Skip to main content

Lipolytic Enzymes

  • Chapter
Food Enzymes

Abstract

Lipolytic enzymes consist of two major groups, the lipases, which are triacylglycerol acylhydrolase (EC 3.1.1.3), and the phospholipases A1 (3.1.1.32) and A2 (3.1.1.4), which are phosphoglyceride acyl hydrolases. Although phospholipases C (3.1.4.3) and D (3.1.4.4) are not acylhydrolases, they are nonetheless commonly included as lipolytic enzymes. The triacylglycerol lipases are found widely in animals, plants, and microorganisms. Animal lipases include pancreatic, gastric, and intestinal lipases, and also lipases found in milk. The present discussion covers the well-studied pancreatic lipase and phospholipase A2. Microbial lipases will also be included because of their increasing importance in industrial applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham, A.; Chaillan, C.; Kerfelec, B.; Foglizzo, E.; and Chapus, C. 1992. Uncoupling of catalysis and colipase binding in pancreatic lipase by limited proteolysis.Protein Engineering 5, 105–111

    Article  CAS  Google Scholar 

  • Akesson, B.; Gronowitz, S.; and Herslof, B. 1976. Stereospecificity of hepatic lipases.FEBS Lett.71, 241–244

    Article  CAS  Google Scholar 

  • Akesson, B.; Gronowitz, S.; and Herslof, B. 1983. Stereospecificity of different lipases.Lipids 18, 313–318

    Article  CAS  Google Scholar 

  • Akita, H.; Enoki, Y.; Yamada, H.; and Oishi, T. 1989. Enzymatic hydrolysis in organic solvents for kinetic resolution of water-insoluble a-acyloxy esters with immobilized lipases.Chem. Pharm. Bull. 37, 2876–2878

    Article  CAS  Google Scholar 

  • Alford, J. A.; Pierce, D. A.; and Suggs, F. G. 1964. Activity of microbial lipases on natural fats and synthetic triglycerides.J. Lipid Res. 5, 390–394

    CAS  Google Scholar 

  • Baba, T.; Downs, D.; Jackson, K. W.; Tang, J.; and Wang, C.-S. 1991. Structure of human milk bile salt activated lipase.Biochemistry 30, 500–510

    Article  CAS  Google Scholar 

  • Baillargeon, M. W. 1990. Purification and specificity of lipases fromGeotrichum candidum. Lipids 25, 841–848

    Article  CAS  Google Scholar 

  • Benkouka, F.; Guidoni, A. A.; Decaro, J. D.; Bonicel, J. J.; Desnuelle, P. A.; and Rovery, M. 1982. Porcine pancreatic lipase. The disulfide bridges and the sulfhydryl groups.Eur. J. Biochem. 128, 331–341

    Article  CAS  Google Scholar 

  • Benzonana, G. 1974. Some properties of an exocellular lipase fromRhizopus arrhizus. Lipids 9, 166–172

    Article  CAS  Google Scholar 

  • Benzonana, G., and Esposito, S. 1971. The positional and chain specificities ofCandida cylindracea lipase.Biochim. Biophys. Acta 231, 15–22

    Article  CAS  Google Scholar 

  • Bertolini, M. C.; Laramee, L.; Thomas, D. Y.; Cygler, M.; Schrag, J. D.; and Vernet, T. 1994. Polymorphism in the lipase genes ofGeotrichum candidum strains.Eur. J. Biochem. 219, 119–125

    Article  CAS  Google Scholar 

  • Blow, D. 1991. Lipases research the surface.Nature 351, 444–445

    Article  CAS  Google Scholar 

  • Bodmer, M. W.; Angal, S.; Yarranton, G. T.; Harris, T. J. R.; Lyons, A.; King, D. J.; Pieroni, G.; Riviere, C.; Verger, R.; and Lowe, P. A. 1987. Molecular cloning of a human gastric lipase and expression of the enzyme in yeast.Biochim. Biophys. Acta 909, 237–244

    Article  CAS  Google Scholar 

  • Boel, E.; Huge-Jensen, B.; Christensen, M.; Thim, L.; and Fill, N. P. 1988. Rhizomucor miehei triglyceride lipase is synthesized as a precursor.Lipids 23, 701–706

    Article  CAS  Google Scholar 

  • Bonicel, J.; Couchoud, P.; Foglizzo, E.; Desnuelle, P.; and Chapus, C. 1981. Amino acid sequence of horse colipase B.Biochim. Biophys. Acta 669, 39–45

    Article  CAS  Google Scholar 

  • Borgstrom, B., and Donner, J. 1975. Binding of bile salts to pancreatic colipase and lipase.J. Lipid Res. 16, 287–292

    CAS  Google Scholar 

  • Borgstrom, B.; Erlanson, C.; and Sternby, B. 1974. Further two co-lipases from porcine pancreas.Biochem. Biophys. Res. Comm. 59, 902–906

    Article  CAS  Google Scholar 

  • Borgstrom, B.; Erlanson-Albertsson, C.; and Wieloch, T. 1979. Pancreatic colipase: Chemistry and physiology.J. Lipid Res. 20, 805–816

    CAS  Google Scholar 

  • Bosc-Bierne, I.; Perrot, C.; Sarda, L.; and Rathelot, J. 1985. Inhibition of pancreatic colipase by antibodies and Fab fragments. Selective effects of two fractions of antibodies on the functional sites of the cofactor.Biochim. Biophys. Acta 827, 109–118

    Article  CAS  Google Scholar 

  • Bosc-Bierne, I.; Rothelot, J.; Canzoni, P.; Julien, R.; Bechis, G.; Gregoire, J.; Rochat, H.; and Sarda, L. 1981. Isolation and partial structural characterization of chicken pancreatic colipase.Biochim. Biophys. Acta. 667, 225–232

    Article  CAS  Google Scholar 

  • Bourne, Y.; Martinez, C.; Kerfelec, B.; Lombardo, D.; Chapus, C and Cambillau, C. 1994. Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution.J. Mol. Biol. 238, 709–732

    Article  CAS  Google Scholar 

  • Brady, L.; Brzozowski, A. M.; Derewenda, Z. S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J. P.; Christiansen, L.; Huge-Jesen, B.; Norskov, L.; Thim, L.; and Menge, U. 1990. A serine protease triad forms the catalytic centre of a triacylglycerol lipase.Nature 343, 767–770

    Article  CAS  Google Scholar 

  • Brenner, S. 1988. The molecular evolution of genes and proteins: A tale of two serines.Nature 334, 528–530

    Article  CAS  Google Scholar 

  • Brockerhoff, H. 1970. Substrate specificity of pancreatic lipase. Influence of the structure of fatty acids on the reactivity of esters.Biochim. Biophys. Acta 212, 92–101

    Article  CAS  Google Scholar 

  • Brockerhoff, H. 1973. A model of pancreatic lipase and the orientation of enzymes at interfaces.Chem. Phys. Lipids 10, 215–222

    Article  CAS  Google Scholar 

  • Brzozowski, A. M.; Derewenda, U.; Derewenda, Z. S.; Dodson, G. G.; Lawson, D. W.; Turkenburg, J. P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, S. A.; and Thim, L. 1991. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex.Nature 351, 491–494

    Article  CAS  Google Scholar 

  • Cai, S.-J.; Wong, D. M.; Chen, S.-H.; and Chan, L. 1989. Structure of the human hepatic triglyceride lipase gene.Biochemistry 28, 8966–8971

    Article  CAS  Google Scholar 

  • Cambou, B., and Klibanov, A. M. 1984. Preparative production of optically active esters and alcohols using esterase-catalyzed stereospecific transesterification in organic media.J. Am. Chem. Soc. 106, 2687–2692

    Article  CAS  Google Scholar 

  • Canioni, P.; Julien, R.; Rathelot, J.; and Sarda, L. 1977. Pancreatic and microbial lipase: A comparison of the interaction of pancreatic colipase with lipases of various origins.Lipids 12, 393–397

    Article  CAS  Google Scholar 

  • Chaillan, C.; Kerfelec, B.; Foglizzo, E.; and Chapus, C. 1992. Direct involvement of the C-terminal extremity of pancreatic lipase (403–449) in colipase binding.Biochem. Biophys. Res. Comm. 184, 206–211

    Article  CAS  Google Scholar 

  • Chaillan, C.; Rogalska, E.; Chapus, C.; and Lombardo, D. 1989. A cross-linked complex between horse pancreatic lipase and colipase.FEBS Lett.257, 443–446

    Article  CAS  Google Scholar 

  • Chapus, C.; Sari, H.; Semeriva, M.; and Desnuelle, P 1975. Role of colipase in the interfacial adsorption of pancreatic lipase at hydrophilic interfaces.FEB Lett.58, 155–158

    Article  CAS  Google Scholar 

  • Chapus, C., and Semeriva, M. 1976. Mechanism of pancreatic lipase action. 2. Catalytic properties of modified lipases.Biochemistry 15, 4988–4991

    Article  CAS  Google Scholar 

  • Chapus, C.; Semeriva, M.; Bovier-Lapierre, C.; and Desnuelle, P 1976. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase.Biochemistry 15, 4980–4987

    Article  CAS  Google Scholar 

  • Charles, M.; Astier, M.; Sauve, P.; and Desnuelle, P. 1975. Interactions of colipase with bile salt micelles. I. Ultracentrifugation studies.Eur. J. Biochem. 58, 555–559

    Article  CAS  Google Scholar 

  • Cygler, M.; Grochulski, P.; Kazlauskas, R. J.; Schrag, J. D.; Bouthillier, F.; Rubin, B.; Serreqi, A. N.; and Gupta, A. K. 1994. A structural basis for the chiral preferences of lipases.J. Am. Chem. Soc. 116, 3180–3186

    Article  CAS  Google Scholar 

  • Datcheva, V. K.; Kiss, K.; Solomon, L.; and Kyler, K. S. 1991. Asymmetric hydroxylation with lipoxygenase: The role of group hydrophobicity on regioselectivity.J. Am. Chem. Soc. 13, 270–274

    Article  Google Scholar 

  • De Caro, J. D.; Behnke, W. K.; Bonicel, J. J.; Desnuelle, P. A.; and Rovery, M. 1983. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane and properties of the nitrated derivatives.Biochim. Biophys. Acta 747, 253–262

    Article  Google Scholar 

  • De Caro, J.; Boudouard, M.; Bonicel, J.; Guidon, A.; Desnuelle, P; and Rovery, M. 1981. Porcine pancreatic lipase: Completion of the primary structure.Biochim. Biophys. Acta 671, 129–138

    Article  Google Scholar 

  • De Caro, J. D.; Round, P.; and Rovery, M. 1986. Hydrolysis of p-nitrophenyl acetate by the peptide chain fragment (336–449) of porcine pancreatic lipase.Eur. J. Biochem. 158, 601–607

    Article  Google Scholar 

  • Dennis, E. A. 1983. Phospholipases.The Enzymes 16, 307–353

    Article  CAS  Google Scholar 

  • Derewenda, U.; Brzozowski, A. M.; Lawson, D. W.; and Derewenda, Z. S. 1992b. Catalysis at the interface: The anatomy of a conformation change in a triglyceride lipase.Biochemistry 31, 1532–1541

    Article  CAS  Google Scholar 

  • Derewenda, Z. S., and Derewenda, U. 1991. Relationships among serine hydrolases: Evidence for a common structural motif in triacylglyceride lipases and esterases.Biochem. Cell Biochem. 69, 842–851

    Article  CAS  Google Scholar 

  • Derewenda, Z. S.; Derewenda, U.; and Dodson, G. G. 1992a. The crystal and molecular structure of theRhizomucor miehei triacylglyceride lipase at 1.9 A resolution.J. Mol. Biol. 227, 818–839

    Article  CAS  Google Scholar 

  • Derewenda, Z. S., and Sharp, A. M. 1993. News from the interface: The molecular structures of triacylglyceride lipases.TIBS 18, 20–25

    CAS  Google Scholar 

  • Dijkstra, B. W.; Drenth, J.; Kalk, K. H.; and Vandermaelen, P. J. 1978. Three-dimensional structure and disulfide bond corrections in bovine pancreatic phospholipase A2.J. Mol. Biol. 124, 53–60

    Article  CAS  Google Scholar 

  • Dijkstra, B. W.; Drenth, J.; and Kalk, K. H. 1981a. Active site and catalytic mechanism of phospholipase A2.Nature 289, 604–606

    Article  CAS  Google Scholar 

  • Dijkstra, B. W.; Kalk, K. H.; Hol, W. G. J.; and Drenth, J. 1981b. Structure of bovine pancreatic phospholipase A2 at 1.7 A resolution.J. Mol. Biol. 147, 97–123

    Article  CAS  Google Scholar 

  • Dijkstra, B. W.; Kalk, K. H.; Drenth, J.; De Haas, G. H.; Egmond, M. R.; and Slotboom, A. J. 1984. Role of the N-terminus in the interaction of pancreatic phospholipase A2 with aggregated substrates. Properties and crystal structure of transaminated phospholipase A2.Biochemistry 23, 2759–2766

    Article  CAS  Google Scholar 

  • Dijkstra, B. W.; Renetseder, R.; Kalk, K. H.; Hol, W. G. J.; and Drenth, J. 1983a. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2.J. Mol. Biol. 168, 163–179

    Article  CAS  Google Scholar 

  • Dijkstra, B. W.; Van Nes, G. J. H.; Kalk, K. H.; Brandenburg, N. P.; Hol, W. G. J.; and Drenth, J. 1982. The structure of bovine pancreatic prophospholipase A2 at 3.0 A resolution.Acta. Cryst. B38, 793–799

    Google Scholar 

  • Dijkstra, B. W.; Weijer, W. J.; and Wierenga, R. K. 1983b. Polypeptide chains with similar amino acid sequences but a distinctly different conformation.FEBS Lett.164, 25–27

    Article  CAS  Google Scholar 

  • Donne-Opden Kelder, G. M.; De Haas, G. H.; and Egmond, M. R. 1983. Localization of the second calcium ion binding site in porcine and equine phospholipase A2.Biochemistry 22, 2470–2478

    Article  Google Scholar 

  • Dupureur, C. M.; Yu, B.-Z.; Jain, M. K.; Noel, J.-P.; Deng, T.; LI, Y.; Byeon, I.-J. L.; and Tsai, M.-D. 1992. Phospholipase A2 engineering. Structural and functional roles of highly conserved active site residues tyrosine-52 and tyrosine-73.Biochemistry 31, 6402–6413

    Article  CAS  Google Scholar 

  • Erlanson-Albertsson, C. 1980. Measurement of the binding of colipase to a tri-glycerol substrate.Biochim. Biophys. Acta 617, 371–382

    Article  CAS  Google Scholar 

  • Erlanson, C.; Barrowman, J. A.; and Borgstrom, B. 1977. Chemical modifications of pancreatic colipase.Biochim. Biophys. Acta 489, 150–162

    Article  CAS  Google Scholar 

  • Erlanson, M. C.; Bianciietta, J.; Joffre, J.; Guidoni, A.; and Rovery, M. 1974a. The primary structure of porcine colipase II. 1. The amino acid sequence.Biochim. Biophys. Acta 359, 186–197

    Article  Google Scholar 

  • Erlanson, C.; Charles, M.; Astier, M.; and Desnuelle, P. 1974b. The primary structure of porcine colipase II. II. The disulfide bridges.Biochim. Biophys. Acta 359, 198–203

    Article  CAS  Google Scholar 

  • Erlanson, C.; Fernlund, P.; and Borgstrom, B. 1973. Purification and characterization of two proteins with co-lipase activity from porcine pancreas.Biochim. Biophys. Acta 310, 437–445

    Article  CAS  Google Scholar 

  • Evenberg, A.; Meyer, H.; Gaastra, W.; Verheij, H. M.; and De Haas, G. H. 1977. Amino acid sequence of phospholipase A2 from horse pancreas.J. Biol. Chem. 252, 1189–1196

    CAS  Google Scholar 

  • Fleer, E. A. M.; Verheij, H. M.; and De Haas, G. H. 1978. The primary structure of bovine pancreatic phospholipase A2.Eur. J. Biochem. 82, 261–269

    Article  CAS  Google Scholar 

  • Foelsche, E.; Hickel, A.; Honig, H.; and Seufer-Wasserthal, P. 1990. Lipase-catalyzed resolution of acylic amino alcoholprecursors. J. Org. Chem.55, 1749–1753

    Article  CAS  Google Scholar 

  • Fritsche, K.; Syldatk, C.; Wagner, F.; Hengelsberg, H.; and Tacke, R. 1989. Enzymatic resolution of rac-1,1-dimethyl-l-sila-cyclohexan-2-ol by ester hydrolysis or transesterification using a crude lipase preparation ofCandida cylindracea. Appl. Microbiol. Biotechnol.31, 107–111

    Article  CAS  Google Scholar 

  • Fuji, T.; Tatara, T.; and Minagawa, M. 1986. Studies on applications of lipolytic enzyme in detergent. I. Effect of lipase fromCandida cylindracea on removal of olive oil from cotton fabric.JAOCS 63, 796–799

    Article  Google Scholar 

  • Gardner, C. W. 1980. Boronic acid inhibitors of porcine pancreatic lipase.J. Biol. Chem. 255, 5064–5068

    Google Scholar 

  • Gelb, M. H.; Jain, M. K.; and Berg, O. 1992. Interfacial enzymology of phospholipase Az.Bioorganic and Medicinal Chemistry Letters 2, 1335–1342

    Article  CAS  Google Scholar 

  • Goldberg, M.; Thomas, D.; and Legoy, M.-D. 1990. Water activity as a key parameter of synthesis reactions: The example of lipase in biphasic (liquid/solid) media.Enzyme Microb. Technol. 12, 976–981

    Article  CAS  Google Scholar 

  • Gotz, F.; Popp, F.; Korn, E.; and Schleifer, K. H. 1985. Complete nucleotide sequence of the lipase fromStaphylococcus hyicus cloned inStaphylococcus carnosus. Nucl. Acids Res.13, 5895–5906

    Article  CAS  Google Scholar 

  • Granon, S. 1986. Spectrofluorimetric study of the bile salt micelle binding site of pig and horse colipases.Biochim. Biophys. Acta 874, 54–60

    Article  CAS  Google Scholar 

  • Grochulski, P.; Bouthillier, F.; Kazlauskas, R. J.; Serrequi, A. N.; Schrag, J. D.; Ziomek, E.; and Cygler, M. 1994A. Analogs of reaction intermediates identify a unique substrate binding site inCandida rugosa lipase.Biochemistry 33, 3494–3500

    Google Scholar 

  • Grochulski, P.; Li, Y.; Schrag, J. D.; Bouthillier, F.; Smith, P.; Harrison, D.; Rubin, B.; and Cygler, M. 1993. Insights into interfacial activation from an open structure ofCandida rugosa lipase.J. Biol. Chem. 268, 12843–12847

    CAS  Google Scholar 

  • Grochulski, P.; Li, Y.; Schrag, J. D.; and Cygler, M. 1994b. Two conformational states ofCandida rugosa lipase.Protein Science 3, 82–91

    Article  CAS  Google Scholar 

  • Guidoni, A.; Benkouka, F.; De Caro, J.; and Rovery, M. 1981. Characterization of the serine reacting with diethylp-nitrophenyl phosphate in porcine pancreatic lipase.Biochim. Biophys. Acta 660, 148–150

    Article  CAS  Google Scholar 

  • Gutman, A. L.; Zuobi, K.; and Guibe-Jampel, E. 1990. Lipase catalyzed hydrolysis of y-substituted a-aminobutyrolactones.Tetrahedron Letters 31, 2037–2038

    Article  CAS  Google Scholar 

  • Halling, P. J. 1989. Lipase-catalyzed reactions in low-water organic media: Effects of water activity and chemical modification.Biochem. Soc. Trans. 17, 1142–1145

    CAS  Google Scholar 

  • Hayes, D. G., and Gulari, E. 1990. Esterification reactions of lipase in reverse micelles.Biotechnol. Bioengineer. 35, 793–801

    Article  CAS  Google Scholar 

  • Hennen, W. J.; Sweers, H. M.; Wang, Y.-F.; and Wo G, C.-H. 1988. Enzymes in carbohydrate synthesis: Lipase-catalyzed selective acylation and deacylation of furanose and pyranosederivatives. J. Org. Chem 53, 4939–4945

    CAS  Google Scholar 

  • Hjorth, A.; Carriere, F.; Cudrey, C.; Woldike, H.; Boel, E.; Lawson, D. M.; Ferrato, F.; Cambillau, C.; Dodson, G. G.; Thim, L.; and Verger, R. 1993. A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase.Biochemistry 32, 4702–4707

    Article  CAS  Google Scholar 

  • Huge-Jensen, B.; Galluzzo, D. R.; and Jensen, R. G. 1987. Partial characterization of free and immobilized lipases fromMucor miehei. Lipids 22, 559–565

    Article  CAS  Google Scholar 

  • Inagaki, M.; Hiratake, J.; Hishioka, T.; and Oda, J. 1989. Lipase-catalyzed stereoselective acylation of [1,1’-Binaphthyl]-2,2’-diol and deacylation of its esters in an organic solvent.Agric. Biol. Chem. 53, 1879–1884

    Article  CAS  Google Scholar 

  • Ishihara, H.; Okuyama, H.; Ikezawa, H.; and Tejima, S. 1975. Studies on lipase fromMucor javanicus. Biochim. Biophys. Acta 388, 413–422

    Article  CAS  Google Scholar 

  • Jacobsen, T.; Olsen, J.; and Allermann, K. 1990. Substrate specificity ofGeotrichum candidum lipase preparations.Biotechnol. Lett. 12, 121–126

    Article  CAS  Google Scholar 

  • Jain, M. K., and Berg, O. G. 1989. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: Hopping versus scooting.Biochim. Biophys. Acta 1002, 127–156

    Article  CAS  Google Scholar 

  • Jensen, R. G. 1974. Characteristics of the lipase from the mold,Geotrichum candidum: A review.Lipids 9, 149–157

    Article  CAS  Google Scholar 

  • Jensen, R. G., Dejong, F. A., and Clarks, R. H. 1983. Determination of lipase specificity.Lipids 18, 239–252

    Article  CAS  Google Scholar 

  • Jensen, R. G.; Gerrior, S. A.; Hagerty, M. M.; and Mcmahon, K. E. 1978. Preparation of acylglycerols and phospholipids with the aid of lipolytic enzymes.JAOCS 55, 422–427

    Article  CAS  Google Scholar 

  • Julien, R.; Bechis, G.; Gregoire, J.; Rathelot, J.; Rochat, H.; and Sarda, L. 1980. Evidence for the existence of two isocolipases in horse pancreas.Biochim. Biophys. Res. Comm. 95, 1245–1252

    Article  CAS  Google Scholar 

  • Kaimal, T. N. B., and Saroja, M. 1989. The active site composition of porcine pancreatic lipase: Possible involvement of lysine.Biochim. Biophys. Acta 999, 331–334

    Article  CAS  Google Scholar 

  • Kanerva, L. T.; Vihanto, J.; Halme, M. H.; Loponen, J. M.; and Euranto, E. K. 1990. Solvent effects in lipase-catalyzed transesterification reactions.Acta Chem. Scand. 44, 1032–1035

    Article  CAS  Google Scholar 

  • Kerfelec, B.; Foglizzo, E.; Bonicel, J.; Bougis, P. E.; and Chapus, C. 1992. Sequence of horse pancreatic lipase as determined by protein and cDNA sequencing. Implication for p-nitrophenyl acetate hydrolysis by pancreatic lipases.Eur. J. Biochem. 206, 279–287

    Article  CAS  Google Scholar 

  • Kirchgessner, T. G.; Chuat, J.-C.; Heinzmann, C.; Etienne, J.; Guilhot, S.; Sven-Son, K.; Ameis, D.; Pilon, C.; D’auriol, L.; Andalibi, A.; Schotz, M. C.; Galibert, F.; and Lusts, A. J. 1989. Organization of the human lipoprotein lipase gene and evolution of the lipase gene family.Proc. Natl. Acad. Sci. 86, 9647–9651

    Article  CAS  Google Scholar 

  • Kirchgessner, T. G.; Svenson, K. L.; Lusls, A. J.; and Schotz, M. C. 1987. The sequence of cDNA encoding lipoprotein lipase.J. Biol. Chem. 262, 8463–8466

    CAS  Google Scholar 

  • Kirchner, G.; Scollar, M. P.; and Klibanov, A. M. 1985. Resolution of racemic mixture via lipase catalysis in organic solvents.J. Am. Chem. Soc. 107, 7072–7076

    Article  CAS  Google Scholar 

  • Klibanov, A. M. 1990. Asymmetric transformations catalyzed by enzymes in organic solvents.Acc. Chem. Res. 23, 114–120

    Article  CAS  Google Scholar 

  • Kloosterman, M.; Elferink, V. H. M.; Van Lersel, J.; Roskam, J.-H.; Meijer, E. M.; Hulshof, L. A.; and Sheldon, R. A. 1988. Lipases in the preparation of ß-blockers.TIBTECH 6, 251–256

    Article  CAS  Google Scholar 

  • Komaromy, M., and Schotz, M. C. 1987. Cloning of rat hepatic lipase cDNA: Ev idence for a lipase gene family.Proc. Natl. Acad. Sci. USA 84, 1526–1530

    Article  CAS  Google Scholar 

  • Kossiakoff, A. A., and Spencer, S. A. 1981. Direct determination of the protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine protease: Neutron structure of trypsin.Biochemistry 20, 6462–6474

    Article  CAS  Google Scholar 

  • Kugimiya, W.; Otani, Y.; Hashimoto, Y.; and Takagi, Y. 1986. Molecular cloning and nucelotide sequence of the lipase gene fromPseudomonas fragi. Biochem. Biophys. Res. Comm.141, 185–190

    Article  CAS  Google Scholar 

  • Kuipers, O. P.; Franken, P. A.; Hendriks, R.; Verheij, H. M.; and De Haas, G. H. 1990. Function of the fully conserved residues Asp99, Tyr52 and Tyr73 in phospholipase A2.Protein Engineering 4, 199–204

    Article  CAS  Google Scholar 

  • Kuipers, O. P.; Thunnissen, M. M. G. M.; De Geus, P.; Dijkstra, B. W.; Drenth, J.; Verheij, H. M.; and De Haas, G. H. 1989. Enhanced activity and altered specificity of phospholipase AZ by deletion of a surface loop.Science 244, 82–85

    Article  CAS  Google Scholar 

  • Ladner, W. E., and Whitesides, G. M. 1984. Lipase catalyzed hydrolysis as a route to esters of chiral epoxy alcohol.J. Am. Chem. Soc. 106, 7251–7252

    Article  Google Scholar 

  • Larsson, A., and Erlanson-Albertsson, C. 1981. The identity and properties of two forms of activated colipase from porcine pancreas.Biochim. Biophys. Acta 664, 538–548

    Article  CAS  Google Scholar 

  • Larsson, A., and Erlanson-Albertsson, C. 1983. The importance of bile salt for the reactivation of pancreatic lipase by colipase.Biochim. Biophys. Acta 750, 171–177

    Article  CAS  Google Scholar 

  • Lee, C. Y., and Iandolo, J. J. 1986. Lysogenic conversion of Staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene.J. Bacteriol. 166, 385–391

    CAS  Google Scholar 

  • Linfield, W. M.; Barauskas, R. A.; Sivieri, L.; Serota, S.; and Stevenson, R. W., SR. 1984. Enzymatic fat hydrolysis and synthesis.JAOCS 61, 191–195

    CAS  Google Scholar 

  • Longhi, S.; Lotti, M.; Fusetti, F.; PIzzi, E.; Tramontano, A.; and Alberghina, L. 1992. Homology-derived three-dimensional structure prediction ofCandida cylindracea lipase.Biochim. Biophys. Acta 1165, 129–133

    Article  CAS  Google Scholar 

  • Lowe, M. F.; Rosenblum, J. L.; and Strauss, A. W. 1989. Cloning and characterization of human pancreatic lipase cDNA.J. Biol. Chem. 264, 20042–20048

    CAS  Google Scholar 

  • Lowe, M. F. 1992. The catalytic site residues and interfacial binding of human pancreatic lipase.J. Biol. Chem. 267, 17069–17073

    CAS  Google Scholar 

  • Macrae, A. R. 1983. Lipase-catalyzed interesterifaction of oils and fats.JAOCS 60, 291–294

    Article  CAS  Google Scholar 

  • Mahe-Gouhier, N., and Leger, C. L. 1988 Immobilized colipase affinities for lipases B, A, C and their terminal peptide (336 149): The lipase recognition site lysine residues are located in the C-terminal region.Biochim. Biophys. Acta 962, 91–97

    Article  CAS  Google Scholar 

  • Maraganore, J. M., and Heinrikson, R. L. 1986. Which class of serine is involved in the lipase mechanism.TIBS 11, 497–498

    CAS  Google Scholar 

  • Margolin, A. L.; Tai, D.-F.; and Klibanov, A. M. 1987. Incorporation of D-amino acids into peptides via enzymatic condensation in organic solvents.J. Am. Chem. Soc. 109, 7885–7887

    Article  CAS  Google Scholar 

  • Meyer, H.; Puijk, W. C.; Dijkman, R.; Foda-Van Der Hoorn M. M. E. L., Pattus, F.; Slotboom, A. J.; and De Haas G. H. 1979a. Comparative studies of tyrosine modification in pancreatic phospholipases. 2. Properties of the nitrotyrosyl, aminotyrosyl, and dansylaminotyrosyl derivatives of pig, horse, and ox phospholipases A2 and their zymogens.Biochemistry 18, 3589–3597

    CAS  Google Scholar 

  • Meyer, H.; Verhoef, H.; Hendriks, F. F. A.; Slotboom, A. J.; and De Haas, G. H. 1979b. Comparative studies of tyrosine modification in pancreatic phospholipases. 1. Reaction of tetranitromethane with pig, horse, and ox phospholipase Az and their zymogens.Biochemistry 18, 3582–3588

    Article  CAS  Google Scholar 

  • Mickel, F. S.; Weidenbach, F.; Swarovsky, B.; Laforge, K. S.; and Scheele, G. A. 1989. Structure of the canine pancreatic lipase gene.J. Biol. Chem. 264, 12895–12901

    CAS  Google Scholar 

  • Miller, D. A.; Prausnitz, J. M.; and Blanch, H. W. 1991. Kinetics of lipase-catalyzed interesterification of triglycerides in cyclohexane.Enzyme Microb. Technol. 13, 98–103

    Article  CAS  Google Scholar 

  • Morley, N. H.; Kuxsts, A.; Buchnea, D.; and Myher, J. J. 1975. Hydrolysis of diacylglycerols by lipoprotein lipase.J. Biol. Chem. 250, 3414–3418

    CAS  Google Scholar 

  • Nakamura, K.; Ishihara, K.; Ohno, A.; Uemura, M.; Nishimura, H.; and Hayashi, Y. 1990. Kinetic resolution of (I16-arene)chromium complexes by a lipase.Tetrahedron Letters 31, 3603–3604

    Article  CAS  Google Scholar 

  • Nelson, J. H. 1972. Enzymatically produced flavors for fatty systems.JAOCS 49, 559–562

    Article  CAS  Google Scholar 

  • Noble, M. E. M.; Cleasby, A.; Johnson, L. N.; Egmond, M. R.; and Frenken, L. G. J. 1993. The crystal structure of triacylglycerol lipase fromPseudomonas glumae reveals a partially redundant catalytic aspartate.FEBS Lett.331, 123–128

    Article  CAS  Google Scholar 

  • Okumura, S.; Iwai, M.; and Tsujisaka, Y. 1976. Positional specificities of four kinds of microbial lipases.Agric. Biol. Chem. 40, 655–660

    Article  CAS  Google Scholar 

  • Ota, T.; Takano, S.; and Hasegawa, T. 1990. Synthesis of C18-fatty acid esters in organic solvent by lipase fromCandida cylindracea. Agric. Biol. Chem.54, 1571–1572

    Article  CAS  Google Scholar 

  • Paltauf, F.; Esfandi, F.; and Holasek, A. 1974. Stereospecificity of lipases. Enzymic hydrolysis of enantiomeric alkyl diacylglycerols by lipoprotein lipase, lingual lipase and pancreatic lipase.FEBS Lett.40, 119–123

    Article  CAS  Google Scholar 

  • Patton, J. S.; Albertsson, P.-A.; Erlanson, C.; and Borgstrom, B. 1978. Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography.J. Biol. Chem. 253, 4195–4202

    CAS  Google Scholar 

  • Pierrot, M.; Astier, J.-P.; Astier, M.; Charles, M.; and Drenth, J. 1982. Pancreatic colipase: Crystallographic and biochemical aspects.Eur. J. Biochem. 123, 347–354

    Article  CAS  Google Scholar 

  • Plummer, T. H., Jr., and Sarda, L. 1973. Isolation and characterization of the gly copeptides of porcine pancreatic lipases LA and LB.J. Biol. Chem. 248, 7865–7869

    CAS  Google Scholar 

  • Puijx, W. C.; Verheij, H. M.; and De Haas, G. H. 1977. The primary structure of phospholipase A2 from porcine pancreas.Biochim. Biophys. Acta 492, 254–259

    Article  Google Scholar 

  • Ramaswamy, S.; Morgan, B.; and Oehlschlager, A. C. 1990. Porcine pancreatic lipase mediated selective acylation of primary alcohols in organic solvents.Tetrahedron Letters 31, 3405–3408

    Article  CAS  Google Scholar 

  • Ransac, S.; Rogalska, E.; Gargouri, Y.; Deveer, A. M. T. J.; Paltauf, F.; De Haas, G. H.; and Verger, R. 1990. Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique.J. Biol. Chem. 265, 20263–20270

    CAS  Google Scholar 

  • Rati-Ielot, J.; Bosc-Bierne, I.; Guy-Crotte, O.; Delori, P.; Rochat, H.; and Sarda, L. 1983. Isolation and characterization of colipase from porcine and human pancreatic juice by immunoaffinity chromatography.Biochim. Biophys. Acta.744,115–118

    Google Scholar 

  • Renetseder, R.; Dijkstra, B. W.; Huizinga, K.; Kalk, K. H.; and Drenth, J. 1988. Crystal structure of bovine pancreatic phospholipase Az covalently inhibited by p-bromo-phenacyl-bromide.J. Mol. Biol. 200, 181–188

    Article  CAS  Google Scholar 

  • Riddihough, G. 1993. Picture an enzyme at work.Nature 362, 793

    Article  CAS  Google Scholar 

  • Rogalska, E.; Ransac, S.; and Verger, R. 1990. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases.J. Biol. Chem. 265, 20271–20276

    CAS  Google Scholar 

  • Rollof, J.; Hedstrom, S. A.; and Nilsson-Ehle, P. 1987. Positional specificity and substrate preference of purifiedStaphylococcus aureus lipase.Biochim. Biophys. Acta 921, 370–377

    Article  CAS  Google Scholar 

  • Sarda, L., and Desnuelle, P 1958. Action of pancreatic lipase on emulsified esters.Biochim. Biophys. Acta 30, 513–521

    Article  CAS  Google Scholar 

  • Schrag, J. D., and Cygler, M. 1993. 1.8 A refined structure of the lipase from Geotrichum candidum. J. Mol. Biol. 230, 575–591

    Google Scholar 

  • Schrag, J. D.; Li, Y.; Wu, S.; and Cygler, M. 1991. Ser-His-Glu triad forms the catalytic site of the lipase fromGeotrichum candidum. Nature 351, 761–764

    Article  CAS  Google Scholar 

  • Schrag, J. D.; Windler, F. K.; and Cygler, M. 1992. Pancreatic lipases: Evolutionary intermediates in a positional change of catalytic carboxylates?J. Biol. Chem. 267, 4300–4303

    CAS  Google Scholar 

  • Scott, D. L.; White, S. P.; Otwinowski, Z.; Yuan, W.; Gelb, M. H.; and Sigler, P. B. 1990. Interfacial catalysis: The mechanism of phospholipase AZ.Science 250, 1541–1546

    Article  CAS  Google Scholar 

  • Seing, H.; Ãœchibori, T.; Nishitani, T.; and Inamasu, S. 1984. Enzymatic synthesis of carbohydrate esters of fatty acid (1) Esterification of sucrose, glucose, fructose, and sorbitol.JAOCS 61, 1761–1765

    Article  Google Scholar 

  • Semeriva, M.; Chapus, C.; Bonier-Lapierre, C.; and Desnuelle, P. 1974. On the transient formation of an acyl enzyme intermediate during the hydrolysis of p-nitrophenyl acetate by pancreatic lipase.Biochem. Biophys. Res. Comm. 58, 808–813

    Article  CAS  Google Scholar 

  • Shimada, Y.; Sugihara, A.; Iizumi, T.; and Tominaga, Y. 1990. cDNA cloning and characterization of Geotrichum candidum lipase II.J. Biochem. 107, 703–707

    Google Scholar 

  • Shimada, Y.; Sugihara, A.; Tominaga, Y.; Iizumi, T.; and Tsunasawa, S. 1989. cDNA molecular cloning of Geotrichum candidum lipase. J. Biochem. 106, 383–388

    Google Scholar 

  • Sidebottom, C. M.; Charton, E.; Dunn, P. P.; Mycock, G.; Davies, C.; Sutton, J. L.; Macrae, A. R.; and Slabas, A. R. 1991.Geotrichum candidum produces several lipases with markedly different substrate specificities.Eur. J. Biochem. 202, 485–491

    CAS  Google Scholar 

  • Sims, H. F., and Lowe, M. E. 1992. The human colipase gene: Isolation, chromosomal location, and tissue-specific expression.Biochemistry 31, 7120–7125

    Article  CAS  Google Scholar 

  • Slaich, P. K.; Primrose, W. U.; Robinson, D. H.; Wharton, C. W.; White, A. J.; Drabble, K.; and Roberts, G. C. K. 1992. The binding of amide substrate analogues to phospholipase Az. Studies by 13C-nuclear-magnetic-resonance and infrared spectroscopy.Biochem. J. 288, 167–173

    CAS  Google Scholar 

  • Slotboom, A. J.; Jansen, E. H. J. M.; Vlijm, IT.; and Pattus, F. 1978. Ca F-4 Binding to porcine pancreatic phospholipase AZ and its function in enzyme-lipid interaction.Biochemistry 17, 4593–4600

    Article  CAS  Google Scholar 

  • Sternby, B., and Borgstrom, B. 1979. Purification and characterization of human pancreatic colipase.Biochim. Biophys. Acta 572, 235–243

    Article  CAS  Google Scholar 

  • Sternby, B.; Engstrom, A.; and Hellman, U. 1984A. Purification and characterization of pancreatic colipase from the dogfish(Squalus acanthius). Biochim. Biophys. Acta 789, 159–163

    Google Scholar 

  • Sternby, B.; Engstrom, A.; Hellman, U.; Vihert, A. M.; Sternby, N.-H.; and Borgstrom, B. 1984B. The primary sequence of human pancreatic colipase.Biochim. Biophys. Acta 784, 75–80

    Google Scholar 

  • Stevenson, R. W.; Luddy, F. E.; and Rothbart, H. L. 1979. Enzymatic acyl exchange to vary saturation in di-and triglycerides.JAOCS 56, 676–680

    Article  CAS  Google Scholar 

  • Sugihara, A.; Shimada, Y.; and Tominaga, Y. 1990. Separation and characterization of two molecular forms ofGeotrichum candidum lipase.J. Biochem. 107, 426–430

    CAS  Google Scholar 

  • Sweers, H. M., and Wong, C.-H. 1986. Enzyme-catalyzed regioselective deacylation of protected sugars in carbohydrate synthesis.J. Am. Chem. Soc. 108, 6421–6422

    Article  CAS  Google Scholar 

  • Tanaka, T.; Ono, E.; Ishihara, M.; Yamanaka, S.; and Takinami, K. 1981. Enzymatic acyl exchange of triglyceride in n-hexane.Agric. Biol. Chem. 45, 2387–2389

    Article  CAS  Google Scholar 

  • Therisod, M., and Klibanov, A. M. 1986. Facile enzymatic preparation of monoacylated sugars in pyridine.J. Am. Chem. Soc. 108, 5638–5640

    Article  CAS  Google Scholar 

  • Thunnissen, M. M. G. M.; Ab, E.; Kalk, K. H.; Drenth, J.; Kijkstra, B. W.; Kuipers, O. P.; Dijkman, R.; De Haas, G. H.; and Verheij, H. M. 1990. X-Ray structure of phospholipase A2 complexed with a substrate-derived inhibitor.Nature 347, 689–691

    Article  CAS  Google Scholar 

  • Triantaphylides, C.; Langrand, G.; Illet, H.; Rangheard, M. S.; Buono, G.; and Baratti, J. 1988. On the use of lipase specificity. Application to flavour chemistry. In:Bigflavour 87, ed. P. Schreier, Walter de Gruyter, Berlin and Hawthorne, New York

    Google Scholar 

  • Tsujisaka, Y.; Okumura, S.; and Iwai, M. 1977. Glyceride synthesis by four kinds of microbial lipase.Biochim. Biophys. Acta 489, 415–422

    Article  CAS  Google Scholar 

  • Uemura, A.; Nozaki, K.; Yamashita, J.-I.; and Yasumoto, M. 1989. Regioselective deprotection of 3’, 5’-O-acylated pyrimidine nucleosides by lipase and esterase.Tetrahedron Letters 30, 3819–3820

    Article  CAS  Google Scholar 

  • Uppenberg, J.; Hansen, M. T.; Patkar, S.; and Jones, T. A. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B fromCandida antarctica. Structure 2, 293–308

    Article  CAS  Google Scholar 

  • Vadehra, D. V. 1974.Staphylococcal lipases.Lipids 9, 158–165

    Article  CAS  Google Scholar 

  • Valivety, R. H.; Halling, P. J.; and Macrae, A. R. 1992a. Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents.Biochim. Biophys. Acta 1118, 218–222

    Article  CAS  Google Scholar 

  • Valivety, R. H.; Halling, P. J.; and Macrae, A. R. 1992b.Rhizomucor miehei lipase remains highly active at water activity below 0.0001.FEBS Lett. 301, 258–260

    CAS  Google Scholar 

  • Van Dam-Mieras, M. C. E.; Slotboom, A. J.; Pieterson, W. A.; and De Haas, G. H. 1975. The interaction of phospholipase A2 with micellar interfaces. The role of the N-terminal region.Biochemistry 14, 5387–5394

    Article  Google Scholar 

  • Van Tilbeurgh, H.; Egloff, M.-P.; Martinez, C.; Rugani, N.; Verger, R.; and Cambillau, C. 1993. Interfacial activation of the lipase-prolipase complex by mixed micelles revealed by x-ray crystallography.Nature 362, 814–820

    Article  Google Scholar 

  • Van Tilbeurgh, H.; Sarda, L.; Verger, R.; and Cambillau, C. 1992. Structure of the pancreatic lipase-procolipase complex.Nature 359, 159–162

    Article  Google Scholar 

  • Veeraragavan, K.; Colpitts, T.; and Gibbs, B. F. 1990. Purification and characterization of two distinct lipases fromGeotrichum candidum. Biochim. Biophys. Acta 1044, 26–33

    Article  CAS  Google Scholar 

  • Verger, R. 1976. Interfacial enzyme kinetics of lipolysis.Ann. Rev. Biophys. Bioeng. 5, 77–177

    Article  CAS  Google Scholar 

  • Verger, R. 1980. Enzyme kinetics of lipolysis.Methods in Enzymology 64, 340–392

    Article  CAS  Google Scholar 

  • Verhagen, J.; Veldink, G. A.; Egmond, M. R.; Vliegenthart, J. F. G.; Boldingh, J.; and Van Der Star, J. 1978. Steady-state kinetics of the anaerobic reaction of soybean lipoxygenase-1 with linoleic acid and 13-L-hydroperoxylinoleic acid.Biochim. Biophys. Acta 529, 369–379

    Article  CAS  Google Scholar 

  • Verheij, H. M.; Volwerk, J. J.; Jansen, E. H. J. M.; Puyk, W. C.; Dijkstra, B. W.; Drenth, J.; and De Haas, G. H. 1980. Methylation of histidine-48 in pancreatic phospholipase AZ. Role of histidine and calcium ion in a catalytic mechanism.Biochemistry 19, 743–750

    Article  CAS  Google Scholar 

  • Wang, Y.-F.; Lalonde, J. J.; Momongan, M.; Bergbreiter, D. E.; and Wong, C.-H. 1988. Lipase-catalyzed irreversible transesterifications using enol esters as acylating reagents: Preparative enantio-and regioselective synthesis of alcohols, glycerol derivatives, sugars, and organometallics.J. Am. Chem. Soc. 110, 7200–7205

    Article  CAS  Google Scholar 

  • Warshel, A.; Naray-Szabo, G.; Sussman, F.; and Hwang, J.-K. 1989. How do serine proteases really work?Biochemistry 28, 3629–3637

    Article  CAS  Google Scholar 

  • Waszkowycz, B., and Hillier, I. H. 1989. Aspects of the mechanism of catalysis in phospholipase A2. A combined ab initio molecular orbital and molecular mechanics study.J. Chem. Soc. Perkin Trans. II 1989, 1795–1800

    Article  Google Scholar 

  • Waszkowycz, B., and Hillier, I. H. 1990. A theoretical study of hydrolysis by phospholipase Az: The catalytic role of the active site and substrate specificity.J. Chem. Soc. Perkin Trans. II 1990, 1259–1268

    Article  Google Scholar 

  • Wells, M. A. 1971. Evidence for 0-acyl cleavage during hydrolysis of 1, 2-diacyl-snglycero-3-phosphorylcholine by the phospholipase Az ofCrotalus adamanteus venom.Biochim. Biophys. Acta 248, 80–85

    Article  CAS  Google Scholar 

  • White, S. P.; Scott, D. L.; Otwinowski, Z.; Gelb, M. H.; and Sigler, P. B. 1990. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue.Science 250, 1560–1563

    Article  CAS  Google Scholar 

  • Wieloch, T.; Borgstrom, B.; Falk, K.-E.; and Forsen, S. 1979. High-resolution proton magnetic resonance study of porcine colipase and its interactions with taurodeoxycholate.Biochemistry 18, 1622–1628

    Article  CAS  Google Scholar 

  • Wieloch, T., and Falk, K.-E. 1978. An NMR study of a tyrosine and two histidine residues in the structure of porcine pancreatic colipase.FEBS Lett.85, 271–274

    Article  CAS  Google Scholar 

  • Winkler, F. K.; D’arcy, A.; and Hunziker, W. 1990. Structure of human pancreatic lipase.Nature 343, 771–774

    Article  CAS  Google Scholar 

  • Xie, Z.-F., and Sakai, K. 1989. Preparation of a chiral building block based on 1,3syn-diol usingPseudomonasfluorescens lipase and its application to the synthesis of a hunger modulator.Chem. Pharm. Bull. 37, 1650–1752

    Article  CAS  Google Scholar 

  • Yang, C.-Y.; Gu, Z.-W.; Yang, H.-X.; Rohde, M. F.; Gotto, A. M., Jr.; and Pownall, H. J. 1989. Structure of bovine milk lipoprotein lipase.J. Biol. Chem. 264, 16822–16827

    CAS  Google Scholar 

  • Yokozeki, K.; Yamanaka, S.; Takinami, K.; Hirose, Y.; Tanaka, A.; Sonomoto, K.; and Fukui, S. 1982. Application of immobilized lipase to regio-specific interesterification of triglyceride in organic solvent.Eur. J. Appl. Microbiol. Biotechnol. 14, 1–5

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wong, D.W.S. (1995). Lipolytic Enzymes. In: Food Enzymes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2349-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2349-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4722-2

  • Online ISBN: 978-1-4757-2349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics