Micro-Power Analog-Filter Design

  • Gert Groenewold
  • Bert Monna
  • Bram Nauta

Abstract

There are fundamental minima for the power consumption of filters. We will see how these minima can be found approximately, and also how filters that approach these minima can be designed for supply voltages down to about 1V.

Keywords

Power Consumption Supply Voltage Power Dissipation Noise Factor Output Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ken Martin and Adel S. Sedra. Designing leap-frog and SFG filters with optimum dynamic range. Proceedings of the IEEE, 65(8):1210–1211, August 1977.CrossRefGoogle Scholar
  2. [2]
    L.B. Jackson. On the interaction of roundoff noise and dynamic range in digital filters. The Bell System Technical Journal, 47(2):159–184, February 1970.Google Scholar
  3. [3]
    Gert Groenewold. Optimal Dynamic Range Integrated Continuous-Time Filters. PhD thesis, Delft University of Technology, 1992.Google Scholar
  4. [4]
    E. Seevinck. Companding current-mode integrator: A new circuit principle for continuous-time monolithic filters. Electronics Letters, 26(24):2046–2047, November 1990.CrossRefGoogle Scholar
  5. [5]
    D. Blom and J.O. Voorman. Noise and dissipation of electronic gyrators. Philips Research Reports, 26:103–113, 1971.Google Scholar
  6. [6]
    J.O. Voorman. The Gyrator as a Monolithic Circuit in Electronic Systems. PhD thesis, University of Nijmegen, Nijmegen, 1977.Google Scholar
  7. [7]
    Gert Groenewold. The design of high dynamic range continuous-time integratable bandpass filters. IEEE Transactions on Circuits and Systems, 38(8):838–852, August 1991.CrossRefGoogle Scholar
  8. [8]
    Haideh Khorramabadi and Paul R. Gray. High-frequency CMOS continuous-time filters. IEEE Journal of Solid State Circuits, SC-19(6):939–948, December 1984.CrossRefGoogle Scholar
  9. [9]
    J.O. Voorman, W.H.A. Brüls, and P.J. Barth. Bipolar integration of analog gyrator and laguerre type filters (transconductor-capacitor filters). In Proceedings ECCTD’83, pages 108-110, Stuttgart, September 1983.Google Scholar
  10. [10]
    Johannes O. Voorman. Transconductance amplifier. U.S. Patent 4,723,110, February 2, 1988.Google Scholar
  11. [11]
    Hiroshi Tanimoto, Mikio Koyama, and Yoshihiro Yoshida. Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs. IEEE Journal of Solid State Circuits, 26(7):937–945, July 1991.CrossRefGoogle Scholar
  12. [12]
    Gert Groenewold. Optimal dynamic range integrators. IEEE Transactions on Circuits and Systems—I: Fundamental Theory And Applications, 39(8):614–627, August 1992.CrossRefGoogle Scholar
  13. [13]
    Mihai Banu and Yannis Tsividis. Fully integrated active RC filters in MOS technology. IEEE Journal of Solid State Circuits, SC-18(6):644–651, December 1983.CrossRefGoogle Scholar
  14. [14]
    Mihai Banu and Yannis Tsividis. An elliptic continuous-time CMOS filter with on-chip automatic tuning. IEEE Journal of Solid State Circuits, SC-20(6):1114–1121, December 1985.CrossRefGoogle Scholar
  15. [15]
    Jaap van der Plas. MOSFET-C filter with low excess noise and accurate automatic tuning. IEEE Journal of Solid State Circuits, 26(7):922–929, July 1991.CrossRefGoogle Scholar
  16. [16]
    Mihai Banu, John M. Khoury, and Yannis Tsividis. Fully differential operational amplifiers with accurate output balancing. IEEE Journal of Solid State Circuits, 23(6):1410–1414, 1988.CrossRefGoogle Scholar
  17. [17]
    J.C. Sandee. Een on-chip automatisch afstemcircuit voor tijdcon-tinue filters met een optimaal dynamisch bereik. Master’s thesis, Delft University of Technology, Delft, November 1992.Google Scholar
  18. [18]
    A.J.M. de Graauw. Een operationele versterker voor MOSFET-C filters. Master’s thesis, Delft University of Technology, Delft, December 1992.Google Scholar
  19. [19]
    Johan H. Huijsing. Private Communication.Google Scholar
  20. [20]
    Joseph N. Babanezhad. A low-output-impedance fully differential op amp with large output swing and continuous-time common-mode feedback. IEEE Journal of Solid State Circuits, 26(12):1825–1833, December 1991.CrossRefGoogle Scholar
  21. [21]
    M.L. Lugthart. Realisatie van een geïntegreerd notchfilter. Master’s thesis, Delft University of Technology, Delft, November 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gert Groenewold
    • 1
  • Bert Monna
    • 2
  • Bram Nauta
    • 3
  1. 1.Philips SemiconductorsSunnyvaleUSA
  2. 2.Delft University of Technology, Electronics Research LabDelftThe Netherlands
  3. 3.Philips Research LabEindhovenThe Netherlands

Personalised recommendations