Low-Voltage Low-Power Amplifiers

  • Ron Hogervorst
  • Johan H. Huijsing
  • Klaas-Jan de Langen
  • Ruud G. H. Eschauzier


Low-voltage low-power amplifiers are limited in their dynamic range and bandwidth. The maximum dynamic range is limited by the supply-power and the thermal noise in resistors. To obtain the maximum dynamic range several rail-to-rail input and output stages are designed.

The bandwidth is limited by the low-power condition. To reach the maximum bandwidth as well as a large DC-gain various frequency compensation techniques, such as Parallel, Nested Miller and Multipath Nested Miller Compensation are discussed.


Supply Voltage Operational Amplifier Output Stage Bipolar Transistor Current Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Groenewold, “Optimal Dynamic Range Integrated Continuous-Time Filters”, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1992.Google Scholar
  2. [2]
    J.H. Huijsing and R.J. v.d. Plassche, “Differential Amplifier with Rail-to-Rail Input Capability and Constant Transconductance”, U.S. Appl. No. 4,555,673, Nov. 26, 1985.Google Scholar
  3. [3]
    J.H. Huijsing and D. Linebarger, “Low-Voltage Operational Amplifier with Rail-to-Rail Input and Output Ranges”, IEEE J. of Solid-State Circuits, Vol SC-20, No. 6, Dec. 1985, pp. 1144–1150.CrossRefGoogle Scholar
  4. [4]
    J. Fonderie, M.M. Maris, E.J. Schnitger, J.H. Huijsing, “1-V Operational Amplifier with Rail-to-Rail input and output Ranges”Google Scholar
  5. [5]
    R. Hogervorst, R.J. Wiegerink, P.A.L. de Jong, J. Fonderie, R.F. Wassenaar, J.H. Huijsing, “CMOS Low-Voltage Operational Amplifiers with constant-gm Rail-to-Rail input stage”, Proc. IEEE International Symposium on Circuits and Systems, San Diego, May 10–13, 1992, pp. 2876-2879.Google Scholar
  6. [6]
    W.C.M. Renirie, J.H. Huijsing, “Simplified Class-AB Control Circuits for Bipolar Rail-to-Rail Output Stages of Operational Amplifiers”, Proc. European Solid-State Circuits Conference, Sept. 21–23, 1992, pp. 183-186.Google Scholar
  7. [7]
    D.M. Montecelli, “A quad CMOS single-supply Opamp with rail-to-rail output swing”, IEEE J. of Solid-State Circuits, Vol. SC-21, Dec. 1986, pp. 1026–1034.CrossRefGoogle Scholar
  8. [8]
    J.H. Huijsing and F. Tol, “Monolithic Operational Amplifier Design with improved HF behavior”, IEEE J. Solid-State Circuits, Vol. SC-11, No. 2, April 1976, pp. 323–328.CrossRefGoogle Scholar
  9. [9]
    E. Seevinck, W. de Jager, P. Buitendijk, “ A Low-Distortion Output Stage with improved stability for monolithic power amplifiers”, IEEE J. Solid-State Circuits, Vol. SC-23, June 1988, pp. 794–801.CrossRefGoogle Scholar
  10. [10]
    R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, “A Programmable 1.5 V CMOS Class-AB Operational Amplifier with Hybrid Nested Miller Compensation for 120 dB Gain and 6 MHz UGF”, in Digest IEEE International Solid-State Circuits Conference, February 16–18, 1994, pp. 246-247.Google Scholar
  11. [11]
    E.M. Cherry and D.E. Hooper, “Amplifying Devices and Low-Pass Amplifier Design”, John Wiley and Sons Inc., New York, 1988, pp. 690–701.Google Scholar
  12. [12]
    J.H. Huijsing, “Multi-Stage Amplifier with Capacitive Nesting for Frequency Compensation”, U.S. Patent, Appl. No. 4,559,502, Dec. 17, 1985.Google Scholar
  13. [13]
    J. Fonderie and J.H. Huijsing, “Operational Amplifier with 1-V Rail-to-Rail Multipath-Driven Output Stage”, IEEE J. of Solid-State Circuits, vol. 26, No. 12, Dec. 1991, pp. 1817–1824.CrossRefGoogle Scholar
  14. [14]
    J.H. Huijsing and M.J. Fonderie, “Multi-stage amplifier with capacitive nesting and multi-path forward feeding for frequency compensation”, U.S. Patent, Appl. No. 5,155,447, Oct. 4, 1992.Google Scholar
  15. [15]
    R.G.H. Eschauzier, L.P.T. Kerklaan and J.H. Huijsing, “A 100-MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure”, IEEE J. Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, pp. 1709–1717.CrossRefGoogle Scholar
  16. [16]
    R.J. Widlar, “Low voltage techniques”, IEEE J. of Solid-State Circuits, Vol. SC-13, pp. 838–846, Dec. 1978.CrossRefGoogle Scholar
  17. [17]
    K. Bult and G.J.G.M. Geelen, “A Fast-Settling CMOS Opamp with 90-dB DC-Gain and 116 MHz Unity-Gain Frequency”, in Digest IEEE International Solid-State Circuits Conference, February 1990, pp. 108-109.Google Scholar
  18. [18]
    J.H. Huijsing, R. Hogervorst, J. Fonderie, K.J. de Langen, B.J. van den Dool and G. Groenewold, “Low-Voltage Analog Signal Processing”, Chapter 4 of: Ismail-Fiez: “Analog VLSI Signal and Information Processing”, McGraw-Hill, 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ron Hogervorst
    • 1
  • Johan H. Huijsing
    • 1
  • Klaas-Jan de Langen
    • 1
  • Ruud G. H. Eschauzier
    • 1
  1. 1.Faculty of Electrical Engineering Laboratory for Electronic InstrumentationDelft University of TechnologyDelftThe Netherlands

Personalised recommendations