Food Enzymes pp 237-270 | Cite as

Lipoxygenase

  • Dominic W. S. Wong
Chapter

Abstract

Lipoxygenase (linoleate:oxygen oxidoreductase, EC 1.3.11.12) is a dioxygenase that catalyzes the oxygenation of polyunsaturated fatty acids (LH) containing a cis, cis-1,4-pentadiene system to hydroperoxides (LOOH). The enzyme exists in multiple forms, three in soybeans and peas, and two in corn. Lipoxygenases from different sources, as well as their isozymes, may differ in substrate specificity, pH optimum, and oxidation activity as indicated in Table 8.1. Lipoxygenase activity is widespread in plants. Most of our present information regarding lipoxygenase comes from studies on soybean lipoxygenase 1 (LOX-1), the isozyme first isolated and crystallized from soybean (Theorell et al. 1947). Only in recent years have mammalian lipoxygenases been identified as key enzymes in the leukotriene pathways related to inflammatory or immunological reactions (Needleman et al. 1986; Borgeat 1989). The present discussion focuses on the well-studied soybean LOX-1.

Keywords

Linoleic Acid Peroxy Radical Allene Oxide Corn Germ Positional Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuler, M.; Grayburn, W. S.; Collins, G. B.; and Hildebrand, D. F. 1989. Developmental expression of lipoxygenases in soybeans. Plant Science 63, 151–158.CrossRefGoogle Scholar
  2. Aoshima, H.; Kajiwara, T.; Hatanaka, A.; Nakatani, H.; and Hiromi, K. 1977. Kinetic study of lipoxygenase-hydroperoxylinoleic acid interaction. Biochim. Biophys. Acta 486, 121–126.CrossRefGoogle Scholar
  3. Baertschi, S. W.; Ingram, C. D.; Harris, T. M.; and Brash, A. R. 1988. Absolute configuration of cis-12-oxophytodienoic acid of flaxseed: Implications for the mechanism of biosynthesis from the 13(S)-hydroperoxide of linolenic acid. Biochemistry 27, 18–24.CrossRefGoogle Scholar
  4. Bild, G. S.; Brat, S. G.; Ramadoss, C. S.; and Axelrod, B. 1978. Biosynthesis of a prostaglandin by a plant enzyme. J. Biol. Chem. 253, 21–23.Google Scholar
  5. Bill, T. J.; Chen, S.; Pascal, R. A., Jr.; Schwartz, J. 1990. “Outer-sphere” oxidation of nonconjugated dienes by simple iron (III) complexes: A new mechanistic consideration for oxidation of arachidonic acid by lipoxygenase. J. Am. Chem. Soc. 112, 9019–9020.Google Scholar
  6. Borgeat, P. 1989. Biochemistry of the lipoxygenase pathways in neutrophils. Can. J. Physiol. Pharmacol. 67, 936–942.CrossRefGoogle Scholar
  7. Boyington, J. C.; Gaffney, B. J.; and Amzel, L. M. 1990. Crystallization and preliminary x-ray analysis of soybean lipoxygenase-1, a non-heme iron-containing dioxygenase. J. Biol. Chem. 265, 12771–12773.Google Scholar
  8. Boyington, J. C.; Gaffney, B. J.; and Amzel, L. M. 1993A. Structure of soybean lipoxygenase-1. Biochem. Soc. Trans. 21, 744–748.Google Scholar
  9. Boyington, J. C.; Gaffney, B. J.; and Amzel, L. M. 1993B. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science 260, 1482–1486.Google Scholar
  10. Brash, A. R.; Baertschi, S. W.; Ingram, C. D.; and Harris, T. M. 1987. On noncyclooxygenase prostaglandin synthesis in the sea whip coral, Plexaura homomalla: An 8(R)-lipoxygenase pathway leads to formation of an a-ketol and a racemic prostanoid. J. Biol. Chem. 262, 15829–15839.Google Scholar
  11. Brash, A. R.; Baertschi, S. W.; Ingram, C. D.; and Harris, T. M. 1988. Isolation and characterization of natural allene oxides: Unstable intermediates in the metabolism of lipid hydroperoxides. Proc. Natl. Acad. Sci. USA 85, 3382–3386.CrossRefGoogle Scholar
  12. Chamulitrat, W., and Mason, R. P. 1989. Lipid peroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase. J. Biol. Chem. 264, 20968–20973.Google Scholar
  13. Chamulitrat, W., and Mason, R. P. 1990. Alkyl free radicals from the 13-scission of fatty acid alkoxyl radicals as detected by spin trapping in a lipoxygenase system. Arch. Biochem. Biophys. 282, 65–69.CrossRefGoogle Scholar
  14. Cheesbrough, T. M., and Axelrod, B. 1983. Determination of the spin state of iron in native and activated soybean lipoxygenase 1 by paramagnetic susceptibility. Biochemistry 22, 3837–3840.CrossRefGoogle Scholar
  15. Christopher, J. P.; Pistorius, E. K.; and Axelrod, B. 1972. Isolation of a third isoenzyme of soybean lipoxygenase. Biochim. Biophys. Acta 284, 54–62.CrossRefGoogle Scholar
  16. Corey, E. J., and Nagata, R. 1987. Evidence in favor of an organoiron-mediated pathway for lipoxygenation of fatty acids by soybean lipoxygenase. J. Am. Chem. Soc. 109, 8107–8108.CrossRefGoogle Scholar
  17. Corey, E. J., and Walker, J. C. 1987. Organoiron-mediated oxygenation of allylic organotin compounds. A possible model for enzymatic lipoxygenation. J. Am. Chem. Soc. 109, 8108–8109.CrossRefGoogle Scholar
  18. Corey, E. J.; Wright, S. W.; and Matsuda, S. P. T. 1989. Stereochemistry and mechanism of the biosynthesis of leukotriene A4 from 5(S)-hydroperoxy-6(E) 8,11,14(Z)-eicosatetraenoic acid. Evidence for an organoiron intermediate. J. Am. Chem. Sco. 111, 1452–1455.Google Scholar
  19. Crombie, L., and Morgan, D. O. 1991. The enzymic conversion of 13-hydroperoxylinoleic acid into 13-hydroxy-12-oxooctadec-9(Z)-enoic acid and 9-hydroxy12-oxooctadec-10(E)-enoic acid: Isotopic evidence for an allene epoxide intermediate. J. Chem. Soc. Perkin Trans. 1, 1991, 577–580.CrossRefGoogle Scholar
  20. Cucurou, C.; Battioni, J. P.; Thang, D. C.; Nam, N. H.; and Mansuy, D. 1991. Mechanisms of inactivation of lipoxygenases by phenidone and BW755C. Biochemistry 30, 8964–8969.CrossRefGoogle Scholar
  21. Davies, M. J., and Slater, T. F. 1987. Studies on the metal-ion and lipoxygenasecatalyzed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem. J. 245, 167–173.Google Scholar
  22. Datcheva, V. K.; Kiss, K.; Solomon, L.; and Kyler, K. S. 1991. Asymmetric hydroxylation with lipoxygenase: The role of group hydrophobicity on regioselectivity. J. Am. Chem. Soc. 113, 270–274.CrossRefGoogle Scholar
  23. De Groot, J. J. M. C.; Garssen, G. J.; Veldink, G. A.; Vliegenthart, J. F. G.; and Boldingh, J. 1975A. On the interaction of soybean lipoxygenase-1 and 13-Lhydroperoxylinoleic acid, involving yellow and purple coloured enzyme species. FEBS Lett. 56, 50–54.Google Scholar
  24. De Groot, J. J. M. C.; Veldink, G. A.; Vliegenthart, J. F. G.; Boldingh, J.; Wever, R.; and Van Gelder, B. F. 1975B. Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim. Biophys. Acta 377, 71–79.Google Scholar
  25. Dixon, R. A. F.; Jones, R. E.; Diehl, R. E.; Bennett, C. D.; Kargman, S.; and Rouzer, C. A. 1988. Cloning of the cDNA for human 5-lipoxygenase. Proc. Natl. Acad. Sci. USA 85, 416–420.CrossRefGoogle Scholar
  26. Dolev, A.; Rohwedder, W. K.; Mounts, T. L.; and Dutton, H. J. 1967. Mechanism of lipoxidase reaction. II. Origin of the oxygen incorporated into linoleate hydroperoxide. Lipids 2, 33–36.CrossRefGoogle Scholar
  27. Dunham, W. R.; Carroll, R. T.; Thompson, J. F.; Sands, R. H.; and Funk, M. O. 1990. The initial characterization of the iron environment in lipoxygenase by Mossbauer spectroscopy. Eur. J. Biochem. 190, 611–617.CrossRefGoogle Scholar
  28. Ealing, P. M., and Casey, R. 1988. The complete amino acid sequence of a pea (Pisum sativum) seed lipoxygenase predicted from a near full-length cDNA. Biochem. J. 253, 915–918.Google Scholar
  29. Ealing, P. M., and Casey, R. 1989. The cDNA cloning of a pea (Pisum sativum) seed lipoxygenase. Biochem. J. 264, 929–932.Google Scholar
  30. Egmond, M. R.; Brunori, M.; and Fasella, P. M. 1976. The steady-state kinetics of the oxygenation of linoleic acid catalyzed by soybean lipoxygenase. Eur. J. Biochem. 61, 93–100.CrossRefGoogle Scholar
  31. Egmond, M. R.; Fasella, P. M.; Veldink, G. A.; Vliegenthart, F. G.; and Boldingh, J. 1977. On the mechanism of action of soybean lipoxygenase-1. A stopped-flow kinetic study of the formation and conversion of yellow and purple enzyme species. Eur. J. Biochem. 76, 469–479.CrossRefGoogle Scholar
  32. Egmond, M. R.; Finazzi-Agro, A.; Fasella, P. M.; Veldink, G. A.; Vliegenthart, F. G. 1975. Changes in the fluorescence and absorbance of lipoxygenase-1 induced by 13-Ls-hydroperoxylinoleic acid and linoleic acid. Biochim. Biophys. Acta 397, 43–49.CrossRefGoogle Scholar
  33. Egmond, M. R.; Veldink, G. A.; Vliegenthart, J. F. G.; and Boldingh, J. 1973. C-11 H-abstraction from linoleic acid, the rate-limiting step in lipoxygenase catalysis. Biochem. Biophys. Res. Comm. 54, 1178–1184.CrossRefGoogle Scholar
  34. Egmond, M. R.; Vliegenthart, J. F. G.; and Boldingh, J. 1972. Stereospecificity of the hydrogen abstraction at carbon atom n-8 in the oxygenation of linoleic acid by lipoxygenases from corn germs and soya beans. Biochem. Biophys. Res. Comm. 48, 1055–1060.CrossRefGoogle Scholar
  35. Esselman, W. J., and Clagett, C. O. 1974. Products of a linoleic hydroperoxidedecomposing enzyme of alfalfa seed. J. Lipid Res. 15, 173–178.Google Scholar
  36. Fahlstadius, P., and Hamberg, M. 1990. Stereospecific removal of the pro-R hydrogen at C-8 of (9S)-hydroperoxyoctadecadienoic acid in the biosynthesis of colneleic acid. J. Chem. Soc. Perkin Trans 11990, 2027–2030.CrossRefGoogle Scholar
  37. Farmer, E. E., and Ryan, C. A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87, 7713–7716.CrossRefGoogle Scholar
  38. Feiters, M. C.; Aasa, R.; Malmstrom, B. G.; Slappendel, S.; Veldink, G. A.; and Vliegenthart, J. F. G. 1985. Substrate fatty acid activation in soybean lipoxygenase-1 catalysis. Biochim. Biophys. Acta 831, 302–305.CrossRefGoogle Scholar
  39. Feiters, M. C.; Aasa, R.; Malmstrom, B. G.; Veldink, G. A.; and Vliegenthart, J. F. G. 1986. Spectroscopic studies on the interactions between lipoxygenase2 and its product hydroperoxides. Biochim. Biophys. Acta 873, 182–189.CrossRefGoogle Scholar
  40. Fitzsimmons, B. J.; Adams, J.; Evans, J. F.; Leblanc, Y.; and Rokach, J. 1985. The lipoxins. J. Biol. Chem. 260, 13008–13012.Google Scholar
  41. Fleming, J.; Thiele, B. J.; Chester, J.; O’prey, J.; Janetzki, S.; Aitken, A.; Anton, I. A.; Rapoport, S. M.; and Harrison, P. R. 1989. The complete sequence of rabbit erythroid cell-specific 15-lipoxygenase mRNA: Comparison of the predicted amino acid sequence of the erythrocyte lipoxygenase with other lipoxygenases. Gene 79, 181–188.CrossRefGoogle Scholar
  42. Funk, C. D.; Hoshiko, S.; Matsumoto, T.; Radmark, O.; and Samuelsson, B. 1989. Characterization of the human 5-lipoxygenase gene. Proc. Natl. Acad. Sci. USA 86, 2587–2591.CrossRefGoogle Scholar
  43. Funk, M. O.; Andre, J. C.; and Otsuki, T. 1987. Oxygenation of trans polyunsaturated fatty acids by lipoxygenase reveals steric features of the catalytic mechanism. Biochemistry 26, 6880–6884.CrossRefGoogle Scholar
  44. Funk, M. O., Jr., and Carroll, R. T. 1990. Role of iron in lipoxygenase catalysis. J. Am. Chem. Soc. 112, 5375–5376.CrossRefGoogle Scholar
  45. Galliard, T., and Chan, H. W.-S. 1980. Lipoxygenase. In: The Biochemistry of Plants, A Comprehensive Treatise. vol. 4, P. K. Stumpf and E. E. Conn, eds., Academic Press, New York.Google Scholar
  46. Galliard, T., and Matthew, J. A. 1975. Enzymatic reactions of fatty acid hydro- peroxides in extracts of potato tuber. Biochim. Biophys. Acta 398, 1–9.CrossRefGoogle Scholar
  47. Galliard, T., and Matthew, J. A. 1977. Lipoxygenase-mediated cleavage of fatty acids to carbonyl fragments in tomato fruits. Phytochemistry 16, 339–343.CrossRefGoogle Scholar
  48. Galliard, T.; Phillips, D. R.; and Reynolds, J. 1976. The formation of cis-3-nonenal, trans-2-nonenal and hexanal from linoleic acid hydroperoxide isomers by a hydroperoxide cleavage enzyme system in cucumber (Cucumis sativus) fruits. Biochim. Biophys. Acta 441, 181 - 192.CrossRefGoogle Scholar
  49. Galpin, J. R.; Veldink, G. A.; Vliegenthart, E. G.; and Boldingh, J. 1978. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim. Biophys. Acta 536, 356–362.CrossRefGoogle Scholar
  50. Gardner, H. W. 1970. Sequential enzymes of linoleic acid oxidation in corn germ: Lipoxygenase and linoleate hydroperoxide isomerase. J. Lipid. Res. 11, 311–321.Google Scholar
  51. Gardner, H. W. 1979. Stereospecificity of linoleic acid hydroperoxide isomerase from corn germ. Lipids 14, 209–211.Google Scholar
  52. Gardner, H. W. 1989. Soybean lipoxygenase-1 enzymatically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism. Biochim. Biophys. Acta 1001, 274–281.CrossRefGoogle Scholar
  53. Gardner, H. W. 1991. Recent investigations into the lipoxygenase pathway of plants. Biochim. Biophys. Acta 1084, 221–239.CrossRefGoogle Scholar
  54. Gardner, H. W., and Weisleder, D. 1970. Lipoxygenase from Zea-mays: 9-D-hydroperoxy-trans-10, cis-12-octadecadienoic acid from linoleic acid. Lipids 5,678–683.Google Scholar
  55. Garssen, G. J.; Veldink, G. A.; Vliegenthart, J. F. G.; and Boldingh, J. 1976. The formation of threo-1l-hydroxy-trans-12:3-epoxy-9-cis-octadecenoic acid by enzymic isomerization of 13-L-hydroperoxy-9-cis, 11-trans-octadecadienoic acid by soybean lipoxygenase-1. Eur. J. Biochem. 62, 33–36.CrossRefGoogle Scholar
  56. Garssen, G. J.; Vliegenthart, J. F. G.; and Boldingh, J. 1971. An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem. J. 122, 327–332.Google Scholar
  57. Garssen, G. J.; Vliegenthart, J. F. G.; and Boldingh, J. 1972. The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem. J. 130, 435–442.Google Scholar
  58. Gerritsen, M.; Veldink, G. A.; Vliegenthart, J. F. G.; and Boldingh, J. 1976. Formation of a-and y-ketols from 80-labelled linoleic acid hydroperoxides by corn germ hydroperoxide isomerase. FEBS Letts. 67, 149–152.CrossRefGoogle Scholar
  59. Gibian, M. J., and Galaway, R. A. 1977. Chemical aspects of lipoxygenase reactions. Bioorganic Chemistry 1, 117–136.Google Scholar
  60. Graveland, A. 1973. Enzymatic oxidation of linolenic acid in aqueous wheat flour suspensions. Lipids 8, 606–611.CrossRefGoogle Scholar
  61. Grechkin, A. N.; Kuramshin, R. A.; Latypov, S. K.; Safonova, Y. Y.; Gafarova, T. E.; and Ilyasov, A. V. 1991. Hydroperoxides of a-ketols. Novel products of the plant lipoxygenase pathways. Eur. J. Biochem. 199, 451–457.CrossRefGoogle Scholar
  62. Grossman, S.; Bergman, M.; and Sofer, Y. 1983. Purification and partial characterization of eggplant linoleate hydroperoxide isomerase. Biochim. Biophys. Acta 752, 65–72.CrossRefGoogle Scholar
  63. Hamberg, M. 1987. Mechanism of corn hydroperoxide isomerase: Detection of 12,13(5)-oxide-9(Z),11-octadecadienoic acid. Biochim. Biophys. Acta 920, 7684.Google Scholar
  64. Hamberg, M. 1988. Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: Identification of an allene oxide cyclase. Biochim. Biophys. Res. Comm. 156, 543–550.CrossRefGoogle Scholar
  65. Hamberg, M., and Fahlstadius, P. 1990. Allene oxide cyclase: A new enzyme in plant lipid metabolism. Arch. Biochem. Biophys. 276, 518–526.CrossRefGoogle Scholar
  66. Hamberg, M., and Hughes, M. A. 1988. Fatty acid allene oxides. III. Albumin-induced cyclization of 12,13(S)-epoxy-9(Z),11-octadecadienoicacid. Lipids 23, 469–475.CrossRefGoogle Scholar
  67. Heijdt, L. M., Feiters, M. C.; Navaratham, S.; Nolting, N.-F.; Hermes, C.; Veldink, G. A.; and Vliegenthart, F. G. 1992. X-ray absorption spectroscopy of soybean lipoxygenase-1. Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site. Eur. J. Biochem. 207, 793–802.CrossRefGoogle Scholar
  68. Holman, R. T.; Egwim, P. O.; and Christie, W. W. 1969. Substrate specificity of soybean lipoxidase. J. Biol. Chem. 244, 1149–1151.Google Scholar
  69. Kanofsky, J. R., and Axelrod, B. 1986. Singlet oxygen production by soybean lipoxygenase isozymes. J. Biol. Chem. 261, 1099–1104.Google Scholar
  70. Kermasha, S.; van de Voort, F. R.; and Metche, M. 1986. Conversion of linoleic acid hydroperoxide by French bean hydroperoxide isomerase. J. Food Biochem. 10, 285–303.CrossRefGoogle Scholar
  71. Kim, I.-S., and Grosch, W. 1981. Partial purification and properties of a hydro- peroxide lyase from fruits of pear. J. Agric. Food Chem. 29, 1220–1225.CrossRefGoogle Scholar
  72. Kuhn, H.; Eggert, L.; Zabolotsky, O. A.; Myagkova, G. I.; and Schewe, T. 1991. Keto fatty acids not containing doubly allylic methylenes are lipoxygenase substrates. Biochemistry 30, 10269–10273.CrossRefGoogle Scholar
  73. Kuhn, H.; Heydeck, D.; Wiesner, R.; and Schewe, T. 1985. The positional specificity of wheat lipoxygenase; the carboxylic groups as signal for the recognition of the site of the hydrogen removal. Biochim. Biophys. Acta 830, 25–29.CrossRefGoogle Scholar
  74. Kuhn, H.; Schewe, T.; and Rapoport, S. M. 1986. The stereochemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes. Adv. Enzymol. 58, 273–311.Google Scholar
  75. Kuhn, H.; Sprecher, H.; and Brash, A. R. 1990. On singular or dual positional specificity of lipoxygenases. J. Biol. Chem. 265, 16300–16305.Google Scholar
  76. Kuhn, H.; Wiesner, R.; Schewe, T.; and Rapoport, S. M. 1983. Reticulocyte lipox- ygenase exhibits both n-6 and n-9 activities. FEBS Lett. 153, 353–356.CrossRefGoogle Scholar
  77. Kwok, P.-Y.; Muellner, F. W.; and Fried, J. 1987. Enzymatic conversion of 10,10difluoroarachidonic acid with PGH synthase and soybean lipoxygenase. J. Am. Chem. Soc. 109, 3692–3698.CrossRefGoogle Scholar
  78. Lagocki, J. W.; Emken, E. A.; Law, J. H.; and Kezdy, F. J. 1976. Kinetic analysis of the action of soybean lipoxygenase on linoleic acid. J. Biol. Chem. 251, 6001–6006.Google Scholar
  79. Matsumoto, T.; Funk, C. D.; Radmark, O.; Hoog, J.-O.; Jornvall, H.; and Samuelsson, B. 1988. Molecular cloning and amino acid sequence of human 5–1ipoxygenase. Proc. Natl. Acad. Sci. USA 85, 26–30.CrossRefGoogle Scholar
  80. Matthew, J. A., and Chan, H. W.-S. 1983. Soybean lipoxygenase-1 catalyzed exchange of molecular oxygen in 13-S-hydroperoxy-9-cis,l1-trans-octadecadienoic acid. J. Food Biochem. 7, 1–6.CrossRefGoogle Scholar
  81. Minor, W.; Steczko, J.; Bolin, J. T.; Otwinowski, Z.; and Axelrod, B. 1993. Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry 32, 6320–6323.CrossRefGoogle Scholar
  82. Mohri, S.; Endo, Y.; Matsuda, K.; Kitamura, K.; and Fujimoto, K. 1990. Physiological effects of soybean seed lipoxygenases on insects. Agric. Biol. Chem. 54, 2265–2270.CrossRefGoogle Scholar
  83. Mulliez, E.; Leblanc, J.-P.; Girerd, J.-J.; Rigaud, M.; and Chottard, J.-C. 1987. 5-Lipoxygenase from potato tubers. Improved purification and physiochemical characteristics. Biochim. Biophys. Acta 916, 13–23.Google Scholar
  84. Navaratnam, S.; Feiters, M. C.; Al-Hakim, M.; Allen, J. C.; Veldink, G. A.; and Vliegenthart, J. F. G. 1988. Iron environment in soybean lipoxygenase-1. Biochim. Biophys. Acta 956, 70–76.CrossRefGoogle Scholar
  85. Needleman, P.; Turk, J.; Jakschik, B. A.; Morrison, A. R.; and Lefkowith, J. B. 1986. Arachidonic acid metabolism. Ann. Rev. Biochem. 55, 69–102.CrossRefGoogle Scholar
  86. Nelson, M. J.; Batt, D. G.; Thompson, J. S.; and Wright, S. W. 1991. Reduction of the active-site iron by potent inhibitors of lipoxygenases. J. Biol. Chem. 266, 8225–8229.Google Scholar
  87. Nelson, M. J., and Cowling, R. A. 1990. Observation of a peroxyl radical in samples of “purple” lipoxygenase. J. Am. Chem. Soc. 112, 2820–2821.CrossRefGoogle Scholar
  88. Nelson, M. J.; Seitz, S. P.; and Cowling, R. A. 1990. Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase. Biochemistry 29, 6887–6903.CrossRefGoogle Scholar
  89. Nikolaev, V.; Reddanna, P.; Whelan, J.; Hildenbrandt, G.; and Reddy, C. C. 1990. Stereochemicai nature of the products of linoleic acid oxidation catalyzed by lipoxygenases from potato and soybean. Biochem. Biophys. Res. Comm. 170, 491–496.CrossRefGoogle Scholar
  90. Ohta, H.; Shida, K.; Peng, Y.-L.; Furusawa, I.; Shishiyama, J.; Aibara, S.; and Morita, Y. 1990A. The occurrence of lipid hydroperoxide-decomposing activities in rice and the relationship of such activities to the formation of antifungal substances. Plant Cell Physiol. 31, 1117–1122.Google Scholar
  91. Ohta, H.; Shida, K.; Peng, Y.-L.; Furusawa, I.; Shishiyama, J.;Aibara, S.; and Morita, Y. 1990B. A lioxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiol. 97,94–98.Google Scholar
  92. Olias, J. M.; Rios, J. J.; Valle, M.; Zamora, R.; Sanz, L. C.; and Axelrod, B. 1990. Fatty acid hydroperoxide lyase in germinating soybean seedlings. J. Agric. Food Chem. 38, 624–630.CrossRefGoogle Scholar
  93. Pauls, K. P., and Thompson, J. E. 1984. Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons. Plant Physiol. 75, 1152–1157.CrossRefGoogle Scholar
  94. Peterman, T. K., and Siedow, J. N. 1985. Behavior of lipoxygenase during establishment, senescence, and rejuvenation of soybean cotyledons. Plant Physiol. 78, 690–695.CrossRefGoogle Scholar
  95. Petersson, L.; Slappendel, S.; and Vliegenthart, J. F. G. 1985. The magnetic susceptibility of native soybean lipoxygenase-1. Implications for the symmetry of the iron environment and the possible coordination of dioxygen to Fe(II). Biochim. Biophys. Acta 828, 81–85.Google Scholar
  96. Petersson, L.; Slappendel, S.; Feiters, M. C.; and Vliegenthart, J. F. G. 1987. Magnetic susceptibility studies on yellow and anaerobically substrate-treated yellow soybean lipoxygenase-1. Biochim. Biophys. Acta 913, 228–237.Google Scholar
  97. Phillips, D. R., and Galliard, T. 1978. Flavour biogenesis. Partial purification and properties of a fatty acid hydroperoxide cleaving enzyme from fruits of cucumber. Phytochemistry 17, 355–358.CrossRefGoogle Scholar
  98. Phillips, D. R.; Matthew, J. A.; Reynolds, J.; and Fenwick, G. R. 1979. Partial purification and properties of a cis-3: trans-2-enal isomerase from cucumber fruit. Phytochemistry 18, 401–404.CrossRefGoogle Scholar
  99. Pistorius, E. K., and Axelrod, B. 1974. Iron, an essential component of lipoxgenase. J. Biol. Chem. 249, 3183–3186.Google Scholar
  100. Pistorius, E. K., and Axelrod, B. 1976. Evidence for participation of iron in lipoxygenase reaction from optical and electron spin resonance studies. J. Biol. Chem. 251, 7144–7148.Google Scholar
  101. Prakash, T. R.; Swamy, P. M.; Suguna, P.; and Reddanna, P. 1990. Characterization and behavior of 15-lipoxygenase during peanut cotyledonary senescence. Biochem. Biophys. Res. Comm. 172, 462–470.Google Scholar
  102. Quax, W. J.; Mrabet, N. T.; Luiten, R. G. M.; Schuurhuizen, P. W.; Stanssens, P.; and Lasters, I. 1991. Enhancing the thermostability of glucose isomerase by protein engineering. Bio/Technology 9, 738–742.CrossRefGoogle Scholar
  103. Regdel, D.; Kuhn, H.; and Schewe, T. 1994. On the reaction specificity of the li- poxygenase from tomato fruits. Biochim. Biophys. Acta 1210, 297–302.CrossRefGoogle Scholar
  104. Schieberle, P.; Grosch, W.; Kexel, H.; and Schmidt, H.-L. 1981. A study of oxygen isotope scrambling in the enzymatic and non-enzymatic oxidation of linoleic acid. Biochim. Biophys. Acta 666, 322–326.CrossRefGoogle Scholar
  105. Schilstra, M. J.; Veldink, G. A.; Verhagen, J.; and Vliegenthart, J. F. G. 1992. Effect of lipid hydroperoxide on lipoxygenase kinetics. Biochemistry 31, 7692–7699.Google Scholar
  106. Schilstra, M. J.; Veldink, G. A.; and Vliegenthart, F. G. 1994. The dioxygenation rate in lipoxygenase catalysis is determined by the amount of iron (III) lipoxygenase in solution. Biochemistry 33, 3974–3979.CrossRefGoogle Scholar
  107. Shibata, D.; Steczko, J.; Dixon, J. E.; Hermodson, M.; Yazdanparast, R.; and Axelrod, B. 1987. Primary structure of soybean lipoxygenase-1. J. Biol. Chem. 262, 10080–10085.Google Scholar
  108. Shibata, D.; Steczko, J.; Dixon, J. E.; Andrews, P. C.; Hermodson, M.; and Axelrod, B. 1988. Primary structure of soybean lipoxygenase L-2. J. Biol. Chem. 263, 6816–6821.Google Scholar
  109. Shimizu, T.; Radmark, O.; and Samuelsson, B. 1984. Enzyme with dual lipoxygenase activities catalyzes leukotriene A, synthesis from arachidonic acid. Proc. Natl. Acad. Sci. USA 81, 689–693.CrossRefGoogle Scholar
  110. Siedow, J. N. 1991. Plant lipoxygenase: Structure and function. Ann. Rev. Plant Physiol. Plant Biol. 42, 145–188.CrossRefGoogle Scholar
  111. Sigal, E.; Craik, C. S.; Highland, E.; Grunberger, D.; Costello, L. L.; Dixon, R. A. F.; and Nadel, J. A. 1988. Molecular cloning and primary structure of human 15-lipoxygenase. Biochem. Biophys. Res. Comm. 157, 457–464.CrossRefGoogle Scholar
  112. Slappendel, S.; Malmstrom, B. G.; Petersson, L.; Ehrenberg, A.; Veldink, G. A.; and Vliegenthart, J. F. G. 1982. On the spin and valence state of iron in native soybean lipoxygenase-1. Biochem. Biophys. Res. Comm. 108, 673–677.CrossRefGoogle Scholar
  113. Slappendel, S.; Veldink, G. A.; Vliegenthart, J. F. G.; Aasa, R.; and Malmstrom, B. G. 1981. EPR spectroscopy of soybean lipoxygenase-1. Description and quantification of the high-spin Fe(III) signals. Biochim. Biophys. Acta 667-7786.Google Scholar
  114. Slappendel, S.; Veldink, G. A.; Vliegenthart, J. F. G.; Aasa, R.; and Malmstrom, B. G. 1983. A quantitative optical and EPR study on the interaction between soybean lipoxygenase-1 and 13-L-hydroperoxylinoleic acid. Biochim. Biophys. Acta 747, 32–36.CrossRefGoogle Scholar
  115. Smith, W. L., and Lands, W. E. 1972. Oxygenation of unsaturated fatty acids by soybean lipoxygenase. J. Biol. Chem. 247, 1038–1047.Google Scholar
  116. Sox, D.-E.; Phi, T. S.; Jung, C. H.; Chung, Y. S.; and Kang, J. B. 1988. Soybean lipoxygenase-catalyzed formation of lipoxin A and lipoxin B isomers from arachidonic acid via 5,15ihydroperoxyeicosatetraenoic acid. Biochem. Biophys. Res. Comm. 153, 840–847.CrossRefGoogle Scholar
  117. Stallings, W. C.; Kroa, B. A.; Carroll, R. T.; Metzger, A. L.; and Funk, M. O. 1990. Crystallization and preliminary x-ray characterization of a soybean seed lipoxygenase. J. Mol. Biol. 211, 685–687.CrossRefGoogle Scholar
  118. Steczko, J.; Donoho, G. P.; Clements, J. C.; Dixon, J. E.; and Axelrod, B. 1992. Conserved histidine residues in soybean lipoxygenase: Functional consequences of their replacement. Biochemistry 31, 4053–4057.CrossRefGoogle Scholar
  119. Steczko, J.; Muchmore, C. R.; Smith, J. L.; and Axelrod, B. 1990. Crystallization and preliminary x-ray investigation of lipoxygenase 1 from soybeans. J. Biol. Chem. 265, 11352–11354.Google Scholar
  120. Theorell, H.; Holman, R. T.; and Akeson, A. 1947. Crystalline lipoxidase. Acta Chem. Scand. 1, 571–576.CrossRefGoogle Scholar
  121. van Os, C. P. A.; Rijke-Schilder, G. P. M.; van Halbeek, H.; Verhagen, J.; and Vliegenthart, J. F. G. 1981. Double dioxygenation of arachidonic acid by soybean lipoxygenase-1. Kinetics and regio-stereo specificities of the reaction steps. Biochim. Biophys. Acta 663, 177 - 193.CrossRefGoogle Scholar
  122. Veldink, G. A.; Garssen, G. J.; Vliegenthart, J. F. G.; and Boldingh, J. 1972. Positional specificity of corn germ lipoxygenase as a function of pH. Biochem. Biophys. Res. Comm. 47, 22–26.CrossRefGoogle Scholar
  123. Veldink, G. A.; Vliegenthart, J. F. G.; and Boldingh, J. 1970. The enzymic conversion of linoleic acid hydroperoxide by flax-seed hydroperoxide isomerase. Biochem. J. 120, 55–60.Google Scholar
  124. Vergagen, J.; Bouman, A. A.; Vliegenthart, J. F. G.; and Boldingh, J. 1977. Conversion of 9-D- and 13-L-hydroperoxylinoleic acids by soybean lipoxygenase-1 under anaerobic conditions. Biochim. Biophys. Acta 486, 114–120.CrossRefGoogle Scholar
  125. Vick, B. A.; Feng, P.; and Zimmerman, D. C. 1980. Formation of 12-[18O]oxo-cis-l0, cis-15-phytodienoic acid from 13180]hydroperoxylinolenic acid by hydroperoxide cyclase. Lipids 15, 468–471.Google Scholar
  126. Vick, B. A., and Zimmerman, D. C. 1976. Lipoxygenase and hydroperoxide lyase in germinating watermelon seedlings. Plant Physiol. 57, 780–788.CrossRefGoogle Scholar
  127. Vick, B. A., and Zimmerman, D. C. 1976. 1979. Substrate specificity for the synthesis of cyclic fatty acids by a flaxseed extract. Plant Physiol. 63, 490–494.CrossRefGoogle Scholar
  128. Vick, B. A., and Zimmerman, D. C. 1976. 1981. Lipoxygenase, hydroperoxide isomerase, and hydroperoxide cyclase in young cotton seedlings. Plant Physiol. 67, 92–97.CrossRefGoogle Scholar
  129. Vick, B. A., and Zimmerman, D. C. 1976. 1983. The biosynthesis for jasmonic acid: A physiological role for plant lipoxygenase. Biochem. Biophys. Res. Comm. 111, 470–477.CrossRefGoogle Scholar
  130. Vick, B. A., and Zimmerman, D. C. 1976. 1986. Characterization of 12-oxo-phytodienoic acid reductase in corn. Plant Physiol. 80, 202–206.CrossRefGoogle Scholar
  131. Vick, B. A., and Zimmerman, D. C. 1986. Characterization of 12-oxo-phytodienoic acid reductase in corn. Plant Physiol. 80, 202–206.CrossRefGoogle Scholar
  132. Vliegenthart, J. F. G.; Veldink, G. A.; and Boldingh, J. 1979. Recent progress in the study on the mechanism of action of soybean lipoxygenase. J. Agric. Food Chem. 27, 623–626.CrossRefGoogle Scholar
  133. Wang, J.; Fujimoto, K.; Miyazawa, T.; Endo, Y.; and Kitamura, K. 1990. Sensitivities of lipoxygenase-lacking soybean seeds to accelerated aging and their chemiluminescence levels. Phytochemistry 29, 3739–3742.CrossRefGoogle Scholar
  134. Wang, Z.-X.; Killilea, S. D.; and Srivastava, D. K. 1993. Kinetic evaluation of substrate-dependent origin of the lag phase in soybean lipoxygenase-1 catalyzed reactions. Biochemistry 32, 1500–1509.CrossRefGoogle Scholar
  135. Whittaker, J. W., and Solomon, E. I. 1986. Spectroscopic studies on ferrous nonheme iron active sites: Variable-temperature MCD probe of ground-and excited-state splitting in iron superoxide dismutase and lipoxygenase. J. Am. Chem. Soc. 108, 835–836.CrossRefGoogle Scholar
  136. Wiseman, J. S. 1989. a-Secondary isotope effects in the lipoxygenase reaction. Biochemistry 28, 2106–2111.Google Scholar
  137. Wiseman, J. S., and Nichols, J. S. 1988. Ketones as electrophilic substrates of lipoxygenase. Biochem. Biophys. Res. Comm. 54, 544–549.CrossRefGoogle Scholar
  138. Yenofsky, R. L.; Fine, M.; and Liu, C. 1988. Isolation and characterization of a soybean (Glycine max) lipoxygenase-3-gene. Mol. Gen. Genet. 211, 215–222.CrossRefGoogle Scholar
  139. Yoon, S., and Klein, B. P. 1979. Some properties of pea lipoxygenase isoenzymes. J. Agric. Food Chem. 27, 955–962.CrossRefGoogle Scholar
  140. Yoshimoto, T.; Suzuki, H.; Yamamoto, S.; Takai, T.; Yokoyama, C.; and Tanabe, T. 1990. Cloning and sequence analysis of the cDNA for arachidonic 12-lipoxygenase of porcine leukocytes. Proc. Natl. Acad. Sci. USA 87, 2142–2146.CrossRefGoogle Scholar
  141. Zhang, Y.; Gebhard, M. S.; and Solomon, E. I. 1991. Spectroscopic studies of the non-heme ferric active site in soybean lipoxygenase: Magnetic circular dichroism as a probe of electronic and geometric structure. Ligand-field origin of zero-field splitting. Biochemistry 113, 5162–5175.Google Scholar
  142. Zimmerman, D. C., and Coudron, C. A. 1979. Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol. 63, 536–541.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations