Sex Recognition from Faces Using Neural Networks

  • B. Golomb
  • T. Sejnowski
Chapter

Abstract

Recognizing the sex of conspecifics is important: Expending one’s attentions Q or one’s seed Q on the wrong parity of partner could put one at a competitive disadvantage. While some animals use pheromones to recognize sex, in humans this task is primarily visual: “Many socially living animals ... recognize each other as members of the same species, as individuals, and as social partners by means of visual signals and communicate their mood and intentions by the same sensory modality. In many primate species the individual structure of the face is the most important visual characteristic of each group member” (Grusser, Selke, & Zynda 1985). A core issue is how sex is recognized from face; yet until recently this received little attention.

Keywords

Facial Expression Down Syndrome Face Image Hide Unit Superior Temporal Sulcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxt, W. G. (1992). Improving the accuracy of an artificial neural network using multipl differently trained newtorks. Neural Computation, 4, 772–780.CrossRefGoogle Scholar
  2. Baylis, G. C., Rolls, E. T., & Leonard, C. M. (1985). Selectivity between faces in the responses of as population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Research, 342, 91–102.CrossRefGoogle Scholar
  3. Bellugi, U., Bihrle, A., Trauner, D., Jernigan, T., & Doherty, S. (1990). Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome children. American Journal of Medical Genetics, In PressGoogle Scholar
  4. Benton, A. L., & van Allen, M. W. (1972). Prosopagnosia and facial discrimination. Journal of Neurological Science, 15, 157–172.CrossRefGoogle Scholar
  5. Bodamer, J. (1947). Die Prosopagnosie. Archiv für Psychiatrie und Nervenkrankheiten, 179, 6–53.CrossRefGoogle Scholar
  6. Bornstein, B. (1963). Prosopagnosia. In L. Halpern (Ed.), Problems of dynamic neurology New York: Grune and Stratton.Google Scholar
  7. Bornstein, B., Sroka, H., & Munitz, H. (1969). Prosopagnosia with animal face agnosia. Cortex, 5, 164–169.Google Scholar
  8. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369–384.Google Scholar
  9. Christen, L., Landis, T., & Regard, M. (1985). Left hemispheric functional compensation in prosopagnosia. A tachistoscopic study with unilaterally lesioned patients. Human Neurobiology, 3 or 4Google Scholar
  10. Cottrell, G., & Fleming, M. (1990). Face recognition using unsupervised feature extraction. Paris, France: Kluwer Academic Publishers, 322–325.Google Scholar
  11. Cottrell, G., Munro, P., & Zipser, D. (1987). Learning internal representations of gray scale images: An example of extensional programming. Seattle, Wa.Google Scholar
  12. Damasio, A. R., Damasio, H., & van Hoesen, G. W. (1982). Prosopagnosia: anatomic basis and neurobehavioral mechanisms. Neurology, 32, 331–341.CrossRefGoogle Scholar
  13. Dyken, P. R., & Miller, M. D. (1980). Facial Features of Neurologic Syndromes. St. Louis, Missouri: C.V. Mosby Company.Google Scholar
  14. Ekman, P. (1973a). Cross-cultural studies of facial expression. In P. Ekman (Ed.), Darwin and facial expression: A century of research in review (pp. 169–222). New York: Academic Press.Google Scholar
  15. Ekman, P. (1973b). Darwin and Facial Expression: A Century of Research in Review. New York: Academic PressGoogle Scholar
  16. Ekman, P. (1977). Biological and cultural contributions to body and facial movement. In J. Blacking (Ed.), Anthropology of the Body (pp. 39–84). London: Academic Press.Google Scholar
  17. Ekman, P. (1989). The argument and evidence about universals in facial expressions of emotion. In H. W. a. J. Manstead (Ed.), Handbook of psychophysiology: Emotion and social behavior (pp. 143–164). London: John Wiley and Sons.Google Scholar
  18. Ekman, P., & Friesen, W. V. (1969). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–105.Google Scholar
  19. Ekman, P., Friesen, W. V., & Simons, R. C. (1985). Is the startle reaction an emotion? Journal of Personality and Social Psychology, 49(5), 1416–1426.CrossRefGoogle Scholar
  20. Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes between emotions. Science, 221, 1208–1210.ADSCrossRefGoogle Scholar
  21. Gloning, I., Gloning, K., Jellinger, K., & Quatember, R. (1970). A case of “prosopagnosia” with necropsy findings. Neuropsychologia, 8, 199–204.CrossRefGoogle Scholar
  22. Golomb, B. A., Lawrence, D. T., & Sejnowski, T. J. (1991). SEXnet: A neural network identifies sex from human faces. In D. S. Touretzky, & R. Lippmann (Ed.), Advances in Neural Information Processing Systems, Vol. 3 San Mateo, California: Morgan Kaufmann.Google Scholar
  23. Gray, M., Lawrence, D., Golomb, B. A., & Sejnowski, T. J. (1993). A perceptron reveals the face of sex. UCSD Institute for Neural Computation Technical Report INC 93-03.Google Scholar
  24. Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Neurophysiology, 35, 96–111.Google Scholar
  25. Grusser, O. J., Selke, T., & Zynda, B. (1985). Age dependent recognition of faces and vases in children and adolescents. Human Neurobiology, 4, 33–39.Google Scholar
  26. Hecaen, H., & Angelergues, R. (1962). Agnosia for faces (prosopagnosia). Archives of Neurology, 7, 92–100.CrossRefGoogle Scholar
  27. Horel, J. A., Keating, E. G., & Misantone, L. G. (1972). Kluver-Bucy syndrome produced by destroying neocortex or amygdala. Brain Research, 94, 347–359.CrossRefGoogle Scholar
  28. Jeeves, M. A. (1984). The historical roots and recurring issues of neurobiological studies of face perception. Human Neurobiology, 3, 191–196.Google Scholar
  29. Jones, B., & Mishkin, M. (1972). Limbic lesions and the problem of stimulus-reinforcement associations. Experimental Neurology, 36, 362–377.CrossRefGoogle Scholar
  30. Kluver, H., & Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiat., 42, 979–1000.CrossRefGoogle Scholar
  31. Leinonen, L., & Nyman, G. (1979). Functional properties of cells in antero-lateral part of area 7 associative face area of awake monkeys. Experimental Brain Research, 34, 321–333.Google Scholar
  32. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–748.ADSCrossRefGoogle Scholar
  33. Meadows, J. C. (1974). The anatomical basis of prosopagnosia. J. Neurol. Neurosurg. Psychiat, 37, 489–501.CrossRefGoogle Scholar
  34. O’Toole, A. J., Abci, H., Deffenbacher, K. A., & Valentin, D. (1993). Low-dimensional representation of faces in higher dimensions of the face space. Journal of the Optical Society of America, A10, 405–411.ADSGoogle Scholar
  35. O’Toole, A. J., Millward, R. B., & Anderson, J. A. (1988). A physical system approach to recognition memory for spatially transformed faces. Neural Networks, 1, 179–199.CrossRefGoogle Scholar
  36. Parker, D. B. (1986). A comparison of algorithms for neuron-like cells. In J. S. Denker (Ed.), Neural networks for computing New York: American Institute of Physics.Google Scholar
  37. Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47, 329–342.CrossRefGoogle Scholar
  38. Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1984). Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology, 3, 197–208.Google Scholar
  39. Pigarev, I. N., Rizzolatti, G., & Scandolara, C. (1979). Neurones responding to visual stimuli in the frontal lobe of macaque monkeys. Neuroscience Letters, 12, 207–212.CrossRefGoogle Scholar
  40. Rolls, E. T. (1981). Responses of amygdaloid neurons in the primate. In Y. Ben-Ari (Ed.), The Amygdaloid Complex (pp. 383–393). Amsterdam: Elsevier.Google Scholar
  41. Rolls, E. T. (1984). Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Human Neurobiology, 3, 209–222.Google Scholar
  42. Rolls, E. T. (1992). Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philosophical Transactions of the Royal Society of London., B335, 11–20.ADSCrossRefGoogle Scholar
  43. Rolls, W. T., Judge, S. J., & Sanghera, M. K. (1977). Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Research, 130, 229–238.CrossRefGoogle Scholar
  44. Rumelhart, D. E., Hinton, G., & Williams, R. J. (1986). Learning internal representation by error propagation. In D. E. R. a. J. L. McClelland (Ed.), Parallel Distributed Processing, Explorations in the microstructure of cognition (pp. 318–362). Cambridge, Mass.: MIT Press.Google Scholar
  45. Sanghera, M. K., Rolls, E. T., & Roper-Hall, A. (1979). Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Experimental Neurology, 63, 610–626.CrossRefGoogle Scholar
  46. Schwartz, G. E., Weinberger, D. A., & Singer, J. A. (1981). Cardiovascular differentiation of happiness, sadness, anger and fear following imagery and exercise. Psychosomatic Medicine, 43, 343–363.Google Scholar
  47. Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain, 115, 15–36.Google Scholar
  48. Sternbach, R. A. (1962). Assessing differential autonomic patterns in emotions. Journal of Psychosomatic Research, 6, 87–91.CrossRefGoogle Scholar
  49. Tranel, D., Damasio, A. R., & Damasio, H. (1988). Intact recognition of facial expression, gender, and age in patinets with impaired recognition of face identity. Neurology, 38(5), 690–696.CrossRefGoogle Scholar
  50. Trauner, D., Bellugi, U., & Chase, C. (1989). Neurologic features of Williams and Down Syndromes. Pediatric Neurology, 5(3), 166–168.CrossRefGoogle Scholar
  51. Trezean, H., Dalle, & Ore, G. (1955). Syndrome of Kluver and Bucy reproduced in man by bilateral removal of the temporal lobes. Neurology, 5, 373–380.CrossRefGoogle Scholar
  52. Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.CrossRefGoogle Scholar
  53. Werbos, P. (1974). Beyond Regression: New tools for prediction and analysis in the behavioral sciences. Harvard UniversityGoogle Scholar
  54. Whiteley, A. M., & Warrington, E. K. (1977). Prosopagnosia: a clinical, psychological and anatomical study in three patients. J. Neurol. Neurosurg. Psychiat., 40, 394–430.CrossRefGoogle Scholar
  55. Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science, 256, 1327–1331.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • B. Golomb
    • 1
  • T. Sejnowski
    • 1
  1. 1.Howard HughesMedical Institute, The Salk InstituteLa JollaUSA

Personalised recommendations