Skip to main content

Micro-Power Analog-Filter Design

  • Chapter
Analog Circuit Design

Abstract

There are fundamental minima for the power consumption of filters. We will see how these minima can be found approximately, and also how filters that approach these minima can be designed for supply voltages down to about 1V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ken Martin and Adel S. Sedra. Designing leap-frog and SFG filters with optimum dynamic range. Proceedings of the IEEE, 65(8):1210–1211, August 1977.

    Article  Google Scholar 

  2. L.B. Jackson. On the interaction of roundoff noise and dynamic range in digital filters. The Bell System Technical Journal, 47(2):159–184, February 1970.

    Google Scholar 

  3. Gert Groenewold. Optimal Dynamic Range Integrated Continuous-Time Filters. PhD thesis, Delft University of Technology, 1992.

    Google Scholar 

  4. E. Seevinck. Companding current-mode integrator: A new circuit principle for continuous-time monolithic filters. Electronics Letters, 26(24):2046–2047, November 1990.

    Article  Google Scholar 

  5. D. Blom and J.O. Voorman. Noise and dissipation of electronic gyrators. Philips Research Reports, 26:103–113, 1971.

    Google Scholar 

  6. J.O. Voorman. The Gyrator as a Monolithic Circuit in Electronic Systems. PhD thesis, University of Nijmegen, Nijmegen, 1977.

    Google Scholar 

  7. Gert Groenewold. The design of high dynamic range continuous-time integratable bandpass filters. IEEE Transactions on Circuits and Systems, 38(8):838–852, August 1991.

    Article  Google Scholar 

  8. Haideh Khorramabadi and Paul R. Gray. High-frequency CMOS continuous-time filters. IEEE Journal of Solid State Circuits, SC-19(6):939–948, December 1984.

    Article  Google Scholar 

  9. J.O. Voorman, W.H.A. Brüls, and P.J. Barth. Bipolar integration of analog gyrator and laguerre type filters (transconductor-capacitor filters). In Proceedings ECCTD’83, pages 108-110, Stuttgart, September 1983.

    Google Scholar 

  10. Johannes O. Voorman. Transconductance amplifier. U.S. Patent 4,723,110, February 2, 1988.

    Google Scholar 

  11. Hiroshi Tanimoto, Mikio Koyama, and Yoshihiro Yoshida. Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs. IEEE Journal of Solid State Circuits, 26(7):937–945, July 1991.

    Article  Google Scholar 

  12. Gert Groenewold. Optimal dynamic range integrators. IEEE Transactions on Circuits and Systems—I: Fundamental Theory And Applications, 39(8):614–627, August 1992.

    Article  Google Scholar 

  13. Mihai Banu and Yannis Tsividis. Fully integrated active RC filters in MOS technology. IEEE Journal of Solid State Circuits, SC-18(6):644–651, December 1983.

    Article  Google Scholar 

  14. Mihai Banu and Yannis Tsividis. An elliptic continuous-time CMOS filter with on-chip automatic tuning. IEEE Journal of Solid State Circuits, SC-20(6):1114–1121, December 1985.

    Article  Google Scholar 

  15. Jaap van der Plas. MOSFET-C filter with low excess noise and accurate automatic tuning. IEEE Journal of Solid State Circuits, 26(7):922–929, July 1991.

    Article  Google Scholar 

  16. Mihai Banu, John M. Khoury, and Yannis Tsividis. Fully differential operational amplifiers with accurate output balancing. IEEE Journal of Solid State Circuits, 23(6):1410–1414, 1988.

    Article  Google Scholar 

  17. J.C. Sandee. Een on-chip automatisch afstemcircuit voor tijdcon-tinue filters met een optimaal dynamisch bereik. Master’s thesis, Delft University of Technology, Delft, November 1992.

    Google Scholar 

  18. A.J.M. de Graauw. Een operationele versterker voor MOSFET-C filters. Master’s thesis, Delft University of Technology, Delft, December 1992.

    Google Scholar 

  19. Johan H. Huijsing. Private Communication.

    Google Scholar 

  20. Joseph N. Babanezhad. A low-output-impedance fully differential op amp with large output swing and continuous-time common-mode feedback. IEEE Journal of Solid State Circuits, 26(12):1825–1833, December 1991.

    Article  Google Scholar 

  21. M.L. Lugthart. Realisatie van een geïntegreerd notchfilter. Master’s thesis, Delft University of Technology, Delft, November 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Groenewold, G., Monna, B., Nauta, B. (1995). Micro-Power Analog-Filter Design. In: van de Plassche, R.J., Sansen, W.M.C., Huijsing, J.H. (eds) Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2353-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2353-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5149-6

  • Online ISBN: 978-1-4757-2353-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics