Food Enzymes pp 85-123 | Cite as

Cellulolytic Enzymes

  • Dominic W. S. Wong


Cellulolytic enzymes act synergistically to hydrolyze cellulose or its chemically modified polymers. Conversion of abundant cellulose waste materials, such as straw, husks, sawdust, paper, etc. to fuel-grade alcohol represents an important energy source. Many research efforts on these enzymes are devoted to the application of cellulolytic enzymes in making biomass conversion economically and technically feasible. The use of these enzymes, in conjunction with pectinases, is a potential alternative to chemical peeling in fruit and vegetable processing.


Crystalline Cellulose Trichoderma Reesei Cellulolytic Enzyme Amorphous Cellulose Fusarium Solani 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuja, P. M.; Pilz, I.; Claeyssens, M.; and Tomme, P. 1988A. Domain structure of cellobiohydrolase II as studied by small angle x-ray scattering close resemblance to cellobiohydrolase I. Biochem. Biophys. Res. Comm. 156, 180–185.CrossRefGoogle Scholar
  2. Abuja, P. M.; Schmuck, M.; Pilz, I.; Tomme, P.; Claeyssens, M.; and Esterbauer, H. 1988B. Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. A small angle x-ray scattering study of the intact enzyme and its core. Eur. Biophys. J. 15, 339–342.CrossRefGoogle Scholar
  3. Ait, N.; Creuzet, N.; and Cattaneo, J. 1982. Properties of β-glucosidase purified from Clostridum thermocellum. J. Gen. Microbiol. 128, 569–577.Google Scholar
  4. Baird, S. D.; Hefford, M. A.; Johnson, D. A.; Sung, W. L.; Yaguchi, M.; and Seiligy, V. L. 1990. The Glu residue in the conserved Asn-Glu-Pro sequence of two highly divergent endo-3–1,4-glucanases is essential for enzymatic activity. Biochem. Biophys. Res. Comm. 169, 1035–1039.CrossRefGoogle Scholar
  5. Baker, J. O.; Tatsumoto, K.; Grohmann, K.; Woodward, J.; Wichert, J. M.; Shoemaker, S. P.; and Himmel, M. E. 1992. Thermal denaturation of Trichoderma reesei cellulases studied by differential scanning calorimetry and tryptophan fluorescence. Appl. Biochem. Biotechnol. 34/35, 217–231.Google Scholar
  6. Barnett, C. C.; Berka, R. M.; and Fowler, T. 1991. Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: Evidence for improved rates of saccharification of cellulosic substrates. Bio/Technology 9, 562–567.CrossRefGoogle Scholar
  7. Bause, E., and Legler, G. 1980. Isolation and structure of a tryptic glycopeptide from the active site of β-glucosidase A3 from Aspergillus wentii. Biochim. Biophys. Acta 626, 459–465.CrossRefGoogle Scholar
  8. Beguin, P. 1990. Molecular biology of cellulose degradation. Ann. Rev. Microbiol. 44, 219–248.CrossRefGoogle Scholar
  9. Beguin, P.; Cornet, P.; and Aubert, J.-P. 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162, 102–105.Google Scholar
  10. Beguin, P.; Millet, J.; and Aubert, J.-P. 1992. Cellulose degradation by Clostridium thermocellum: From manure to molecular biology. FEMS Microbiol. Lett. 100, 523–528.CrossRefGoogle Scholar
  11. Beldman, G.; Voragen, A. G. J.; Rombouts, F. M.; Searle-Van Leeuwen, M. F.; and Pilnik, W. 1987. Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol. Bioengineer. 30, 251–257.CrossRefGoogle Scholar
  12. Bhikhabhai, R.; Johansson, G.; and Pettersson, G. 1985. Cellobiohydrolase from Trichoderma reesei. Internal homology and prediction of secondary structure. Int. J. Peptide Protein Res. 25, 368–374.CrossRefGoogle Scholar
  13. Bhikhabhai, R., and Pettersson, G. 1984. The disulfide bridges in a cellobiohydro- lase and an endoglucanase from Trichoderma reesei. Biochem. J. 222, 729–736.Google Scholar
  14. Blackwell, J. 1982. The macromolecular organization of cellulose and chitin. In: Cellulose and Other Natural Polymer Systems. Biogenesis, Structure, and Degradation. R. Malcolm Brown, Jr., ed., Plenum Press, New York and London.Google Scholar
  15. Brooks, M. M.; Tuoky, M. G.; Savage, A. V.; Claeyssens, M.; and Coughlan, M. P. 1992. The stereochemical course of reactions catalyzed by the cellobiohydrolases produced by Talaromyces emersonii. Biochem. J. 283, 31–34.Google Scholar
  16. Chanzy, H., and Henrissat, B. 1985. Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184, 285–288.CrossRefGoogle Scholar
  17. Chanzy, H.; Henrissat, B.; and Vuong, R.; and Schulein, M. 1983. The action of 1,4–0-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. FEBS Lett. 153, 113–118.CrossRefGoogle Scholar
  18. Chanzy, H.; Henrissat, B.; and Vuong, R. 1984. Colloid gold labelling of 1,4–0-Dglucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett. 172, 193–197.CrossRefGoogle Scholar
  19. Chen, C. M.; Gritzali, M.; and Stafford, D. W. 1987. Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Bio/ Technology 5, 274–278.CrossRefGoogle Scholar
  20. Chirico, W. J., and Brown, R. D., Jr. 1987. Purification and characterization of a 0-glucosidase from Trichoderma reesei. Eur. J. Biochem. 165, 333–341.CrossRefGoogle Scholar
  21. Claeyssens, M.; Tomme, P.; Brewer, C. F.; and Hehre, E. J. 1990A. Stereochemical course of hydrolysis and hydration reactions catalyzed by cellobiohydrolases I and II from Trichoderma reesei. FEBS Lett. 263, 89–92.Google Scholar
  22. Claeyssens, M.; Van Tilbeurgh, H.; Kamerling, J. P.; Berg, J.; Vrsanska, M.; and Belly, P. 1990B. Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM9414. Substrate specificity and transfer activity of endoglucanase I. Biochem. J. 270, 251–256.Google Scholar
  23. Clarice, A. J. 1988. Active-site-directed inactivation of Schizophyllum commune cellulase by 4’,5’-epoxypentyl-4-D4-D-glucopyranosyl)-13-D-glucopyranoside. Biochem. Cell Biol. 66, 871–879.CrossRefGoogle Scholar
  24. Clarke, A. J., and Yaguchi, M. 1985. The role of carboxyl groups in the function of endo-0–1,4-glucanase from Schizophyllum commune. Eur. J. Biochem. 149, 233–238.CrossRefGoogle Scholar
  25. Coughlan, M. P.; Moloney, A. P.; Mccrae, S. I.; and Wood, T. M. 1987. Cross-synergistic interactions between components of the cellulase systems of Talaromyces emersonii, Fusarium solani, Penicillium funiculosum and Trichoderma koningii. Biochem. Soc. Trans. 15, 263–264.Google Scholar
  26. Dahlquist, F. W.; Rand-Meir, T.; and Raftery, M. A. 1969. Application of secondary a-deuterium kinetic isotope effects to studies of enzyme catalysis. Glycoside hydrolysis by lysozyme and O-glucosidase. Biochemistry 8, 4214–4221.CrossRefGoogle Scholar
  27. Davies, G. J.; DODSON, G. G.; Hubbard, R. E.; Tolley, S. P.; Dauter, Z.; Wilson, K. S.; Hjort, C.; Mikkelsen, J. M.; Rasmussen, G.; and Schulein, M. 1993. Structure and function of endoglucanase V. Nature 365, 362–364.CrossRefGoogle Scholar
  28. Din, N.; Gilkes, N. R.; Tekant, B.; Miller, R. C., Jr.; Warren, R. A. J.; and Kilburn, D. G. 1991. Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology 9, 1096–1099.CrossRefGoogle Scholar
  29. Divne, C.; Stahlberg, J.; Reinikainen, T.; Ruohonen, L.; Pettersson, G.; Knowles, J. K. C.; Teeri, T. T.; and Jones, T. A. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichodermi reesei. Science 265, 524–528.CrossRefGoogle Scholar
  30. Enari, T.-M.; Niku-Paavola, M.-L.; Harju, L.; Lappalainen, A.; and Nummi, M. 1981. Purification of Trichoderma reesei and Aspergillus niger β-glucosidase. J. Appl. Biochem. 3, 157–163.Google Scholar
  31. Fagerstam, L. G., and Pettersson, L. G. 1980. The 1,4–0-glucan cellobiohydrolases of Trichoderma reesei QM9414. FEBS Lett. 119, 97–100.CrossRefGoogle Scholar
  32. Fagerstam, L. G.; Pattersson, L. G.; and Engstrom, J. A. 1984. The primary structure of a 1,4-β-glucan cellobiohydrolase from the fungus Trichoderma reesei QM9414. FEBS Lett. 167, 309–315.CrossRefGoogle Scholar
  33. Fife, T. H. 1972. General acid catalysis of acetal, ketal, and ortho ester hydrolysis. Acc. Chem. Res. 5, 264–272.CrossRefGoogle Scholar
  34. Gebler, J.; Gilkes, N. W.; Claeyssens, M.; Wilson, D. B.; Beguin, P.; Wakarchuk, W. S.; Kilburn, D. G.; Miller, R. C.; Warren, R. A. J. Jr.; and Withers, S. G. 1992. Stereoselective hydrolysis catalyzed by related 3–1,4-glucanases and 13–1,4-xylanases. J. Biol. Chem. 267, 12559–12561.Google Scholar
  35. Gilkes, N. R.; Claeyssens, M.; Aebersold, R.; Henrissat, B.; Meinke, A.; Morrison, H. D.; Kilburn, D. G.; Warren, A. J.; and Miller, R. C., JR. 1991A. Structural and functional relationships in two families of 13–1,4-glycanases. Eur. J. Biochem. 202, 367–377.Google Scholar
  36. Gilkes, N. R.; Henrissat, B.; Kilburn, D. G.; Miller, R. C.; and Warren, R. A. J. 1991B. Domains in microbial 0–1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315.Google Scholar
  37. Gilkes, N. R.; Jervis, E.; Henrissat, B.; Tekant, B.; Miller, R. C., Jr.; Warren, R. A. J.; and Kilburn, D. G. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267, 6743–6749.Google Scholar
  38. Gilkes, N. R.; Kilburn, D. G.; Miller, R. C. Jr.; and Warren, R. A. J. 1989. Structural and functional analysis of a bacterial cellulase by proteolysis. J. Biol. Chem. 264, 17802–17808.Google Scholar
  39. Gilkes, N. R.; Warren, A. J.; Miller, R. C.; and Kilburn, D. G. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263, 10401–10407.Google Scholar
  40. Gow, L. A., and Wood, T. M. 1988. Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiol. Lett. 50, 247–252.CrossRefGoogle Scholar
  41. Grabnitz, F.; Rucknagel, K. P.; Seib, M.; and Staudenbauer, W. L. 1989. Nucleotide sequence of the Clostridium thermocellum bglB gene encoding thermostable β-glucosidase B: Homology to fungal 3-glucosidases. Mol. Gen. Genet. 217, 70–76.CrossRefGoogle Scholar
  42. Grabnitz, F.; Seiss, M.; Rucknagel, K. P.; and Staudenbauer, W. L. 1991. Structure of the β-glucosidase gene bgl A of Clostridium thermocellum. Eur. J. Biochem. 200, 301–309.CrossRefGoogle Scholar
  43. Grabnitz, F., and Staudenbauer, W. L. 1988. Characterization of two 13-glucosidase genes from Clostridium thermocellum. Biotechnol. Lett. 10, 73–78.CrossRefGoogle Scholar
  44. Grepinet, O., and Beguin, P. 1986. Sequence of the cellulase gene of Clostridium thermocellum coding for endoglucanase B. Nucl. Acids Res. 14, 1791–1799.CrossRefGoogle Scholar
  45. Hall, J.; Hazlewood, G. P.; Barker, P. J.; and Gilbert, H. J. 1988. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 29–38.CrossRefGoogle Scholar
  46. Hehre, E. J.; Brewer, C. F.; Uchiyama, T.; Schlesselmann, P.; and Lehmann, J. 1980. Scope and mechanism of carbohydrase action. Stereospecific hydration of 2,6-anhydro-1-deoxy-D-gluco-hept-1-enitol catalyzed by a-and β-glucosidases and an inverting exo-a-glucanase. Biochemistry 19, 2557–2564.CrossRefGoogle Scholar
  47. Hehre, E. J.; Genghof, D. S.; Sternlicht, H.; and Brewer, C. F. 1977. Scope and mechanism of carbohydrase action: Stereospecific hydration of D-glucal catalyzed by a-and β-glucosidase. Biochemistry 16, 1780–1787.CrossRefGoogle Scholar
  48. Henrissat, B.; Claeyssens, M.; Tomme, P.; Lemesle, L.; and Mornon, J.-P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81, 83–95.CrossRefGoogle Scholar
  49. Henrissat, B.; Driguez, H.; Viet, C.; and Schulein, M. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 3, 722–726.CrossRefGoogle Scholar
  50. Henrissat, B.; Vigny, B.; Buleon, A.; and Perez, S. 1988. Possible adsorption sites of cellulases on crystalline cellulose. FEBS Lett. 231, 177–182.CrossRefGoogle Scholar
  51. Hofer, F.; Weissinger, E.; Mischak, H.; Messner, R.; Meixner-Monori, B.; Blass, D.; Visser, J.; Kubicek, C. P. 1989. A monoclonal antibody against the alkaline extracellular β-glucosidase from Trichoderma reesei: Reactivity with the Trichoderma β-glucosidases. Biochim. Biophys. Acta 992, 298–306.CrossRefGoogle Scholar
  52. Hoshino, E.; Kanda, T.; Sasaki, Y.; and Nisizawa, K. 1992. Adsorption mode of exo-and endo-cellulases from Irpex lacteus (Polyporus tulipeferae) on cellulose with different crystallinities. J. Biochem. 111, 600–605.Google Scholar
  53. Inglin, M.; Feinberg, B. A.; and Loewenberg, J. R. 1980. Partial purification and characterization of a new intracellular β-glucosidase of Trichoderma reesei. Biochem. J. 185, 515–519.Google Scholar
  54. Jackson, M. A., and Talburt, D. E. 1988. Purification and partial characterization of an extracellular β-glucosidase of Trichoderma reesei using cathodic run, polyacrylamide gel electrophoresis. Biotechnol. Bioengineer. 32, 903–909.CrossRefGoogle Scholar
  55. Johansson, G.; Stahlberg, J.; Lindeberg, G.; Engstrom, A.; and Pettersson, G. 1989. Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett. 243, 389–393.CrossRefGoogle Scholar
  56. Johnson, E. A., and Demain, A. L. 1984. Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum. Arch. Microbiol. 137, 135–138.CrossRefGoogle Scholar
  57. Johnson, E. A.; Sakajoh, M.; Halliwell, G.; Madia, A.; and Demain, A. L. 1982. Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43, 1125–1131.Google Scholar
  58. Joliff, G., Beguin, P., and Aubert, J.-P. 1986A. Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermocellum. Nucl. Acids Res. 14, 8605–8613.Google Scholar
  59. Joliff, G.; Beguin, P.; Juy, M.; Millet, J.; Ryter, A.; Poljak, R.; and Aubert, J.-P. 1986B. Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli. Bio/Technology 4, 896–900.Google Scholar
  60. Juy, M.; Amit, A. G.; Alzari, P. M.; Poljack, R. J.; Claeyssens, M.; Beguin, P.; and Aubert, J.-P. 1992. Three-dimensional structure of a thermostable bacterial cellulase. Nature 357, 89–91.CrossRefGoogle Scholar
  61. Kadam, S. K., and Demain, A. L. 1989. Addition of cloned β-glucosidase enhances the degradation of crystalline cellulase by the Clostridium thermocellum cellulase complex. Biochim. Biophys. Res. Comm. 161, 706–711.CrossRefGoogle Scholar
  62. Kamide, K.; Okajima, K.; Kowsaka, K.; and Matsui, T. 1985. CP/MASS C NMR spectra of cellulose solids: An explanation by the intramolecular hydrogen bond concept. Polymer J. 17, 701–706.CrossRefGoogle Scholar
  63. Kanda, T.; Brewer, C. F.; Okada, G.; and Hehre, E. J. 1986. Hydration of cellobial by exo-and endo-type cellulases: Evidence for catalytic flexibility of glycosylases. Biochemistry 25, 1159–1165.CrossRefGoogle Scholar
  64. Kawamori, M.; Ado, Y.; and Takasawa, S. 1986. Preparation and application of Trichoderma reesei mutants with enhanced β-glucosidase. Agric. Biol. Chem. 50, 2477–2482.CrossRefGoogle Scholar
  65. Kim, D. W.; Jeong, Y. K.; and Lee, J. K. 1994. Adsorption kinetics of exoglucanase in combination with endoglucanase from Trichoderma viride on microcrystalline cellulose and its influence on synergistic 152 degradation. Enzyme Microb. Technol. 16, 649–658.CrossRefGoogle Scholar
  66. Klyosov, A. A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29, 10577–10585.CrossRefGoogle Scholar
  67. Klyosov, A. A.; Mitkevich, O. V.; and Sinitsyn, A. P. 1986. Role of the activity and adsorption of cellulases in the efficiency of the enzymatic hydrolysis of amorphous and crystalline cellulose. Biochemistry 25, 540–542.CrossRefGoogle Scholar
  68. Knowles, J.; Lehtovaara, P.; and Teeri, T. 1987. Cellulase families and their genes. TIBTECH 5, 255–261.CrossRefGoogle Scholar
  69. Knowles, J. K. C.; and Lentovaara, P.; Murray, M.; and Sinnott, M. L. 1988. Stereochemical course of the action of the cellobioside hydrolases I and II of Trichoderma reesei. J. Chem. Soc. Chem. Commun. 1988, 1401.Google Scholar
  70. Kohchi, C., and Tohe, A. 1985. Nucleotide sequence of Candida pelliculosa β-glucosidase gene. Nucl. Acids Res. 13, 6273–6282.CrossRefGoogle Scholar
  71. Koshland, D. E. Jr. 1959. Mechanisms of transfer enzymes. The Enzymes 1, 305–346.Google Scholar
  72. Kraulis, P. J.; Clore, G. M.; Nilges, M.; Jones, T. A.; Pettersson, G.; Knowles, J.; and Gronenborn, A. M. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28, 7241–7257.CrossRefGoogle Scholar
  73. Kyriacou, A.; Neufeld, R. J.; and Mackenzie, C. R. 1989. Reversibility and competition in the adsorption of Trichoderma reesi cellulase components. Biotechnol. Bioengineer. 33, 631–637.CrossRefGoogle Scholar
  74. Lamed, R., and Bayer, E. A. 1988. The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol. 33, 1–46.CrossRefGoogle Scholar
  75. Lamed, R.; Kenig, R.; Morag, E.; Calzada, J. F.; De Micheo, F.; and Bayer, E. A. 1991. Efficient cellulose solubilization by a combined cellulosome-3-glucosidase system. Appl. Biochem. Biotechnol. 27, 173–183.CrossRefGoogle Scholar
  76. Langsford, M. L.; Gilkes, N. R.; Singh, B.; Moser, B.; Miller, R. C., Jr.; Warren, R. A. J.; and Kilburn, D. G. 1987. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett. 225, 163–167.CrossRefGoogle Scholar
  77. Lee, N. E.; Lima, M.; and Woodward, J. 1988. Hydrolysis of cellulose by a mixture of Trichoderma reesei cellobiohydrolase and Aspergillus niger endoglucanase. Biochim. Biophys. Acta 967, 437–440.CrossRefGoogle Scholar
  78. Lee, S. B.; Shin, H. S.; Ryu, D. D. Y.; and Mandels, M. 1983. Adsorption of cellulase on cellulose: Effect of physiochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol. Bioengineer. 24, 2137–2153.CrossRefGoogle Scholar
  79. Legler, G.; Roeser, K.-R.; and Illig, H.-K. 1979. Reaction of 3-D-glucosidase A3 from Aspergillus wentii with D-glucal. Eur. J. Biochem. 101, 85–92.CrossRefGoogle Scholar
  80. Legler, G.; Sinnott, M. L.; and Withers, S. G. 1980. Catalysis by β-glucosidase A3 of Aspergillus wentii. J Chem. Soc. Perkin I79, 1376–1383.Google Scholar
  81. Lei, S.-P.; Lin, H.-C.; Wang, S.-S.; Callaway, J.; and Wilcox, G. 1987. Characterization of the Erwinia carotovora pel B gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383.Google Scholar
  82. Macarron, R.; Van Beeumen, J.; Henrissat, B.; De La Mata, I.; and Claeyssens, M. 1993. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. FEBS Lett. 316, 137–140.CrossRefGoogle Scholar
  83. Machida, M.; Ohtsuki, I.; Fukui, S.; and Yamashita, I. 1988. Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular β-glucosidases as expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54, 3147–3155.Google Scholar
  84. Macleod, A. M.; Lindhorst, T.; Withers, S. G.; and Warren, R. A. J. 1994. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: Evidence from detailed kinetic studies of mutants. Biochemistry 33,6371–6376.Google Scholar
  85. Mchale, A., and Coughlan, M. P. 1980. Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Lett. 117, 319–322.CrossRefGoogle Scholar
  86. Meinke, A.; Braun, C.; Gilkes, N. R.; Kilburn, D. G.; Miller, R. C., JR.; and Warren, R. A. J. 1991. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J. Bacteriol. 173, 308–314.Google Scholar
  87. Messner, R.; Hagspiel, K.; and Kubicek, C. P. 1990. Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei. Arch. Microbiol. 154, 150–155.CrossRefGoogle Scholar
  88. Messner, R., and Kubicek, C. P. 1990. Evidence for a single, specific 3-glucosidase in cell walls from Trichoderma reesei QM9414. Enzyme Microb. Technol. 12, 685–690.CrossRefGoogle Scholar
  89. Moloney, A., and Coughlan, M. P. 1983. Sorption of Talaromyces emersonii cellulase on cellulosic substrates. Biotechnol. Bioengineer. 25, 271–280.CrossRefGoogle Scholar
  90. Morag, E.; Halevy, I.; Bayer, E. A.; and Lamed, R. 1991. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J. Bacteriol. 173, 4155–4162.Google Scholar
  91. Niku-Paavola, M.-L.; Lappalainen, A.; Enari, T.-M.; and Nummi, M. 1986. Trichoderma reesei cellobiohydrolase II. Purification by immunoadsorption and hydrolytic properties. Biotechnol. Appl. Biochem. 8, 449–458.Google Scholar
  92. Nummi, M.; Niku-Paavola, M.-L.; Lappalainen, A.; Enari, T.-M.; and Raunio, V. 1983. Cellobiohydrolase from Trichoderma reesei. Biochem. J. 215, 677–683.Google Scholar
  93. Ohmiya, K.; Takano, M.; and Shimizu, S. 1989. DNA sequence of a β-glucosidase from Ruminococcus albus. Nucl. Acids Res. 18, 671.CrossRefGoogle Scholar
  94. O’neill, G. P.; Goh, S. H.; Warren, R. A. J.; Kilburn, D. G.; and Miller, R. C., Jr. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44, 325–330.CrossRefGoogle Scholar
  95. Penttila, M.; Lehtovaara, P.; Nevalainen, H.; Bhikhabhai, R.; and Knowles, J. 1986. Homology between cellulase genes of Trichoderma reesei: Complete nucleotide sequence of the endoglucanase I gene. Gene 45, 253–263.CrossRefGoogle Scholar
  96. Pilz, I.; Schwarz, E.; Kilburn, D. G.; Miller, R. C., Jr.; Warren, R. A. J.; and Gilkes, N. R. 1990. The tertiary structure of a bacterial cellulase determined by small-angle x-ray-scattering analysis. Biochem. J. 271, 277–280.Google Scholar
  97. Post, C. B., and Karplus, M. 1986. Does lysozyme follow the lysozyme pathway? An alternative based on dynamic, structural, and stereoelectronic considerations. J. Am. Chem. Soc. 108, 1317–1319.CrossRefGoogle Scholar
  98. Raynal, A.; Gerbaud, C.; Francingues, M. C.; and Guerineau, M. 1987. Sequence and transcription of the β-glucosidase gene of Kluyveromyces fragilis cloned in Saccharomyces cerevisiae. Curr. Genet. 12, 175–184.CrossRefGoogle Scholar
  99. Reese, E. T.; Sm, R. G. H.; and Levinson, H. S. 1950. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497.Google Scholar
  100. Reinikainen, T.; Ruohonen, L.; Nevanen, T.; Laaksonen, L.; Kraulis, P.; Jones, T. A.; Knowles, J. K. C.; and Teeri, T. T. 1992. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins: Structure, Function, and Genetics 14, 475–482.CrossRefGoogle Scholar
  101. Roeser, K.-R., and Legler, G. 1981. Role of sugar hydroxyl groups in glycoside hydrolysis. Cleavage mechanism of deoxyglucosides and related substrates by β-glucosidase A3 Aspergillus wentii. Biochim. Biophys. Acta 657, 321–333.CrossRefGoogle Scholar
  102. Rouvinen, J.; Bergfors, T.; Teeri, T.; Knowles, K. C.; and Jones, T. A. 1990. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380–386.CrossRefGoogle Scholar
  103. Ryu, D. D. Y.; Kim, C.; and Mandels, M. 1984. Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioengineer. 26, 488–496.CrossRefGoogle Scholar
  104. Saloheimo, M.; Lehtovaara, P.; Penttila, M.; Teeri, T. T.; Stahlberg, J.; Johansson, G., Pettersson, G.; Claeyssens, M.; Tomme, P.; and Knowles, J. K. C. 1988. EGIII, a new endoglucanase from Trichoderma reesei: The characterization of both gene and enzyme. Gene 63, 11–21.CrossRefGoogle Scholar
  105. Salovuori, I.; Makarow, M.; Rauvala, H.; Knowles, J.; and Kaariainen, L. 1987. Low molecular weight high-mannose type glycans is a secreted protein of the filamentous fungus Trichoderma reesei. Bio/Technology 5, 152–156.CrossRefGoogle Scholar
  106. Schmid, G., and Wandrey, Ch. 1987. Purification and partial characterization of a cellodextrin glucohydrolase 03-glucosidase) from Trichoderma reesei strain QM9414. Biotechnol. Bioengineer. 30, 571–585.CrossRefGoogle Scholar
  107. Schmuck, M.; Pilz, I.; Hayn, M.; and Esterbauer, H. 1986. Investigation of cellobiohydrolase from Trichoderma reesei by small angle x-ray scattering. Biotechnol. Lett. 8, 397–402.CrossRefGoogle Scholar
  108. Schultz, T. P.; Mcginnig, G. D.; and Bertran, M. S. 1985. Estimation of celulose crystallinity using Fourier transform-infrared spectroscopy and dynamic thermogravimetry. J. Wood Chemistry and Technology 5, 543–557.CrossRefGoogle Scholar
  109. Schwarz, W.; Bronnenmeier, K.; and Staudenbauer, W. L. 1985. Molecular cloning of Clostridium thermocellum genes involved in β-glucan degradation in bacteriophage lambda. Biotechnol. Lett. 7, 859–864.CrossRefGoogle Scholar
  110. Schwarz, W. H.; Schimming, S.; Rucknagel, K. P.; Burgschwaiger, S.; Kreil, G.; and Staudenbauer, W. L. 1988. Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum. Gene 63, 23–30.CrossRefGoogle Scholar
  111. Shen, H.; Schmuck, M.; Pilz, I.; Gilkes, N. R.; Kilburn, D. G.; Miller, R. C., Jr.; and Warren, R. A. J. 1991. Deletion of the linker connecting the catalytic and cellulose-binding domains of endoglucanase A (Cen A) of Cellulomonas fimi alters its conformation and catalytic activity. J. Biol. Chem. 266, 11335–11340.Google Scholar
  112. Shoemaker, S.; Schweickart, V.; Ladner, M.; Gelfand, D.; Kwok, S.; Myambo, K.; and Innis, M. 1983. Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/Technology 1, 691–696.CrossRefGoogle Scholar
  113. Spezio, M.; Wilson, D. B.; and Karplus, P. A. 1993. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32, 9906–9916.CrossRefGoogle Scholar
  114. Sprey, B., and Bochem, H.-P. 1993. Formation of cross-fractures in cellulose microfibril structure by an endoglucanase-cellobiohydrolase complex from Trichoderma reesei. FEMS Microbiol. Lett. 106, 239–244.CrossRefGoogle Scholar
  115. Stahlberg, J.; Johansson, G.; and Pettersson, G. 1988. A binding-site-deficient catalytically active, core protein of endoglucanase III from the culture filtrate of Trichoderma reesei. Eur. J. Biochem. 173, 179–183.CrossRefGoogle Scholar
  116. Stahlberg, J.; Johansson, G.; and Pettersson, G. 1991. A new model for enzymatic hydrolysis of cellulose based on the twodomain structure of cellobiohydrolase I. Bio/Technology 9, 286–290.CrossRefGoogle Scholar
  117. Sternberg, D.; Vijayakumar, P.; and Reese, E. T. 1977. β-Glucosidase: Microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23, 139–147.Google Scholar
  118. Thoma, J. A. 1968. A possible mechanism for amylase catalysis. J. Theoret. Biol. 19, 297–310.CrossRefGoogle Scholar
  119. Tomme, P., and Claeyssens, M. 1989. Identification of a functionally important carboxyl group in cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 243, 239–243.CrossRefGoogle Scholar
  120. Tomme, P.; Van Beeumen, J.; and Claeyssens, M. 1992. Modification of catalytically important carboxy residues in endoglucanase D from Clostridium thermocellum. Biochem. J. 285, 319–324.Google Scholar
  121. Tomme, P.; Van Tilbeurgh, H.; Pettersson, G.; Van Damme, J.; Vandekerckhove, J.; Knowles, J.; Teeri, T.; and Claeyssens, M. 1988. Studies of the cellulolytic system of Trichoderma reesei: QM9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170, 575–581.CrossRefGoogle Scholar
  122. Trimbur, D. E.; Warren, R. A. J.; and Withers, S. G. 1992. Region-directed mutagenesis of residues surrounding the active site nucleophile in β-glucosidase from Agrobacterium faecalis. J. Biol. Chem. 267, 10248–10251.Google Scholar
  123. Tripp, V. W. 1971. In: Cellulose and Cellulose Derivatives. Part IV, N. M. Bikales, and L. Segal, eds., John Wiley & Sons, New York, Chapter XIII-G, p. 305.Google Scholar
  124. Tull, D., and Withers, S. G. 1994. Mechanisms of cellulases and xylanases: A detailed kinetic study of the exo-β-1,4-glycanase from Cellulomonas fimi. Biochemistry 33, 6363–6370.CrossRefGoogle Scholar
  125. Tull, D.; Withers, S. G.; Gilkes, N. R.; Kilburn, D. G.; Warren, R. A. J.; and Aebersold, R. 1991. Glutamic acid 274 is the nucleophile in the active site of a “retaining” exoglucanase from Cellulomonas fimi. J. Biol. Chem. 266, 156–21Google Scholar
  126. Umile, C., and Kubicek, C. P. 1986. A constitutive plasma-membrane bound β-glu- cosidase in Trichoderma reesei. FEMS Microbiol. Lett. 34, 291–295.Google Scholar
  127. Van Tilbeurgh, H.; Tomme, P.; Claeyssens, M.; Bhikhabhai, R.; and Pettersson, G. 1986. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 204, 223–226.CrossRefGoogle Scholar
  128. Vernon, C. A. 1967. The mechanisms of hydrolysis of glycosides and their relevance to enzyme-catalyzed reactions. Royal Soc. Proc. Ser. B. 167, 389–401.CrossRefGoogle Scholar
  129. Vrsanska, M., and Biely, P. 1992. The cellobiohydrolase I from Trichoderma reesei QM9414: Action on cello-oligosaccharides. Carbohydr. Res. 227, 19–27.CrossRefGoogle Scholar
  130. Wang, Q. P.; Tull, D.; Meinke, A.; Gilkes, N. R.; Warren, R A J; Aebersold, R.; and Withers, S. G. 1993. G1u280 is the nucleophile in the active site of Clostridium thermocellum Ce1C, a family A endo-β-1,4-glucanase. J. Biol. Chem. 268, 14096–14102.Google Scholar
  131. Weber, J. P., and Fink, A. L. 1980. Temperature-dependent change in the rate-limiting step of β-glucosidase catalysis. J. Biol. Chem. 255, 9030–9032.Google Scholar
  132. White, A.; Withers, S. G.; Gilkes, N. R.; and Rose, D. R. 1994. Crystal structure of the catalytic domain of the 3–1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546–12552.CrossRefGoogle Scholar
  133. White, A. R. 1982. Visualization of cellulases and cellulose degradation. In: Cellulose and Other Natural Polymer Systems: Biogenesis, Structure, and Degradation, R. M. Brown, Jr. ed., Plenum Press, New York and London, chapter 23, pp. 489–509.CrossRefGoogle Scholar
  134. White, A. R., and Brown, R. M. 1981. Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc. Natl. Acad. Sci. USA 78, 1047–1051.CrossRefGoogle Scholar
  135. Withers, S. G.; Dombroski, D.; Berven, L. A.; Kilburn, D. G.; Miller, R. C. Jr.; Warren, R. A. J.; and Gilkes, N. R. 1986. Direct H N.M.R. determination of the stereochemical course of hydrolyses catalyzed by glucanase components of the cellulase complex. Biochem. Biophys. Res. Comm. 139, 487–494.CrossRefGoogle Scholar
  136. Withers, S. G., and Street, I. P. 1988. Identification of a covalent a-D-glucopyranosyl enzyme intermediate formed on a β-glucosidase. J. Am. Chem. Soc. 110, 8551–8553.CrossRefGoogle Scholar
  137. Withers, S. G.; Warren, R. A. J.; Street, I. P.; Rupitz, K.; Kempton, J. B.; and Aebersold, R. 1990. Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a “retaining” glycosidase. J. Am. Chem. Soc. 112, 5887–5889.CrossRefGoogle Scholar
  138. Wong, W. K. R.; Gerhard, B.; Guo, Z. M.; Kilburn, D. G.; Warren, R. A. J.; and Miller, R. C., Jr. 1986. Characterization and structure of an endoglucanase gene cenA of Cellulomonas fimi. Gene 44, 315–324.CrossRefGoogle Scholar
  139. Wood, T. M., and Mccrae, S. I. 1986. The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilzing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem. J. 234, 93–99.Google Scholar
  140. Wood, T. M.; Mccrae, S. I.; and Bhat, K. M. 1989. The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem. J. 260, 37–43.Google Scholar
  141. Woodward, J.; Affholter, K. A.; Noles, K. K.; Troy, N. T.; and Gaslightwala, S. F. 1992. Does cellobiohydrolase II core protein from Trichoderma reesei disperse cellulose macrofibrils? Enzyme Microb. Technol. 14, 625–630.CrossRefGoogle Scholar
  142. Woodward, J.; Hayes, M. K.; and Lee, N. E. 1988A. Hydrolysis of cellulose by saturating and non-saturating concentration of cellulase: Implications for synergism. Bio/Technology 6, 301–304.Google Scholar
  143. Woodward, J.; Lima, M.; and Lee, N. E. 1988B. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 255, 895–899.Google Scholar
  144. Wu, J. H. D.; Orme-Johnson, W. H.; and Demain, A. L. 1988. Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27, 1703–1709.CrossRefGoogle Scholar
  145. Yaguchi, M.; Roy, C.; Rollin, C. F.; Paice, M. G.; and Jurasek, L. 1983. A fungal cellulase shows sequence homology with the active site of hen egg-white lysozyme. Biochem. Biophys. Res. Comm. 116, 408–411.CrossRefGoogle Scholar
  146. Yague, E.; Beguin, P.; and Aubert, J.-P. 1990. Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene 89, 61–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations