Skip to main content

Cellulolytic Enzymes

  • Chapter
  • 554 Accesses

Abstract

Cellulolytic enzymes act synergistically to hydrolyze cellulose or its chemically modified polymers. Conversion of abundant cellulose waste materials, such as straw, husks, sawdust, paper, etc. to fuel-grade alcohol represents an important energy source. Many research efforts on these enzymes are devoted to the application of cellulolytic enzymes in making biomass conversion economically and technically feasible. The use of these enzymes, in conjunction with pectinases, is a potential alternative to chemical peeling in fruit and vegetable processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuja, P. M.; Pilz, I.; Claeyssens, M.; and Tomme, P. 1988A. Domain structure of cellobiohydrolase II as studied by small angle x-ray scattering close resemblance to cellobiohydrolase I. Biochem. Biophys. Res. Comm. 156, 180–185.

    Article  CAS  Google Scholar 

  • Abuja, P. M.; Schmuck, M.; Pilz, I.; Tomme, P.; Claeyssens, M.; and Esterbauer, H. 1988B. Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. A small angle x-ray scattering study of the intact enzyme and its core. Eur. Biophys. J. 15, 339–342.

    Article  CAS  Google Scholar 

  • Ait, N.; Creuzet, N.; and Cattaneo, J. 1982. Properties of β-glucosidase purified from Clostridum thermocellum. J. Gen. Microbiol. 128, 569–577.

    CAS  Google Scholar 

  • Baird, S. D.; Hefford, M. A.; Johnson, D. A.; Sung, W. L.; Yaguchi, M.; and Seiligy, V. L. 1990. The Glu residue in the conserved Asn-Glu-Pro sequence of two highly divergent endo-3–1,4-glucanases is essential for enzymatic activity. Biochem. Biophys. Res. Comm. 169, 1035–1039.

    Article  CAS  Google Scholar 

  • Baker, J. O.; Tatsumoto, K.; Grohmann, K.; Woodward, J.; Wichert, J. M.; Shoemaker, S. P.; and Himmel, M. E. 1992. Thermal denaturation of Trichoderma reesei cellulases studied by differential scanning calorimetry and tryptophan fluorescence. Appl. Biochem. Biotechnol. 34/35, 217–231.

    Google Scholar 

  • Barnett, C. C.; Berka, R. M.; and Fowler, T. 1991. Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: Evidence for improved rates of saccharification of cellulosic substrates. Bio/Technology 9, 562–567.

    Article  CAS  Google Scholar 

  • Bause, E., and Legler, G. 1980. Isolation and structure of a tryptic glycopeptide from the active site of β-glucosidase A3 from Aspergillus wentii. Biochim. Biophys. Acta 626, 459–465.

    Article  CAS  Google Scholar 

  • Beguin, P. 1990. Molecular biology of cellulose degradation. Ann. Rev. Microbiol. 44, 219–248.

    Article  CAS  Google Scholar 

  • Beguin, P.; Cornet, P.; and Aubert, J.-P. 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162, 102–105.

    CAS  Google Scholar 

  • Beguin, P.; Millet, J.; and Aubert, J.-P. 1992. Cellulose degradation by Clostridium thermocellum: From manure to molecular biology. FEMS Microbiol. Lett. 100, 523–528.

    Article  CAS  Google Scholar 

  • Beldman, G.; Voragen, A. G. J.; Rombouts, F. M.; Searle-Van Leeuwen, M. F.; and Pilnik, W. 1987. Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol. Bioengineer. 30, 251–257.

    Article  CAS  Google Scholar 

  • Bhikhabhai, R.; Johansson, G.; and Pettersson, G. 1985. Cellobiohydrolase from Trichoderma reesei. Internal homology and prediction of secondary structure. Int. J. Peptide Protein Res. 25, 368–374.

    Article  CAS  Google Scholar 

  • Bhikhabhai, R., and Pettersson, G. 1984. The disulfide bridges in a cellobiohydro- lase and an endoglucanase from Trichoderma reesei. Biochem. J. 222, 729–736.

    CAS  Google Scholar 

  • Blackwell, J. 1982. The macromolecular organization of cellulose and chitin. In: Cellulose and Other Natural Polymer Systems. Biogenesis, Structure, and Degradation. R. Malcolm Brown, Jr., ed., Plenum Press, New York and London.

    Google Scholar 

  • Brooks, M. M.; Tuoky, M. G.; Savage, A. V.; Claeyssens, M.; and Coughlan, M. P. 1992. The stereochemical course of reactions catalyzed by the cellobiohydrolases produced by Talaromyces emersonii. Biochem. J. 283, 31–34.

    CAS  Google Scholar 

  • Chanzy, H., and Henrissat, B. 1985. Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184, 285–288.

    Article  CAS  Google Scholar 

  • Chanzy, H.; Henrissat, B.; and Vuong, R.; and Schulein, M. 1983. The action of 1,4–0-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. FEBS Lett. 153, 113–118.

    Article  CAS  Google Scholar 

  • Chanzy, H.; Henrissat, B.; and Vuong, R. 1984. Colloid gold labelling of 1,4–0-Dglucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 172, 193–197.

    Article  CAS  Google Scholar 

  • Chen, C. M.; Gritzali, M.; and Stafford, D. W. 1987. Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Bio/ Technology 5, 274–278.

    Article  CAS  Google Scholar 

  • Chirico, W. J., and Brown, R. D., Jr. 1987. Purification and characterization of a 0-glucosidase from Trichoderma reesei. Eur. J. Biochem. 165, 333–341.

    Article  CAS  Google Scholar 

  • Claeyssens, M.; Tomme, P.; Brewer, C. F.; and Hehre, E. J. 1990A. Stereochemical course of hydrolysis and hydration reactions catalyzed by cellobiohydrolases I and II from Trichoderma reesei. FEBS Lett. 263, 89–92.

    Google Scholar 

  • Claeyssens, M.; Van Tilbeurgh, H.; Kamerling, J. P.; Berg, J.; Vrsanska, M.; and Belly, P. 1990B. Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM9414. Substrate specificity and transfer activity of endoglucanase I. Biochem. J. 270, 251–256.

    Google Scholar 

  • Clarice, A. J. 1988. Active-site-directed inactivation of Schizophyllum commune cellulase by 4’,5’-epoxypentyl-4-D4-D-glucopyranosyl)-13-D-glucopyranoside. Biochem. Cell Biol. 66, 871–879.

    Article  Google Scholar 

  • Clarke, A. J., and Yaguchi, M. 1985. The role of carboxyl groups in the function of endo-0–1,4-glucanase from Schizophyllum commune. Eur. J. Biochem. 149, 233–238.

    Article  CAS  Google Scholar 

  • Coughlan, M. P.; Moloney, A. P.; Mccrae, S. I.; and Wood, T. M. 1987. Cross-synergistic interactions between components of the cellulase systems of Talaromyces emersonii, Fusarium solani, Penicillium funiculosum and Trichoderma koningii. Biochem. Soc. Trans. 15, 263–264.

    CAS  Google Scholar 

  • Dahlquist, F. W.; Rand-Meir, T.; and Raftery, M. A. 1969. Application of secondary a-deuterium kinetic isotope effects to studies of enzyme catalysis. Glycoside hydrolysis by lysozyme and O-glucosidase. Biochemistry 8, 4214–4221.

    Article  CAS  Google Scholar 

  • Davies, G. J.; DODSON, G. G.; Hubbard, R. E.; Tolley, S. P.; Dauter, Z.; Wilson, K. S.; Hjort, C.; Mikkelsen, J. M.; Rasmussen, G.; and Schulein, M. 1993. Structure and function of endoglucanase V. Nature 365, 362–364.

    Article  CAS  Google Scholar 

  • Din, N.; Gilkes, N. R.; Tekant, B.; Miller, R. C., Jr.; Warren, R. A. J.; and Kilburn, D. G. 1991. Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology 9, 1096–1099.

    Article  CAS  Google Scholar 

  • Divne, C.; Stahlberg, J.; Reinikainen, T.; Ruohonen, L.; Pettersson, G.; Knowles, J. K. C.; Teeri, T. T.; and Jones, T. A. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichodermi reesei. Science 265, 524–528.

    Article  CAS  Google Scholar 

  • Enari, T.-M.; Niku-Paavola, M.-L.; Harju, L.; Lappalainen, A.; and Nummi, M. 1981. Purification of Trichoderma reesei and Aspergillus niger β-glucosidase. J. Appl. Biochem. 3, 157–163.

    CAS  Google Scholar 

  • Fagerstam, L. G., and Pettersson, L. G. 1980. The 1,4–0-glucan cellobiohydrolases of Trichoderma reesei QM9414. FEBS Lett. 119, 97–100.

    Article  Google Scholar 

  • Fagerstam, L. G.; Pattersson, L. G.; and Engstrom, J. A. 1984. The primary structure of a 1,4-β-glucan cellobiohydrolase from the fungus Trichoderma reesei QM9414. FEBS Lett. 167, 309–315.

    Article  Google Scholar 

  • Fife, T. H. 1972. General acid catalysis of acetal, ketal, and ortho ester hydrolysis. Acc. Chem. Res. 5, 264–272.

    Article  CAS  Google Scholar 

  • Gebler, J.; Gilkes, N. W.; Claeyssens, M.; Wilson, D. B.; Beguin, P.; Wakarchuk, W. S.; Kilburn, D. G.; Miller, R. C.; Warren, R. A. J. Jr.; and Withers, S. G. 1992. Stereoselective hydrolysis catalyzed by related 3–1,4-glucanases and 13–1,4-xylanases. J. Biol. Chem. 267, 12559–12561.

    CAS  Google Scholar 

  • Gilkes, N. R.; Claeyssens, M.; Aebersold, R.; Henrissat, B.; Meinke, A.; Morrison, H. D.; Kilburn, D. G.; Warren, A. J.; and Miller, R. C., JR. 1991A. Structural and functional relationships in two families of 13–1,4-glycanases. Eur. J. Biochem. 202, 367–377.

    Google Scholar 

  • Gilkes, N. R.; Henrissat, B.; Kilburn, D. G.; Miller, R. C.; and Warren, R. A. J. 1991B. Domains in microbial 0–1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315.

    Google Scholar 

  • Gilkes, N. R.; Jervis, E.; Henrissat, B.; Tekant, B.; Miller, R. C., Jr.; Warren, R. A. J.; and Kilburn, D. G. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267, 6743–6749.

    CAS  Google Scholar 

  • Gilkes, N. R.; Kilburn, D. G.; Miller, R. C. Jr.; and Warren, R. A. J. 1989. Structural and functional analysis of a bacterial cellulase by proteolysis. J. Biol. Chem. 264, 17802–17808.

    CAS  Google Scholar 

  • Gilkes, N. R.; Warren, A. J.; Miller, R. C.; and Kilburn, D. G. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263, 10401–10407.

    CAS  Google Scholar 

  • Gow, L. A., and Wood, T. M. 1988. Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiol. Lett. 50, 247–252.

    Article  CAS  Google Scholar 

  • Grabnitz, F.; Rucknagel, K. P.; Seib, M.; and Staudenbauer, W. L. 1989. Nucleotide sequence of the Clostridium thermocellum bglB gene encoding thermostable β-glucosidase B: Homology to fungal 3-glucosidases. Mol. Gen. Genet. 217, 70–76.

    Article  CAS  Google Scholar 

  • Grabnitz, F.; Seiss, M.; Rucknagel, K. P.; and Staudenbauer, W. L. 1991. Structure of the β-glucosidase gene bgl A of Clostridium thermocellum. Eur. J. Biochem. 200, 301–309.

    Article  CAS  Google Scholar 

  • Grabnitz, F., and Staudenbauer, W. L. 1988. Characterization of two 13-glucosidase genes from Clostridium thermocellum. Biotechnol. Lett. 10, 73–78.

    Article  Google Scholar 

  • Grepinet, O., and Beguin, P. 1986. Sequence of the cellulase gene of Clostridium thermocellum coding for endoglucanase B. Nucl. Acids Res. 14, 1791–1799.

    Article  CAS  Google Scholar 

  • Hall, J.; Hazlewood, G. P.; Barker, P. J.; and Gilbert, H. J. 1988. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 29–38.

    Article  CAS  Google Scholar 

  • Hehre, E. J.; Brewer, C. F.; Uchiyama, T.; Schlesselmann, P.; and Lehmann, J. 1980. Scope and mechanism of carbohydrase action. Stereospecific hydration of 2,6-anhydro-1-deoxy-D-gluco-hept-1-enitol catalyzed by a-and β-glucosidases and an inverting exo-a-glucanase. Biochemistry 19, 2557–2564.

    Article  Google Scholar 

  • Hehre, E. J.; Genghof, D. S.; Sternlicht, H.; and Brewer, C. F. 1977. Scope and mechanism of carbohydrase action: Stereospecific hydration of D-glucal catalyzed by a-and β-glucosidase. Biochemistry 16, 1780–1787.

    Article  CAS  Google Scholar 

  • Henrissat, B.; Claeyssens, M.; Tomme, P.; Lemesle, L.; and Mornon, J.-P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81, 83–95.

    Article  CAS  Google Scholar 

  • Henrissat, B.; Driguez, H.; Viet, C.; and Schulein, M. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 3, 722–726.

    Article  CAS  Google Scholar 

  • Henrissat, B.; Vigny, B.; Buleon, A.; and Perez, S. 1988. Possible adsorption sites of cellulases on crystalline cellulose. FEBS Lett. 231, 177–182.

    Article  CAS  Google Scholar 

  • Hofer, F.; Weissinger, E.; Mischak, H.; Messner, R.; Meixner-Monori, B.; Blass, D.; Visser, J.; Kubicek, C. P. 1989. A monoclonal antibody against the alkaline extracellular β-glucosidase from Trichoderma reesei: Reactivity with the Trichoderma β-glucosidases. Biochim. Biophys. Acta 992, 298–306.

    Article  CAS  Google Scholar 

  • Hoshino, E.; Kanda, T.; Sasaki, Y.; and Nisizawa, K. 1992. Adsorption mode of exo-and endo-cellulases from Irpex lacteus (Polyporus tulipeferae) on cellulose with different crystallinities. J. Biochem. 111, 600–605.

    CAS  Google Scholar 

  • Inglin, M.; Feinberg, B. A.; and Loewenberg, J. R. 1980. Partial purification and characterization of a new intracellular β-glucosidase of Trichoderma reesei. Biochem. J. 185, 515–519.

    CAS  Google Scholar 

  • Jackson, M. A., and Talburt, D. E. 1988. Purification and partial characterization of an extracellular β-glucosidase of Trichoderma reesei using cathodic run, polyacrylamide gel electrophoresis. Biotechnol. Bioengineer. 32, 903–909.

    Article  CAS  Google Scholar 

  • Johansson, G.; Stahlberg, J.; Lindeberg, G.; Engstrom, A.; and Pettersson, G. 1989. Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett. 243, 389–393.

    Article  CAS  Google Scholar 

  • Johnson, E. A., and Demain, A. L. 1984. Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum. Arch. Microbiol. 137, 135–138.

    Article  CAS  Google Scholar 

  • Johnson, E. A.; Sakajoh, M.; Halliwell, G.; Madia, A.; and Demain, A. L. 1982. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43, 1125–1131.

    CAS  Google Scholar 

  • Joliff, G., Beguin, P., and Aubert, J.-P. 1986A. Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermocellum. Nucl. Acids Res. 14, 8605–8613.

    Google Scholar 

  • Joliff, G.; Beguin, P.; Juy, M.; Millet, J.; Ryter, A.; Poljak, R.; and Aubert, J.-P. 1986B. Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli. Bio/Technology 4, 896–900.

    Google Scholar 

  • Juy, M.; Amit, A. G.; Alzari, P. M.; Poljack, R. J.; Claeyssens, M.; Beguin, P.; and Aubert, J.-P. 1992. Three-dimensional structure of a thermostable bacterial cellulase. Nature 357, 89–91.

    Article  CAS  Google Scholar 

  • Kadam, S. K., and Demain, A. L. 1989. Addition of cloned β-glucosidase enhances the degradation of crystalline cellulase by the Clostridium thermocellum cellulase complex. Biochim. Biophys. Res. Comm. 161, 706–711.

    Article  CAS  Google Scholar 

  • Kamide, K.; Okajima, K.; Kowsaka, K.; and Matsui, T. 1985. CP/MASS C NMR spectra of cellulose solids: An explanation by the intramolecular hydrogen bond concept. Polymer J. 17, 701–706.

    Article  CAS  Google Scholar 

  • Kanda, T.; Brewer, C. F.; Okada, G.; and Hehre, E. J. 1986. Hydration of cellobial by exo-and endo-type cellulases: Evidence for catalytic flexibility of glycosylases. Biochemistry 25, 1159–1165.

    Article  CAS  Google Scholar 

  • Kawamori, M.; Ado, Y.; and Takasawa, S. 1986. Preparation and application of Trichoderma reesei mutants with enhanced β-glucosidase. Agric. Biol. Chem. 50, 2477–2482.

    Article  CAS  Google Scholar 

  • Kim, D. W.; Jeong, Y. K.; and Lee, J. K. 1994. Adsorption kinetics of exoglucanase in combination with endoglucanase from Trichoderma viride on microcrystalline cellulose and its influence on synergistic 152 degradation. Enzyme Microb. Technol. 16, 649–658.

    Article  CAS  Google Scholar 

  • Klyosov, A. A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29, 10577–10585.

    Article  CAS  Google Scholar 

  • Klyosov, A. A.; Mitkevich, O. V.; and Sinitsyn, A. P. 1986. Role of the activity and adsorption of cellulases in the efficiency of the enzymatic hydrolysis of amorphous and crystalline cellulose. Biochemistry 25, 540–542.

    Article  CAS  Google Scholar 

  • Knowles, J.; Lehtovaara, P.; and Teeri, T. 1987. Cellulase families and their genes. TIBTECH 5, 255–261.

    Article  CAS  Google Scholar 

  • Knowles, J. K. C.; and Lentovaara, P.; Murray, M.; and Sinnott, M. L. 1988. Stereochemical course of the action of the cellobioside hydrolases I and II of Trichoderma reesei. J. Chem. Soc. Chem. Commun. 1988, 1401.

    Google Scholar 

  • Kohchi, C., and Tohe, A. 1985. Nucleotide sequence of Candida pelliculosa β-glucosidase gene. Nucl. Acids Res. 13, 6273–6282.

    Article  CAS  Google Scholar 

  • Koshland, D. E. Jr. 1959. Mechanisms of transfer enzymes. The Enzymes 1, 305–346.

    CAS  Google Scholar 

  • Kraulis, P. J.; Clore, G. M.; Nilges, M.; Jones, T. A.; Pettersson, G.; Knowles, J.; and Gronenborn, A. M. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28, 7241–7257.

    Article  CAS  Google Scholar 

  • Kyriacou, A.; Neufeld, R. J.; and Mackenzie, C. R. 1989. Reversibility and competition in the adsorption of Trichoderma reesi cellulase components. Biotechnol. Bioengineer. 33, 631–637.

    Article  CAS  Google Scholar 

  • Lamed, R., and Bayer, E. A. 1988. The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol. 33, 1–46.

    Article  Google Scholar 

  • Lamed, R.; Kenig, R.; Morag, E.; Calzada, J. F.; De Micheo, F.; and Bayer, E. A. 1991. Efficient cellulose solubilization by a combined cellulosome-3-glucosidase system. Appl. Biochem. Biotechnol. 27, 173–183.

    Article  CAS  Google Scholar 

  • Langsford, M. L.; Gilkes, N. R.; Singh, B.; Moser, B.; Miller, R. C., Jr.; Warren, R. A. J.; and Kilburn, D. G. 1987. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett. 225, 163–167.

    Article  CAS  Google Scholar 

  • Lee, N. E.; Lima, M.; and Woodward, J. 1988. Hydrolysis of cellulose by a mixture of Trichoderma reesei cellobiohydrolase and Aspergillus niger endoglucanase. Biochim. Biophys. Acta 967, 437–440.

    Article  CAS  Google Scholar 

  • Lee, S. B.; Shin, H. S.; Ryu, D. D. Y.; and Mandels, M. 1983. Adsorption of cellulase on cellulose: Effect of physiochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol. Bioengineer. 24, 2137–2153.

    Article  Google Scholar 

  • Legler, G.; Roeser, K.-R.; and Illig, H.-K. 1979. Reaction of 3-D-glucosidase A3 from Aspergillus wentii with D-glucal. Eur. J. Biochem. 101, 85–92.

    Article  CAS  Google Scholar 

  • Legler, G.; Sinnott, M. L.; and Withers, S. G. 1980. Catalysis by β-glucosidase A3 of Aspergillus wentii. J Chem. Soc. Perkin I79, 1376–1383.

    Google Scholar 

  • Lei, S.-P.; Lin, H.-C.; Wang, S.-S.; Callaway, J.; and Wilcox, G. 1987. Characterization of the Erwinia carotovora pel B gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383.

    CAS  Google Scholar 

  • Macarron, R.; Van Beeumen, J.; Henrissat, B.; De La Mata, I.; and Claeyssens, M. 1993. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. FEBS Lett. 316, 137–140.

    Article  CAS  Google Scholar 

  • Machida, M.; Ohtsuki, I.; Fukui, S.; and Yamashita, I. 1988. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular β-glucosidases as expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54, 3147–3155.

    CAS  Google Scholar 

  • Macleod, A. M.; Lindhorst, T.; Withers, S. G.; and Warren, R. A. J. 1994. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: Evidence from detailed kinetic studies of mutants. Biochemistry 33,6371–6376.

    Google Scholar 

  • Mchale, A., and Coughlan, M. P. 1980. Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Lett. 117, 319–322.

    Article  CAS  Google Scholar 

  • Meinke, A.; Braun, C.; Gilkes, N. R.; Kilburn, D. G.; Miller, R. C., JR.; and Warren, R. A. J. 1991. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J. Bacteriol. 173, 308–314.

    CAS  Google Scholar 

  • Messner, R.; Hagspiel, K.; and Kubicek, C. P. 1990. Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei. Arch. Microbiol. 154, 150–155.

    Article  CAS  Google Scholar 

  • Messner, R., and Kubicek, C. P. 1990. Evidence for a single, specific 3-glucosidase in cell walls from Trichoderma reesei QM9414. Enzyme Microb. Technol. 12, 685–690.

    Article  CAS  Google Scholar 

  • Moloney, A., and Coughlan, M. P. 1983. Sorption of Talaromyces emersonii cellulase on cellulosic substrates. Biotechnol. Bioengineer. 25, 271–280.

    Article  CAS  Google Scholar 

  • Morag, E.; Halevy, I.; Bayer, E. A.; and Lamed, R. 1991. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J. Bacteriol. 173, 4155–4162.

    CAS  Google Scholar 

  • Niku-Paavola, M.-L.; Lappalainen, A.; Enari, T.-M.; and Nummi, M. 1986. Trichoderma reesei cellobiohydrolase II. Purification by immunoadsorption and hydrolytic properties. Biotechnol. Appl. Biochem. 8, 449–458.

    CAS  Google Scholar 

  • Nummi, M.; Niku-Paavola, M.-L.; Lappalainen, A.; Enari, T.-M.; and Raunio, V. 1983. Cellobiohydrolase from Trichoderma reesei. Biochem. J. 215, 677–683.

    CAS  Google Scholar 

  • Ohmiya, K.; Takano, M.; and Shimizu, S. 1989. DNA sequence of a β-glucosidase from Ruminococcus albus. Nucl. Acids Res. 18, 671.

    Article  Google Scholar 

  • O’neill, G. P.; Goh, S. H.; Warren, R. A. J.; Kilburn, D. G.; and Miller, R. C., Jr. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44, 325–330.

    Article  Google Scholar 

  • Penttila, M.; Lehtovaara, P.; Nevalainen, H.; Bhikhabhai, R.; and Knowles, J. 1986. Homology between cellulase genes of Trichoderma reesei: Complete nucleotide sequence of the endoglucanase I gene. Gene 45, 253–263.

    Article  CAS  Google Scholar 

  • Pilz, I.; Schwarz, E.; Kilburn, D. G.; Miller, R. C., Jr.; Warren, R. A. J.; and Gilkes, N. R. 1990. The tertiary structure of a bacterial cellulase determined by small-angle x-ray-scattering analysis. Biochem. J. 271, 277–280.

    CAS  Google Scholar 

  • Post, C. B., and Karplus, M. 1986. Does lysozyme follow the lysozyme pathway? An alternative based on dynamic, structural, and stereoelectronic considerations. J. Am. Chem. Soc. 108, 1317–1319.

    Article  CAS  Google Scholar 

  • Raynal, A.; Gerbaud, C.; Francingues, M. C.; and Guerineau, M. 1987. Sequence and transcription of the β-glucosidase gene of Kluyveromyces fragilis cloned in Saccharomyces cerevisiae. Curr. Genet. 12, 175–184.

    Article  CAS  Google Scholar 

  • Reese, E. T.; Sm, R. G. H.; and Levinson, H. S. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497.

    CAS  Google Scholar 

  • Reinikainen, T.; Ruohonen, L.; Nevanen, T.; Laaksonen, L.; Kraulis, P.; Jones, T. A.; Knowles, J. K. C.; and Teeri, T. T. 1992. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins: Structure, Function, and Genetics 14, 475–482.

    Article  CAS  Google Scholar 

  • Roeser, K.-R., and Legler, G. 1981. Role of sugar hydroxyl groups in glycoside hydrolysis. Cleavage mechanism of deoxyglucosides and related substrates by β-glucosidase A3 Aspergillus wentii. Biochim. Biophys. Acta 657, 321–333.

    Article  CAS  Google Scholar 

  • Rouvinen, J.; Bergfors, T.; Teeri, T.; Knowles, K. C.; and Jones, T. A. 1990. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386.

    Article  CAS  Google Scholar 

  • Ryu, D. D. Y.; Kim, C.; and Mandels, M. 1984. Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioengineer. 26, 488–496.

    Article  CAS  Google Scholar 

  • Saloheimo, M.; Lehtovaara, P.; Penttila, M.; Teeri, T. T.; Stahlberg, J.; Johansson, G., Pettersson, G.; Claeyssens, M.; Tomme, P.; and Knowles, J. K. C. 1988. EGIII, a new endoglucanase from Trichoderma reesei: The characterization of both gene and enzyme. Gene 63, 11–21.

    Article  CAS  Google Scholar 

  • Salovuori, I.; Makarow, M.; Rauvala, H.; Knowles, J.; and Kaariainen, L. 1987. Low molecular weight high-mannose type glycans is a secreted protein of the filamentous fungus Trichoderma reesei. Bio/Technology 5, 152–156.

    Article  CAS  Google Scholar 

  • Schmid, G., and Wandrey, Ch. 1987. Purification and partial characterization of a cellodextrin glucohydrolase 03-glucosidase) from Trichoderma reesei strain QM9414. Biotechnol. Bioengineer. 30, 571–585.

    Article  CAS  Google Scholar 

  • Schmuck, M.; Pilz, I.; Hayn, M.; and Esterbauer, H. 1986. Investigation of cellobiohydrolase from Trichoderma reesei by small angle x-ray scattering. Biotechnol. Lett. 8, 397–402.

    Article  CAS  Google Scholar 

  • Schultz, T. P.; Mcginnig, G. D.; and Bertran, M. S. 1985. Estimation of celulose crystallinity using Fourier transform-infrared spectroscopy and dynamic thermogravimetry. J. Wood Chemistry and Technology 5, 543–557.

    Article  CAS  Google Scholar 

  • Schwarz, W.; Bronnenmeier, K.; and Staudenbauer, W. L. 1985. Molecular cloning of Clostridium thermocellum genes involved in β-glucan degradation in bacteriophage lambda. Biotechnol. Lett. 7, 859–864.

    Article  CAS  Google Scholar 

  • Schwarz, W. H.; Schimming, S.; Rucknagel, K. P.; Burgschwaiger, S.; Kreil, G.; and Staudenbauer, W. L. 1988. Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum. Gene 63, 23–30.

    Article  CAS  Google Scholar 

  • Shen, H.; Schmuck, M.; Pilz, I.; Gilkes, N. R.; Kilburn, D. G.; Miller, R. C., Jr.; and Warren, R. A. J. 1991. Deletion of the linker connecting the catalytic and cellulose-binding domains of endoglucanase A (Cen A) of Cellulomonas fimi alters its conformation and catalytic activity. J. Biol. Chem. 266, 11335–11340.

    CAS  Google Scholar 

  • Shoemaker, S.; Schweickart, V.; Ladner, M.; Gelfand, D.; Kwok, S.; Myambo, K.; and Innis, M. 1983. Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1, 691–696.

    Article  CAS  Google Scholar 

  • Spezio, M.; Wilson, D. B.; and Karplus, P. A. 1993. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32, 9906–9916.

    Article  CAS  Google Scholar 

  • Sprey, B., and Bochem, H.-P. 1993. Formation of cross-fractures in cellulose microfibril structure by an endoglucanase-cellobiohydrolase complex from Trichoderma reesei. FEMS Microbiol. Lett. 106, 239–244.

    Article  CAS  Google Scholar 

  • Stahlberg, J.; Johansson, G.; and Pettersson, G. 1988. A binding-site-deficient catalytically active, core protein of endoglucanase III from the culture filtrate of Trichoderma reesei. Eur. J. Biochem. 173, 179–183.

    Article  CAS  Google Scholar 

  • Stahlberg, J.; Johansson, G.; and Pettersson, G. 1991. A new model for enzymatic hydrolysis of cellulose based on the twodomain structure of cellobiohydrolase I. Bio/Technology 9, 286–290.

    Article  Google Scholar 

  • Sternberg, D.; Vijayakumar, P.; and Reese, E. T. 1977. β-Glucosidase: Microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23, 139–147.

    Google Scholar 

  • Thoma, J. A. 1968. A possible mechanism for amylase catalysis. J. Theoret. Biol. 19, 297–310.

    Article  CAS  Google Scholar 

  • Tomme, P., and Claeyssens, M. 1989. Identification of a functionally important carboxyl group in cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 243, 239–243.

    Article  CAS  Google Scholar 

  • Tomme, P.; Van Beeumen, J.; and Claeyssens, M. 1992. Modification of catalytically important carboxy residues in endoglucanase D from Clostridium thermocellum. Biochem. J. 285, 319–324.

    CAS  Google Scholar 

  • Tomme, P.; Van Tilbeurgh, H.; Pettersson, G.; Van Damme, J.; Vandekerckhove, J.; Knowles, J.; Teeri, T.; and Claeyssens, M. 1988. Studies of the cellulolytic system of Trichoderma reesei: QM9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170, 575–581.

    Article  CAS  Google Scholar 

  • Trimbur, D. E.; Warren, R. A. J.; and Withers, S. G. 1992. Region-directed mutagenesis of residues surrounding the active site nucleophile in β-glucosidase from Agrobacterium faecalis. J. Biol. Chem. 267, 10248–10251.

    CAS  Google Scholar 

  • Tripp, V. W. 1971. In: Cellulose and Cellulose Derivatives. Part IV, N. M. Bikales, and L. Segal, eds., John Wiley & Sons, New York, Chapter XIII-G, p. 305.

    Google Scholar 

  • Tull, D., and Withers, S. G. 1994. Mechanisms of cellulases and xylanases: A detailed kinetic study of the exo-β-1,4-glycanase from Cellulomonas fimi. Biochemistry 33, 6363–6370.

    Article  CAS  Google Scholar 

  • Tull, D.; Withers, S. G.; Gilkes, N. R.; Kilburn, D. G.; Warren, R. A. J.; and Aebersold, R. 1991. Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase from Cellulomonas fimi. J. Biol. Chem. 266, 156–21

    Google Scholar 

  • Umile, C., and Kubicek, C. P. 1986. A constitutive plasma-membrane bound β-glu- cosidase in Trichoderma reesei. FEMS Microbiol. Lett. 34, 291–295.

    CAS  Google Scholar 

  • Van Tilbeurgh, H.; Tomme, P.; Claeyssens, M.; Bhikhabhai, R.; and Pettersson, G. 1986. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 204, 223–226.

    Article  Google Scholar 

  • Vernon, C. A. 1967. The mechanisms of hydrolysis of glycosides and their relevance to enzyme-catalyzed reactions. Royal Soc. Proc. Ser. B. 167, 389–401.

    Article  CAS  Google Scholar 

  • Vrsanska, M., and Biely, P. 1992. The cellobiohydrolase I from Trichoderma reesei QM9414: Action on cello-oligosaccharides. Carbohydr. Res. 227, 19–27.

    Article  CAS  Google Scholar 

  • Wang, Q. P.; Tull, D.; Meinke, A.; Gilkes, N. R.; Warren, R A J; Aebersold, R.; and Withers, S. G. 1993. G1u280 is the nucleophile in the active site of Clostridium thermocellum Ce1C, a family A endo-β-1,4-glucanase. J. Biol. Chem. 268, 14096–14102.

    CAS  Google Scholar 

  • Weber, J. P., and Fink, A. L. 1980. Temperature-dependent change in the rate-limiting step of β-glucosidase catalysis. J. Biol. Chem. 255, 9030–9032.

    CAS  Google Scholar 

  • White, A.; Withers, S. G.; Gilkes, N. R.; and Rose, D. R. 1994. Crystal structure of the catalytic domain of the 3–1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546–12552.

    Article  CAS  Google Scholar 

  • White, A. R. 1982. Visualization of cellulases and cellulose degradation. In: Cellulose and Other Natural Polymer Systems: Biogenesis, Structure, and Degradation, R. M. Brown, Jr. ed., Plenum Press, New York and London, chapter 23, pp. 489–509.

    Chapter  Google Scholar 

  • White, A. R., and Brown, R. M. 1981. Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc. Natl. Acad. Sci. USA 78, 1047–1051.

    Article  CAS  Google Scholar 

  • Withers, S. G.; Dombroski, D.; Berven, L. A.; Kilburn, D. G.; Miller, R. C. Jr.; Warren, R. A. J.; and Gilkes, N. R. 1986. Direct H N.M.R. determination of the stereochemical course of hydrolyses catalyzed by glucanase components of the cellulase complex. Biochem. Biophys. Res. Comm. 139, 487–494.

    Article  CAS  Google Scholar 

  • Withers, S. G., and Street, I. P. 1988. Identification of a covalent a-D-glucopyranosyl enzyme intermediate formed on a β-glucosidase. J. Am. Chem. Soc. 110, 8551–8553.

    Article  CAS  Google Scholar 

  • Withers, S. G.; Warren, R. A. J.; Street, I. P.; Rupitz, K.; Kempton, J. B.; and Aebersold, R. 1990. Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a “retaining” glycosidase. J. Am. Chem. Soc. 112, 5887–5889.

    Article  CAS  Google Scholar 

  • Wong, W. K. R.; Gerhard, B.; Guo, Z. M.; Kilburn, D. G.; Warren, R. A. J.; and Miller, R. C., Jr. 1986. Characterization and structure of an endoglucanase gene cenA of Cellulomonas fimi. Gene 44, 315–324.

    Article  CAS  Google Scholar 

  • Wood, T. M., and Mccrae, S. I. 1986. The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilzing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem. J. 234, 93–99.

    CAS  Google Scholar 

  • Wood, T. M.; Mccrae, S. I.; and Bhat, K. M. 1989. The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem. J. 260, 37–43.

    CAS  Google Scholar 

  • Woodward, J.; Affholter, K. A.; Noles, K. K.; Troy, N. T.; and Gaslightwala, S. F. 1992. Does cellobiohydrolase II core protein from Trichoderma reesei disperse cellulose macrofibrils? Enzyme Microb. Technol. 14, 625–630.

    Article  CAS  Google Scholar 

  • Woodward, J.; Hayes, M. K.; and Lee, N. E. 1988A. Hydrolysis of cellulose by saturating and non-saturating concentration of cellulase: Implications for synergism. Bio/Technology 6, 301–304.

    Google Scholar 

  • Woodward, J.; Lima, M.; and Lee, N. E. 1988B. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 255, 895–899.

    Google Scholar 

  • Wu, J. H. D.; Orme-Johnson, W. H.; and Demain, A. L. 1988. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27, 1703–1709.

    Article  CAS  Google Scholar 

  • Yaguchi, M.; Roy, C.; Rollin, C. F.; Paice, M. G.; and Jurasek, L. 1983. A fungal cellulase shows sequence homology with the active site of hen egg-white lysozyme. Biochem. Biophys. Res. Comm. 116, 408–411.

    Article  CAS  Google Scholar 

  • Yague, E.; Beguin, P.; and Aubert, J.-P. 1990. Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89, 61–67.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wong, D.W.S. (1995). Cellulolytic Enzymes. In: Food Enzymes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2349-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2349-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4722-2

  • Online ISBN: 978-1-4757-2349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics