Skip to main content

Horseradish Peroxidase

  • Chapter
Food Enzymes

Abstract

Horseradish peroxidase (donor:hydrogen-peroxide oxidoreductase, EC 1.11.1.7) (HRP) belongs to a family of proteins with ferriprotoporphyrin IX as a prosthetic group. These heme enzymes function to either activate dioxygen for incorporation into the substrate (oxygenase activity) or use peroxides for oxidation of the substrate (peroxidase activity). Peroxidase is found widely distributed in higher plants (horseradish, turnip, fig sap, tobacco, potato) and microorganisms (yeast cytochrome c). The present discussion focuses on the well-studied horseradish peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adediran, S. A., and Dunford, H. B. 1983. Structure of horseradish peroxidase compound I. Kinetic evidence for the incorporation of one oxygen atom from the oxidizing substrate into the enzyme. Eur. J. Biochem. 132, 147–150.

    Article  CAS  Google Scholar 

  • Adediran, S. A., and Lambeir, A.-M. 1989. Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxide to form compound III. Eur. J. Biochem. 186,571–576.

    Article  CAS  Google Scholar 

  • Aeschbach, R.; Amado, R.; and Neukom, H. 1976. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim. Biophys. Acta. 439, 292–301.

    Article  CAS  Google Scholar 

  • Aibara, S.; Kobaryashi, T.; and Morita, Y. 1981. Isolation and properties of basic isoenzymes of horseradish peroxidase. J. Biochem. 90, 489–496.

    CAS  Google Scholar 

  • Amado, R.; Aeschbach, R.; and Neukom, H. 1984. Dityrosine: In vitro production and characterization. Methods in Enzymology 107,377–388.

    Article  CAS  Google Scholar 

  • Arnao, M. B.; Acosta, M.; del Rio, J. A.; and Garcia-Canovas, F. 1990A. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim. Biophys. Acta 1038, 85–89.

    Article  CAS  Google Scholar 

  • Arnao, M. B.; Acosta, M.; Delrio, J. A.; Varon, R.; and Garcia-Canovas, F. 1990B. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim. Biophys. Acta. 1041, 43–47.

    Article  CAS  Google Scholar 

  • Ator, M. A., and De Montellano, P. R. O. 1987. Protein control of prosthetic heure activity. Reaction of substrates with the heure edge of horseradish peroxidase. J. Biol. Chem. 262,1542–1551.

    CAS  Google Scholar 

  • Ator, M. A.; David, S. K.; and De Montellano, P. R. O. 1987. Structure and catalytic mechanism of horseradish peroxidase. J. Biol. Chem. 262,14954–14960.

    CAS  Google Scholar 

  • Behere, D. V.; Gonzalez-Vergara, E.; and Goff, H. M. 1985. Unique cyanide nitrogen-15 nuclear magnetic resonance chemical shift values for cyano-peroxidase complexes. Relevance to the heure active-site structure and mechanism of peroxide activation. Biochim. Biophys. Acta 832, 319–325.

    Article  CAS  Google Scholar 

  • Bhattachyaryya, D. K.; Bandyopadhyay, U.; and Banerjee, R. K. 1992. Chemical and kinetic evidence for an essential histidine in horseradish peroxidase for iodide oxidation. J. Biol. Chem. 267, 9800–9804.

    Google Scholar 

  • Bohne, C.; Macdonald, D. I.; and Dunford, H. B. 1987. Transient state kinetics of the reactions of isobutyraldehyde with compounds I and II of horseradish peroxidase. J. Biol. Chem. 262, 3572–3578.

    CAS  Google Scholar 

  • Chance, B.; Powers, L.; Ching, Y.; Poulos, T.; Schonbaum, G. R.; Ÿamazaki, I.; and PAUL, K. G. 1984. X-Ray absorption studies of intermediates in peroxidase activity. Arch. Biochem. Biophys. 235, 596–611.

    Article  CAS  Google Scholar 

  • Chance, M.; Powers, L.; Kumar, C.; and Chance, B. 1986A. X-Ray absorption studies of myoglobin peroxide reveal functional differences between globins and heme enzymes. Biochemistry 25, 1259–1265.

    Article  CAS  Google Scholar 

  • Chance, M.; Powers, L.; Poulos, T.; and Chance, B. 1986B. Cytochrome c peroxidase compound ES is identical with horseradish peroxidase compound I in iron-ligand distances. Biochemistry 25, 1266–1270.

    Article  CAS  Google Scholar 

  • Chang, C. S.; Ÿamazaki, I.; Sinclair, R.; Khalid, S.; and Powers, L. 1993. Ph dependence of the active site of horseradish peroxidase compound II. Biochemistry 32, 923–928.

    Article  CAS  Google Scholar 

  • Cotton, M. L., and Dunford, H. B. 1973. Studies on horseradish peroxidase. XI. On the nature of compounds I and II as determined from the kinetics of the oxidation of ferrocyanide. Can. J. Chem. 51, 582–587.

    Article  CAS  Google Scholar 

  • De Montellano, P. R. O.; Choe, Y. S.; Depillis, G.; and Catalano, C. E. 1987. Structure-mechanism relationships in hemoproteins. J. Biol. Chem. 262,11641–11646.

    Google Scholar 

  • De Ropy, J. S.; Thanabal, V.; La Mar, G. N. 1985. NMR evidence for a horseradish peroxidase state with a deprotonated proximal histidine. J. Am. Chem. Soc. 107,8268–8270.

    Article  Google Scholar 

  • Dolphin, D.; Forman, A.; Borg, F. D. C.; Fajer, B. J.; and Felton, R. H. 1971. Compounds I of catalase and horse radish peroxidase: 7r-cation radicals. Proc. Natl. Acad. Sci. USA 68,614–618.

    Article  CAS  Google Scholar 

  • Dordick, J.; Klibanov, A. M.; and Marletta, M. A. 1986. Horseradish peroxidase catalyzed hydroxylations: Mechanistic studies. Biochemistry 25,2946–2951.

    Article  CAS  Google Scholar 

  • Dunford, H. B., and Adeniran, A. J. 1986. Hammett p6 correction for reactions of horseradish peroxidase compound II with phenols. Arch. Biochem. Biophys. 251, 536–542.

    Article  CAS  Google Scholar 

  • Dunford, H. B., and Araiso, T. 1979. Horseradish peroxide. XXXVI. On the difference between peroxidase and metmyoglobin. Biochem. Biophys. Res. Comm. 89, 764–768.

    Article  CAS  Google Scholar 

  • Dunford, H. B.; Hewson, W. D.; and Steiner, H. 1978. Horseradish peroxidase. XXIX. Reactions in water and deuterium oxide: Cyanide binding, compound I formation, and reactions of compounds I and II with ferrocyanide. Can. J. Chem. 56, 2844–2852.

    Article  CAS  Google Scholar 

  • Evangelista-Kirkup, R.; Smulevich, G.; and Spiro, T. G. 1986. Alternative carbon monoxide binding modes for horseradish peroxidase studied by resonance raman spectroscopy. Biochemistry 25, 4420–4425.

    Article  CAS  Google Scholar 

  • Fidy, J.; Paul, K.-G.; and Vanderkooi, J. M. 1989. Differences in the binding of aromatic substrates to horseradish peroxidase revealed by fluorescence line narrowing. Biochemistry 28,7531–7541.

    Article  CAS  Google Scholar 

  • Finzel, B. C.; Pouibs, T. L.; and Kraut, J. 1984. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J. Biol. Chem. 259,13027–13036.

    CAS  Google Scholar 

  • Fry, S. C. 1984. Isodityrosine, a diphenyl ether cross-link in plant cell wall glycoprotein: Identification, assay, and chemical synthesis. Methods in Enzymology 107,388–397.

    Article  CAS  Google Scholar 

  • Fujita, I.; Hanson, L. K.; Walkar, F. A.; and Fader, J. 1983. Models for compounds I of peroxidases: Axial ligand effects. J. Am. Chem. Soc. 105,3296–3300.

    Article  CAS  Google Scholar 

  • Fuiiyama, K.; Takemura, H.; Shibayama, S.; Kobayashi, K.; Choi, J.-K.; Shinmyo, A.; Takano, M.; Yamada, Y.; and Okada, H. 1988. Structure of the horseradish peroxidase isozyme C genes. Eur. J. Biochem. 173,681–687.

    Article  Google Scholar 

  • Fujiyama, K.; Takemura, H.; Shinmyo, A.; Okada, H.; and Takano, M. 1990. Genomic DNA structure of two new horseradish-peroxidase-encoding genes. Gene 89,163–169.

    Article  CAS  Google Scholar 

  • Griffin, B. W., and Ting, P. L. 1978. Mechanism of N-demethylation of aminopyrine by hydrogen peroxide catalyzed by horseradish peroxidase, metmyoglobin, and protohemin. Biochemistry 17,2206–2211.

    Article  CAS  Google Scholar 

  • Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; and Evans, B. J. 1981. High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. J. Am. Chem. Soc. 103, 2884–2886.

    Article  CAS  Google Scholar 

  • Halliwell, B. 1977. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase. Biochem. J. 163,441–448.

    CAS  Google Scholar 

  • Haschke, R. H., and Friedhoff, J. M. 1978. Calcium-related properties of horseradish peroxidase. Biochem. Biophys. Res. Comm. 80, 1039–1042.

    Article  CAS  Google Scholar 

  • Hashimoto, S.; Tatsuno, Y.; and Kitagawa, T. 1986. Resonance raman evidence for oxygen exchange between the Fe O heme and bulk water during enzymic catalysis of horseradish peroxidase and its relation with the heme-linked ionization. Proc. Natl. Acad. Sci. USA 83, 2417–2421.

    Article  CAS  Google Scholar 

  • Hoyle, M. C. 1977. High resolution of peroxidase-indoleacetic acid oxidase isoenzymes from horseradish by isoelectric focusing. Plant Physiol. 60, 787–793.

    Article  CAS  Google Scholar 

  • Huang, J., and Dunford, H. B. 1990. Oxidation of substituted anilines by horseradish peroxidase compound II. Can. J. Chem. 68, 2159–2163.

    Article  CAS  Google Scholar 

  • Huang, J., and Dunford, H. B. 1991. One-electron oxidative activation of 2-aminofluorene by horseradish peroxidase compounds I and II: Special and kinetic studies. Arch. Biochem. Biophys. 287, 257–262.

    Article  CAS  Google Scholar 

  • Kaput, J.; Goltz, S.; and Blobel, G. 1982. Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. J. Biol. Chem. 257, 15054–15058.

    CAS  Google Scholar 

  • Kato, M.; Aibara, S.; Morita, Y.; Nakatani, H.; and Hiromi, K. 1984. Comparative studies on kinetic behavior of horseradish peroxidase isoenzymes. J. Biochem. 95, 861–870.

    CAS  Google Scholar 

  • Kedderis, G. L.; Rickert, D. E.; Pandey, R. N.; and Hollenberg, P. F. 1986. Ostudies of the peroxidase-catalyzed oxidation of N-methylcarbazole. J. Biol. Chem. 261, 15910–15914.

    CAS  Google Scholar 

  • Lagrimini, L. M.; Burkhart, W.; Moyer, M.; and Rothstein, S. 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. USA 84, 7542–7546.

    Article  CAS  Google Scholar 

  • Kobayashi, S.; Sugioka, K.; Nakano, H.; Nakano, M.; and Tero-Kubota, S. 1984. Analysis of the stable end products and intermediates of oxidative decarboxylation of indole-3-acetic acid by horseradish peroxidase. Biochemistry 23,4589–4597.

    Article  CAS  Google Scholar 

  • La Mar, G. N., and De Ropp, J. S. 1979. Assignment of exchangeable proximal histidine resonances in high-spin ferric hemoproteins: Substrate binding in horseradish peroxidase. Biochem. Biophys. Res. Comm. 90, 36–41.

    Article  Google Scholar 

  • La Mar, G. N., and De Ropp, J. S. 1982. Proton NMR characterization of the state of protonation of the axial imidazole in reduced horseradish peroxidase. J. Am. Chem. Soc. 104,5203–5206.

    Article  Google Scholar 

  • La MAR, G. N.; De ROPP, J. S.; Chacko, V. P.; Satterlee, J. D.; and Erman, J. E. 1982. Axial histidyl imidazole non-exchangeable proton resonances as indicators of imidazole hydrogen bonding in ferric cyanide complexes of heme peroxidases. Biochim. Biophys. Acta. 708, 317–325.

    Article  Google Scholar 

  • La Mar, G. N.; De Ropp, J. S.; Latos-Grazynski, L.; Balch, A. L.; Johnson, R. B.; Smith, K. M.; Parish, D. W.; and Cheng, R. 1983. Proton NMR characterization of the ferryl group in model heme complexes and hemeproteins: Evidence for the Few-O group in ferryl myoglobin and compound II of horseradish peroxidase. J. Am. Chem. Soc. 105, 782–787.

    Article  Google Scholar 

  • Lanir, A., and Schejter, A. 1975. Nuclear magnetic resonance evidence for the absence of iron coordinated water in horseradish peroxidase. Biochem. Biophys. Res. Comm. 62, 199–203.

    Article  CAS  Google Scholar 

  • Lewis, S. D.; Johnson, F. A.; and Shafer, J. A. 1981. Effect of cysteine-25 on the ionization of histine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a His-159-Cys-25 ion pair and its possible role in catalysis. Biochemistry 20,48–51.

    Article  CAS  Google Scholar 

  • Matheis, G., and Whitaker, J. R. 1984. Peroxidase-catalyzed cross linking of proteins. J. Protein Chem. 3,35–48.

    Article  CAS  Google Scholar 

  • Mazza, G., and Welinder, K. G. 1980. Covalent structure of turnip peroxidase. Eur. J. Biochem. 108,481–489.

    Article  CAS  Google Scholar 

  • Metodiewa, D., and Dunford, H. B. 1989. The reactions of horseradish peroxidase, lactoperoxidase, and myeloperoxidase with enzymatically generated superoxide. Arch. Biochem. Biophys. 272, 245–253.

    Article  CAS  Google Scholar 

  • Miwa, G. T.; Walsh, J. S.; Kedderis, G. L.; and Hollenberg, P. F. 1983. The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidasecatalyzed N-demethylation reactions. J. Biol. Chem. 258, 14445–14449.

    CAS  Google Scholar 

  • Modi, S.; Behere, D. V.; and Mitra, S. 1991. Horseradish peroxidase catalyzed oxidation of thiocyanate by hydrogen peroxide: comparison with lactoperoxidasecatalyzed oxidation and role of distal histidine. Biochim. Biophys. Acta 1080,45–50.

    Article  CAS  Google Scholar 

  • Modi, S.; Behere, D. V.; and Mitra, S. 1989. Interaction of thiocyanate with horseradish peroxidase. J. Biol. Chem. 264, 19677–19684.

    CAS  Google Scholar 

  • Modi, S.; Saxena, A. K.; Behere, D. V.; and Mitra, S. 1990. Binding of thiocyanate and cyanide to manganese (III)-reconstituted horseradish peroxidase: A 15N nuclear magnetic resonance study. Biochim. Biophys. Acta 1038,164–171.

    Article  CAS  Google Scholar 

  • Moore, K. L.; Moronne, M. M.; and Mehlhorn, R. J. 1992. Electron spin resonance study of peroxidase activity and kinetics. Arch. Biochem. Biophys. 299, 47–59.

    Article  CAS  Google Scholar 

  • Morehouse, K. M.; Sipe, H. J.; and Mason, R. P. 1989. The one-electron oxidation of porphyrins to porphyrin pi-cation radicals by peroxidases: An electron spin resonance investigation. Arch. Biochem. Biophys. 273, 158–164.

    Article  CAS  Google Scholar 

  • Morishima, I.; Kurono, M.; and Shiro, Y. 1986. Presence of endogenous calcium ion in horseradish peroxidase. J. Biol. Chem. 261,9391–9399.

    CAS  Google Scholar 

  • Morita, Y.; Funatsu, J.; and Mikami, B. 1993. X-Ray crystallographic analysis of horseradish peroxidase E5. In: Plant Peroxidases: Biochemistry and Physiology,K. G. Welinder, S. K. Rasmussen, C. Penel, H. Greppin, eds., University of Geneva, 1993, pp. 1–4.

    Google Scholar 

  • Morita, Y.; Mikami, B.; Yamashita, H.; Lee, J. Y.; Aibara, S.; Sato, M.; Katsube, Y.; and Tanaka, N. 1991. Primary and crystal structures of horseradish peroxidase isozyme E5. In: Biochemical, Molecular and Physiological Aspects of Plant Peroxidases, J. Lobarzewski, H. Greppin, C. Penel, and Th. Gasper, eds., University of Geneva, 1991, pp. 81–88.

    Google Scholar 

  • Moss, T. H.; Ehrenberg, A.; and Bearden, A. J. 1969. Mössbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxidase derivatives. Biochemistry 8, 4160–4162.

    Article  Google Scholar 

  • Nakajima, R., and Yamazaki, I. 1987. The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide. J. Biol. Chem. 262, 2576–2581.

    CAS  Google Scholar 

  • Ogura, T., and Kitagawa, T. 1987. Device for simultaneous measurements of transient raman and absorption spectra of enzymic reactions: application to compound I of horseradish peroxidase. J. Am. Chem. Soc. 109,2177–2179.

    Article  CAS  Google Scholar 

  • Oertling, W. A., and Babcock, G. T. 1985. Resonance raman scattering from horseradish peroxidase compound I. J. Am. Chem. Soc. 107,6406–6407.

    Article  CAS  Google Scholar 

  • Oertling, W. A., and Babcock, G. T. 1988. Time-resolved and static resonance raman spectroscopy of horseradish peroxidase intermediates. Biochemistry 27, 3331–3338.

    Article  CAS  Google Scholar 

  • Ogawa, S.; Shiro, Y.; and Morishima, I. 1979. Calcium binding by horseradish peroxidase C and the heme environmental structure. Biochem. Biophys. Res. Comm. 90, 674–678.

    Article  CAS  Google Scholar 

  • Paeng, K.-J., and Kincaid, J. R. 1988. The resonance raman spectrum of horseradish peroxidase compound I. J. Am. Chem. Soc. 110,7913–7915.

    Article  CAS  Google Scholar 

  • Palaniappan, V., and Terner, J. 1989. Resonance raman spectroscopy of horseradish peroxidase derivatives and intermediates with excitation in the near ultraviolet. J. Biol. Chem. 264,16046–16053.

    CAS  Google Scholar 

  • Penner-Hahn, J. E.; Eble, K. S.; Mcmurry, T. J.; Renner, M.; Balch, A. L.; Groves, J. T.; Dawson, J. H.; and Hodgson, K. O. 1986. Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe=O ligation in compounds I and II. J. Am. Chem. Soc. 108,7819–7825.

    Article  CAS  Google Scholar 

  • Penner-Hahn, J. E.; Mcmurry, T. J.; Renner, M.; Latos-Grazynsky, L.; Eble, K. S.; Davis, I. M.; Balch, A. L.; Groves, J. T.; Dawson, J. H.; and Hodgson, K. O. 1983. X-Ray absorption spectroscopic studies of high valent iron porphyrins. J. Biol. Chem. 258,12761–12764.

    CAS  Google Scholar 

  • Poulos, T. L., and Kraut, J. 1980. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 255,8199–8205.

    CAS  Google Scholar 

  • Rutter, R.; Valentine, M.; Hendrich, M.; Hager, L.; and Debrunner, P. 1983. Chemical nature of the porphyrin it cation radical in horseradish peroxidase compound I. Biochemistry 22,4769–4774.

    Article  CAS  Google Scholar 

  • Sachs, D. H.; Schechter, A. N.; and Cohen, J. S. 1971. Nuclear magnetic resonance titration curves of histidine ring protons. J. Biol. Chem. 246, 6576–6580.

    CAS  Google Scholar 

  • Sakurada, J.; Sekiguchi, R.; Sato, K.; and Hosoya, T. 1990. Kinetic and molecular orbital studies on the rate of oxidation of monosubstituted phenols and anilines by horseradish peroxidase compound II. Biochemistry 29, 4093–4098.

    Article  CAS  Google Scholar 

  • Sakurada, J.; Takahashi, S.; and Hosoya, T. 1986. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heure iron of horseradish peroxidase. J. Biol. Chem. 261,9657–9662.

    CAS  Google Scholar 

  • Salehi, A.; Oertling, W. A.; Babcock, G. T.; and Chang, C. K. 1986. One-electron oxidation of the porphyrin ring of cobaltous octaethylporphyrin (Co“OEP). Absorption and resonance raman spectral characteristics of the Co”OEP+ C1O0. n-cation radical. J. Am. Chem. Soc. 108, 5630–5631.

    Article  CAS  Google Scholar 

  • Saxena, A.; Modi, S.; Behere, D. V.; and Mitra, S. 1990. Interaction of aromatic donor molecules with manganese (III) reconstituted horseradish peroxidase: Proton nuclear magnetic resonance and optical difference spectroscopic studies. Biochim. Biophys. Acta 1041,83–93.

    Article  CAS  Google Scholar 

  • Schonbaum, G. R., and Chance, B. 1976. Catalase. The Enzymes 13,363–408.

    Google Scholar 

  • Schonbaum, G. R., and Lo, S. 1972. Interaction of peroxidases with aromatic per-acids and alkyl peroxides. J. Biol. Chem. 247,3353–3360.

    CAS  Google Scholar 

  • Schulz, C. E.; Devaney, P. W.; Winkler, H.; Debrunner, P. G.; Doan, N.; Chiang, R.; Rutter, R.; and Hager, L. P. 1979. Horseradish peroxidase compound I: Evidence for spin coupling between the heure iron and a “free” radical. FEBS Lett. 103, 102–105.

    Article  CAS  Google Scholar 

  • Shiro, Y.; Kurono, M.; and Morishima, I. 1986. Presence of endogenous calcium ion and its functional and structural regulation in horseradish peroxidase. J. Biol. Chem. 261, 9382–9390.

    CAS  Google Scholar 

  • Sitter, A. J.; Reczek, C. M.; and Terner, J. 1985. Heme-linked ionization of horseradish peroxidase compound II monitored by the resonance raman Fe(IV)=O stretching vibration. J. Biol. Chem. 260, 7515–7522.

    CAS  Google Scholar 

  • Smith, A. T.; Sanders, S. A.; Greschik, H.; Thorneley, R. N. F.; Burke, J. F.; and Bray, R. C. 1992. Probing the mechanism of horseradish peroxidase by site-directed mutagenesis. Biochem. Soc. Trans. 20, 340–345.

    CAS  Google Scholar 

  • Smith, A. T.; Santama, N.; Dacey, S.; Edwards, M.; Bray, R. C.; Thorneley, R. N. F.; and Burke, J. F. 1990. Expression of synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca++ and heure. J. Biol. Chem. 265, 13335–13343.

    CAS  Google Scholar 

  • Spiro, T. G.; Strong, J. D.; and Stein, P. 1979. Porphyrin core expansion and doming in heme proteins. New evidence from resonance raman spectra of six-coordinate high-spin iron (III) heure. J. Am. Chem. Soc. 101,2648–2655.

    Article  CAS  Google Scholar 

  • Tamura, M., and Yamazaki, I. 1972. Reactions of the oxyform of horseradish peroxidase. J. Biochem. 71,311–319.

    CAS  Google Scholar 

  • Tanokura, M.; Tasumi, M.; and Miyazawa, T. 1976. H Nuclear magnetic resonance studies of histidine-containing di-and tripeptides. Estimation of the effects of charged groups on the pKa value of the imidizole ring. Biopolymers 15, 393–401.

    Google Scholar 

  • Teraoka, J.; Job, D.; Morita, Y.; and Kitagawa, T. 1983. Resonance raman study of plant tissue peroxidase. Common characteristics in iron coordination environments. Biochim. Biophys. Acta 747, 10–15.

    Article  CAS  Google Scholar 

  • Teraoka, J., and Kitagawa, T. 1980. Resonance raman study of the heme-linked ionization in reduced horseradish peroxidase. Biochem. Biophys. Res. Comm. 93, 694–700.

    Article  CAS  Google Scholar 

  • Teraoka, J., and Kitagawa, T. 1981. Structural implication of the heme-linked ionization of horseradish peroxidase probed by the Fe-histidine stretching raman line. J. Biol. Chem. 256, 3969–3977.

    CAS  Google Scholar 

  • Terner, J., Sitter, A. J.; and Reczek, C M. 1985. Resonance raman spectroscopic characterizations of horseradish peroxidase. Observation of theFew=O stretching vibration of compound II. Biochim. Biophys. Acta 828,73–80.

    Article  CAS  Google Scholar 

  • Thanabal, V.; De Ropp, J. S.; and La Mar, G. N. 1987. Identification of the catalytically important amino acid residue resonances in ferric low-spin horseradish peroxidase with nuclear overhauser effect measurements. J. Am. Chem. Soc. 109, 7516–7525.

    Article  CAS  Google Scholar 

  • Thanabal, V.; La Mar, G. N.; and De Ropp, J. S. 1988. Nuclear overhauser effect study of the heure crevice in the resting state and compound I of horseradish peroxidase: Evidence for cation radical delocalization to the proximal histidine. Biochemistry 27, 5400–5407.

    Article  CAS  Google Scholar 

  • Valentine, J. S.; Sheridan, R. P.; Allen, L. C.; and Kahn, P. C. 1979. Coupling between oxidation state and hydrogen bond conformation in heme proteins. Proc. Natl. Acad. Sci. USA 76, 1009–1013.

    Article  CAS  Google Scholar 

  • van der Zee, J.; Duling, D. R.; Mason, R. P.; and Eling, T. E. 1989. The oxidation of N-substituted aromatic amines by horseradish peroxidase. J. Biol. Chem. 264, 19–828.

    Google Scholar 

  • Welinder, K. G. 1976. Covalent structure of the glycoprotein horseradish peroxidase (EC1.11.1.7). FEBS Lett. 72,19–23.

    Article  CAS  Google Scholar 

  • Welinder, K. G. 1979. Amino acid sequence studies of horseradish peroxidase Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur. J Biochem. 96, 483–502.

    Article  CAS  Google Scholar 

  • Welinder, K. G. 1985. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur. J. Biochem. 151, 497–504.

    Article  CAS  Google Scholar 

  • Wiseman, J. S.; Nichols, J. S.; and Kolpak, M. X. 1982. Mechanism of inhibition of horseradish peroxidase by cyclopropanone hydrate. J. Biol. Chem. 257,6328–6332.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wong, D.W.S. (1995). Horseradish Peroxidase. In: Food Enzymes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2349-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2349-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4722-2

  • Online ISBN: 978-1-4757-2349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics