, W., “On concentration functions on discrete groups,” Ann. Prob. 23, 1596–1599 (1994).MathSciNetCrossRefGoogle Scholar
  4. Berglund, J. F. and K. H. Hofmann, Compact Semitopological Semigroups and Weakly Almost Periodic Functions, Lecture Notes in Mathematics 42, Springer, Berlin-Heidelberg-New York (1967).Google Scholar
  5. Bhattacharya, R. N., “Speed of convergence of the n-fold convolution of a probability measure on a compact group,” Z. Wahrsch. verw. Gebiete 25, 1–10 (1972).zbMATHCrossRefGoogle Scholar
  6. Bougerol, P., “Fonctions de concentration sur certains groupes localement compacts,” Z. Wahrsch. verw. Gebiete 45, 135–157 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  7. Bougerol, P., “Une majoration universelle des fonctions de concentration,” in: Probability Measures on Groups, Lecture Notes in Mathematics 706, (H. Heyer, editor), pp. 36–40, Springer, BerlinHeidelberg-New York (1979).Google Scholar
  8. Budzban, G., “Necessary and sufficient conditions for the convergence of convolution products of nonidentical distributions on finite abelian semigroups,” J. Th. Probab. 7, No. 3, 635–646 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  9. Budzban, G. and A. Mukherjea, “Convolution products of nonidentical distributions on a topological semigroup,” J. Th. Probab. 5, No. 2, 283–308 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  10. Byczkowski, T. and J. Wos, “On infinite products of independent random elements on metric semi-groups,” Colloq. Math. 37, 271–285 (1977).MathSciNetzbMATHGoogle Scholar
  11. Center, B. and A. Mukherjea, “More on limit theorems for iterates of probability measures on semigroups and groups,” Z. Wahrsch. verw. Gebiete 46, 259–275 (1979).MathSciNetCrossRefGoogle Scholar
  12. Choquet, G. and J. Deny, “Sur l’ equation de convolution µ = µ * o,” C.R. Acad. Sci. Paris 250, 799–801 (1960).MathSciNetzbMATHGoogle Scholar
  13. Choy, S. T. L., “Idempotent measures on compact semigroups,” Proc. L.ndon Math. Soc. (3), 30, 717–733 (1970).MathSciNetCrossRefGoogle Scholar
  14. Chung, K. L., A Course on Probability Theory, ( Second Edition ), Springer, Berlin—Heidelberg—New York (1974).Google Scholar
  15. Collins, H. S., “The kernel of a semigroup of measures,” Duke Math. J. 28, 387–392 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  16. Collins, H. S., “Primitive idempotents in the semigroup of measures,” Duke Math. J. 28, 397–400 (1961).CrossRefGoogle Scholar
  17. Collins, H. S., “Convergence of convolution iterates of measures,” Duke Math. J. 29, 259–264 (1962). Collins, H. S., “Idempotent measures on compact semigroups,” Proc. Amer. Math. Soc. 13, 442–446 (1962).zbMATHCrossRefGoogle Scholar
  18. Csiszar, I., “On infinite products of random elements and infinite convolutions of probability distributions on locally compact groups,” Z Wahrsch. verw. Gebiete 5, 279–295 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  19. Csiszar, I., “On the weak*-continuity of convolution in a convolution algebra over an arbitrary topological group,” Studia Sci. Math. Hungar. 6, 27–40 (1971).MathSciNetGoogle Scholar
  20. Derriennic, Y., “Lois zero ou deux pour les processus de Markov: Applications aux marches aleatoires,” Ann. Inst. Henri Poincaré 12, No. 2, 111–129 (1976).MathSciNetzbMATHGoogle Scholar
  21. Derriennic, Y., “Sur le theoreme de point fixe de Brunel et le theoreme de Choquet—Deny,” Ann. Sci. Univ. Clermont—Ferrand II, Probab. Appl. 87, 107–111 (1985).MathSciNetGoogle Scholar
  22. Derriennic, Y. and Guivarc’h, Y., “Théorème de renouvellement pour les groups nonmoyennables,” C. R. A. S. Paris 277, 613–616 (1973).MathSciNetzbMATHGoogle Scholar
  23. Derriennic, Y. and M. Lin, “Convergence of iterates of averages of certain operator representations and convolution powers,” J. Funct. Anal. 85, 86–102 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  24. Galmarino, A. R., “The equivalence theorem for composition of independent random elements on locally compact groups and homogeneous spaces,” Z Wahrsch. verw. Gebiete 7, 29–42 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  25. Gard, J. R. and A. Mukherjea, “On the convolution iterates of a probability measure,” Semigroup Forum 10, 171–184 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  26. Glicksberg, I., “Convolution semigroups of measures,” Pacific J. Math. 9, 51–67 (1959). Grenander, U., Probabilities on Algebraic Structures, J. Wiley and Sons, New York (1963).Google Scholar
  27. Heble, M. and M. Rosenblatt, “Idempotent measures on a compact topological semigroup,” Proc. Amer. Math. Soc. 14, 177–184 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  28. Hewitt, E. and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin—Heidelberg—New York (1963).zbMATHCrossRefGoogle Scholar
  29. Heyer, H., “Über Haarche Masse auf lokalkompacten Gruppen,” Arch. Math. (Basel) 17, 347–351 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  30. Heyer, H., “Probabilistic characterization of certain classes of locally compact groups,” Symposia Math. 16, 315–355 (1975).MathSciNetGoogle Scholar
  31. Heyer, H., Probability Measures on Locally Compact Groups, Springer, Berlin-Heidelberg-New York (1977).zbMATHCrossRefGoogle Scholar
  32. Hofmann, K. H. and A. Mukherjea, “Concentration functions and a class of noncompact groups,” Math. Ann. 256, 535–548 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  33. Hofmann, K. H. and A. Mukherjea, “On the density of the image of the exponential function,” Math. Ann. 234, 263–273 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  34. Högnäs, G., “A note on the semigroup of analytic mappings with a common fixed point,” Reports on Computer Sci. and Math. Ser. A, No. 71 (1988).Google Scholar
  35. Högnäs, G. and A. Mukherjea, “Recurrent random walks and invariant measures on semigroups of n by n matrices,” Math. Z 173, 69–94 (1980).zbMATHGoogle Scholar
  36. Ito, K. and M. Nishio, “On the convergence of sums of independent Banach space valued random variables,” Osaka Math. J. 5, 35–48 (1968).zbMATHGoogle Scholar
  37. Jaworski, W., “Contractive automorphisms of locally compact groups and the concentration function problem,” Preprint (1995).Google Scholar
  38. Jaworski, W., J. Rosenblatt, and G. Willis, “Concentration functions in locally compact groups,” Preprint (1995).Google Scholar
  39. Kawada, Y. and K. Ito, “On the probability distributions on a compact group I,” Proc. Phys.-Math. Soc. Japan 22, 977–998 (1940).MathSciNetGoogle Scholar
  40. Kelley, J. L., “Averaging operators on C e . (X),” Illinois J. Math. 2, 214–223 (1958).MathSciNetGoogle Scholar
  41. Kloss, B. M., “Probability distributions on bicompact topological groups,” Theory of Probab. Appl. 4, 234–270 (1959).MathSciNetGoogle Scholar
  42. Kloss, B. M., “Limiting distributions on bicompact abelian groups,” Theory of Probab. Appl. 6, 361–389 (1961).MathSciNetCrossRefGoogle Scholar
  43. Lo, C. C. and A. Mukherjea, “Convergence in distribution of products of d by d random matrices,” J. Math. Anal. and Appl. 162, No. 1, 71–91 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  44. Loynes, R., “Probability distributions on a topological group,” Z Wahrsch. verw. Gebiete 5, 446–455 (1966).MathSciNetCrossRefGoogle Scholar
  45. Maksimov, V. M., “Necessary and sufficient conditions for the convergence of convolution of nonidentical distributions on an arbitrary finite group,” Theory Probab. Appl. 13, 287–298 (1968).zbMATHCrossRefGoogle Scholar
  46. Maksimov, V. M., “Composition convergent sequences of measures on compact groups,” Theory Probab. Appl. 16, 55–73 (1971).zbMATHCrossRefGoogle Scholar
  47. Maksimov, V. M., “A generalized Bernoulli scheme and its limit distributions,” Theory Probab. Appl. 18, 521–530 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  48. Martin-Löf, P., “Probability theory on discrete semigroups,” Z Wahrsch. verw. Gebiete 4, 78–102 (1965).CrossRefGoogle Scholar
  49. Mindlin, D. S., “Speed of convergence of convolutions of random measures on a compact group,” Theory Probab. Appl. 35, No. 2 (1990).Google Scholar
  50. Mindlin, D. S., “Convolution of random measures on a compact topological group,” J. Th. Probab. 3, No. 2, 181–198 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  51. Mindlin, D. S. and B. Rubshtein, “Convolutions of random measures on compact groups,” Theory Probab. Appl. 33, 355–357 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  52. Mukherjea, A., “On the convolution equation P = P * Q of Choquet and Deny for probability measures on semigroups,” Proc. Amer. Math. Soc. 32, 457–463 (1972).MathSciNetzbMATHGoogle Scholar
  53. Mukherjea, A., “On the equation P(B) = f P(Bx -1 )P(dx) for infinite P,” J. London Math. Soc. 2, 224–230 (1973).MathSciNetCrossRefGoogle Scholar
  54. Mukherjea, A, “Limit theorems for probability measures on noncompact groups and semigroups,” Z. Wahrsch. verw. Gebiete 33, 273–284 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  55. Mukherjea, A., “Limit theorems for probability measures on completely simple or compact semi-groups,” Trans. Amer. Math. Soc. 225, 355–370 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  56. Mukherjea, A., “Limit theorems: Stochastic matrices, ergodic Markov chains and measures on semigroups,” in: Probabilistic Analysis and Related Topics 2, (A. T. Bharucha-Reid, editor), Vol. 2, pp. 143–203, Academic Press, New York (1979).Google Scholar
  57. Mukherjea, A., “Convergence in distribution of products of random matrices: A semigroup approach,” Trans. Amer. Math. Soc. 303, 395–411 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  58. Mukherjea, A., “Convolution products of nonidentical distributions on a compact abelian semigroup,” in: Probability Measures on Groups IX, Lecture Notes in Mathematics 1379, (H. Heyer, editor), pp. 217–241, Springer, Berlin-Heidelberg-New York (1988).Google Scholar
  59. Mukherjea, A. and K. Pothoven, Real and Functional Analysis, Plenum Press, New York (1978).zbMATHGoogle Scholar
  60. Mukherjea, A. and K. Pothoven, Real and Functional Analysis, Part A: Rea! Analysis, Second edition, Plenum Press, New York-London (1984).Google Scholar
  61. Mukherjea, A. and K. Pothoven, Real and Functional Analysis, Part B: Functional Analysis, Second edition, Plenum Press, New York-London (1986).Google Scholar
  62. Mukherjea, A. and E. B. Saff, “Behavior of convolution sequences of a family of probability measures on [0, no),” Indiana Univ. Math. J. 24, 221–226 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  63. Mukherjea, A. and T. C. Sun, “Convergence of products of independent random variables with values in a discrete semigroup,” Z Wahrsch. verw. Gebiete 46, 227–236 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  64. Mukherjea, A. and N. A. Tserpes, “Idempotent measures on locally compact semigroups,” Proc. Amer. Math. Soc. 29, 143–150 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  65. Mukherjea, A. and N. A. Tserpes, “Invariant measures and the converse of Haar’s theorem on semitopological semigroups,” Pacific J. Math. 44, 101–114 (1972).MathSciNetGoogle Scholar
  66. Mukherjea, A. and N. A. Tserpes, “A problem on r`-invariant measures on locally compact semi-groups,” Indiana University Math. J. 21, 973–977 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  67. Mukherjea, A. and N. A. Tserpes, Measures on Topological Semigroups: Convolution Products and Random Walks, Lecture Notes in Mathematics 547, Springer, Berlin-Heidelberg-New York (1976).Google Scholar
  68. Parthasarathy, K. R., Probability Measures on Metric Spaces, Academic Press (1967). A. L. T. Paterson, “Invariant measure semigroups,” Proc. London Math. Soc. 35, 313–332Google Scholar
  69. Parthasarathy, K. R. (1977). Pym, J. S., “Idempotent measures on semigroups,” Pacific J. Math. 12, 685–698 (1962).Google Scholar
  70. Pym, J. S., “Idempotent measures on compact semitopological semigroups,” Proc. Amer. Math. Soc. 21, 499–501 (1969).MathSciNetzbMATHGoogle Scholar
  71. Rosenblatt, M., “Limits of convolution sequences of measures on a compact topological semigroup,” J. Math. Mech. 9, 293–306 (1960).MathSciNetzbMATHGoogle Scholar
  72. Rosenblatt, M., Markov Processes: Structure and Asymptotic Behavior, Springer, Berlin-HeidelbergNew York (1971).zbMATHCrossRefGoogle Scholar
  73. Rosen, W. G., “On invariant measures over compact semigroups,” Proc. Amer. Math. Soc. 7, 10761082 (1956).Google Scholar
  74. Ruzsa, I., “Infinite convolution of distributions on discrete commutative semigroups,” in: Probability Measures on Groups X, (H. Heyer, editor), pp. 365–376, Plenum Publishing Co., New York (1991).Google Scholar
  75. Ruzsa, I. and G. Szekely, Algebraic Probability Theory, John Wiley and Sons, New York (1988). Sazonov, V. V. and V. N. Tutubalin. Szekely, Algebraic Probability Theory, John Wiley and Sons, New York (1988). Sazonov, V. V. and V. N. Tutubalin, “Probability distributions on topological groups,” Theory Probab. Appl. 11, 1–47 (1966).Google Scholar
  76. Schwartz, S., “Convolution semigroup of measures on compact noncommutative semigroups,” Czech. Math. J. 14, (89), 95–115 (1964).Google Scholar
  77. Stromberg, K., “Probabilities on a compact group,” Trans. Amer. Math. Soc. 94, 295–309 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  78. Sun, T. C. and N. A. Tserpes, “Idempotent probability measures on locally compact abelian semi-groups,” J. Math. Mech. 19, 1113–1116 (1970).MathSciNetzbMATHGoogle Scholar
  79. Szekely, G. J. and W. B. Zeng, “The Choquet-Deny convolution equation µ = µ * a for probability measures on abelian semigroups,” J. Th. Probab. 3, No. 2, 361–365 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  80. Tortrat, A., “Lois de probabilite sur un espace topologique complement regulier et produits infinis a termes independants dans un groupe topologique,” Ann. Inst. Henri Poincaré 1, 217–237 (1965).MathSciNetzbMATHGoogle Scholar
  81. Tortrat, A., “Lois tendues,ß sur un demigroup topologique completement simple,” Z. Wahrsch. verw. Gebiete 6, 145–160 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  82. Tserpes, N. A. and A. Kartsatos, “Measure semiinvariants sur un semigroups localement compact,” C. R. Acad. Sci. Paris. Ser. A, 267, 507–509 (1968).MathSciNetzbMATHGoogle Scholar
  83. Urbanik, K., “On the limiting probability distributions on a compact topological group,” Fund. Math. 3, 253–261 (1957).MathSciNetGoogle Scholar
  84. Wendel, J. G., “Haar measures and the semigroups of measures on a compact group,” Proc. Amer. Math. Soc. 5, 923–939 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  85. Williamson, J. H., “Harmonic analysis on semigroups,” J. London Math. Soc. 42, 1–41 (1967). Willis, G., “The structure of totally disconnected locally compact groups,” Math. Ann. 300, 341–363 (1994).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Göran Högnäs
    • 1
  • Arunava Mukherjea
    • 2
  1. 1.Åbo Akademi UniversityÅboFinland
  2. 2.University of South FloridaTampaUSA

Personalised recommendations