Skip to main content
Book cover

Food Enzymes pp 308–320Cite as

Glucose Oxidase

  • Chapter
  • 574 Accesses

Abstract

Glucose oxidase (β-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) catalyzes the oxidation of β-D-glucose to δ-D-glucono-1,5-lactone coupled with the reduction of O2 to H2O, (Fig. 10.1). The enzyme is found in a number of fungal sources, including Aspergillus oryzae, enicillium notatum, enicillium glaucum, hanerochaete chrysosporium, and Talaromyces flavins,but most studies have been done on the enzyme purified from Aspergillus niger and Penicillium amagasakiense.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley, R. 1963. Glucose oxidase. The Enzymes, 2d ed., 7, 575–586.

    Google Scholar 

  • Bright, H. J., and Appleby, M. 1969. The pH dependence of the individual steps in the glucose oxidase reaction. J. Biol. Chem. 244, 3625–3634.

    CAS  Google Scholar 

  • Bright, H. J., and Gibson, Q. H. 1967. The oxidation of 1-deuterated glucose by glucose oxidase. J. Biol. Chem. 242, 994–1003.

    CAS  Google Scholar 

  • Chan, T. W., and Bruice, T. C. 1977. One and two electron transfer reactions of glucose oxidase. J. Am. Chem. Soc. 99, 2387–2389.

    Article  CAS  Google Scholar 

  • Feather, M. S. 1970. A nuclear magnetic resonance study of the glucose oxidase reaction. Biochim. Biophys. Acta 220, 127–128.

    Article  CAS  Google Scholar 

  • Frederick, K. R.; Tung, J.; Emerick, R. S.; Masiarz, F. R.; Chamberlain, S. H.; Vasavada, A.; Rosenberg, S.; Chakraborty, S.; Schopter, L. M.; and Massey, V. 1990. Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J. Biol. Chem. 265, 3793–3802.

    CAS  Google Scholar 

  • Gibson, Q. H.; Swoboda, B. E. P.; and Massey, V. 1964. Kinetics and mechanism of action of glucose oxidase. J. Biol. Chem. 239, 3927–3934.

    CAS  Google Scholar 

  • Hayashi, S., and Nakamura, S. 1976. Comparison of fungal glucose oxidase. Biochim. Biophys. Acta 438, 37–48.

    Article  CAS  Google Scholar 

  • Hayashi, S., and Nakamura, S. 1981. Multiple forms of glucose oxidase with different carbohydrate compositions. Biochim. Biophys. Acta 657, 40–51.

    Article  CAS  Google Scholar 

  • Hecht, H. J.; Kalisz, H. M.; Hendle, J.; Schmid, R. D.; and Schomburg, D. 1993. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J. Mol. Biol. 229, 153–172.

    Article  CAS  Google Scholar 

  • Hendle, J.; Hecht, J.-J.; Kalisz, H. M.; Schmid, R. D.; and Schomburg, D. 1992. Crystallization and preliminary x-ray diffraction studies of a deglycosylated glucose oxidase from Penicillium amagasakiense. J. Mol. Biol. 223, 1167–1169.

    Article  CAS  Google Scholar 

  • James, T. L.; Edmondson, D. E.; and Husain, M. 1981. Glucose oxidase contains a disubstituted phosphorus residue. Phosphorus-31 nuclear magnetic resonance studies of the flavin and nonflavin phosphate residues. Biochemistry 20, 617–621.

    Article  CAS  Google Scholar 

  • Jones, M. N.; Manley, P.; and Wilkinson, A. 1982. The dissociation of glucose oxidase by sodium n-dodecyl sulphate. Biochem. J. 203, 285–291.

    CAS  Google Scholar 

  • Kalisz, H. M.; Hecht, H.-J.; Schomburg, D.; and Schmid, R. D. 1990. Crystallization and preliminary x-ray diffraction studies of a deglycosylated glucose oxidase from Aspergillus niger. J. Mol. Biol. 213, 207–209.

    Article  CAS  Google Scholar 

  • Kalisz, H. M.; Hecht, H.-J.; Schomburg, D.; and Schmid, R. D. 1991. Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger. Biochim. Biophys. Acta 1080, 138–142.

    Article  CAS  Google Scholar 

  • Kim, J. M., and Schmid, R. D. 1991. Comparison of Penicillium amagasakiense glucose oxidase purified as glyco-and aglyuco-proteins. FEBS Microbiol. Lett. 78, 221–226.

    CAS  Google Scholar 

  • Kriechbaum, M.; Heilmann, H. J.; Wientjes, F. J.; Hahn, M.; Jany, K.-D.; Gassen, H. G.; Sharif, F.; and Alaeddinoglu, G. 1989. Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3. FEBS Lett. 255, 63–66.

    Article  CAS  Google Scholar 

  • Massey, V., and Hemmerich, P. 1980. Active-site probes of flavoproteins. Biochem. Soc. Trans. 8, 246–257.

    CAS  Google Scholar 

  • Massey, V.; Muller, F.; Feldberg, R.; Schuman, M.; Sullivan, P. A.; Howell, L. G.; Mayhew, S. G.; Matthews, R. G.; and Foust, G. P. 1969. The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J. Biol. Chem. 244, 3999–4006.

    CAS  Google Scholar 

  • Massey, V.; Strickland, S.; Mayhew, S. G.; Howell, L. G.; Engel, P. C.; Mat-Thews, R. G.; Shuman, M.; and Sullivan, P. A. 1969. Biochem. Biophys. Res. Comm. 36, 891.

    Article  CAS  Google Scholar 

  • Muller, F., and Massey, V. 1969. Flavin-sulfite complexes and their structures. J. Biol. Chem. 244, 4007–4016.

    CAS  Google Scholar 

  • Nakamura, S., and Fujiki, S. 1968. Comparative studies on the glucose oxidases of Aspergillus niger and Penicillium amagasakiense. J. Biochem. 63, 51–58.

    CAS  Google Scholar 

  • Nakamura, S.; Hayashi, S.; and Koga, K. 1976. Effect of periodate oxidation on the structure and properties of glucose oxidase. Biochim. Biophys. Acta 445, 294–308.

    Article  CAS  Google Scholar 

  • Nakamura, S., and Ogura, Y. 1962. Kinetic studies on the action of glucose oxidase. J. Biochem. 52, 214–220.

    CAS  Google Scholar 

  • Nakamura, S., and Ogura, Y. 1968. Action mechanism of glucose oxidase of Aspergillus niger. J. Biochem. 63, 308–316.

    CAS  Google Scholar 

  • Pazur, J. H., and Kleppe, K. 1964. The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger. Biochemistry 3, 578–583.

    Article  CAS  Google Scholar 

  • Sanner, C.; Macheroux, P.; Ruterjans, H.; Muller, F.; and Bacher, A. 1991. 15N-and 13C-NMR investigations of glucose oxidase from Aspergillus niger. Eur. J. Biochem. 196, 663–672.

    Google Scholar 

  • Sierks, M. R.; Bock, K.; Refn, S.; and Svensson, B. 1992. Active site similarities of glucose dehydrogenase, glucose oxidase, and glucoamylase probed by deoxygenated substrates. Biochemistry 31, 8972–8977.

    Article  CAS  Google Scholar 

  • Stankovich, M. T.; Schopfer, L. M.; and Massey, V. 1978. Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms. J. Biol. Chem. 253, 4971–4979.

    CAS  Google Scholar 

  • Swoboda, B. E. P., and Massey, V. 1965. Purification and properties of the glucose oxidase from Aspergillus niger. J. Biol. Chem. 240, 2209–2215.

    CAS  Google Scholar 

  • Swoboda, B. E. P., and Massey, V. 1966. On the reaction of the glucose oxidase from Aspergillus niger with bisulfite. J. Biol. Chem. 241, 3409–3416.

    CAS  Google Scholar 

  • Takegawa, K.; Fujiwara, K.; Iwahara, S.; Yamamoto, K.; and Tochikura, T. 1989. Effect of deglycosylation of N-linked sugar chains on glucose oxidase from Aspergillus niger. Biochem. Cell. Biol. 67, 460–464.

    Article  CAS  Google Scholar 

  • Takegawa, K.; Kondo, A.; Iwamoto, H.; Fujiwara, K.; Hosokawa, Y.; Kato, I.; Hiromi, K.; and Iwahara, S. 1991. Novel oligomannose-type sugar chains derived from glucose oxidase of Aspergillus niger. Biochemistry International 25, 181 - 190.

    CAS  Google Scholar 

  • Tsuge, H.; Natsuaki, O.; and Ohashi, K. 1975. Purification, properties, and molecular features of glucose oxidase from Aspergillus niger. J. Biochem. 78, 835–843.

    CAS  Google Scholar 

  • Voet, J. G.; Coe, J.; Epstein, J.; Matossian, V.; and Shipley, T. 1981. Electrostatic control of enzyme reactions: Effect of ionic strength on the pK of an essential acidic group on glucose oxidase. Biochemistry 20,7182–7185.

    Google Scholar 

  • Weibel, M. K., and Bright, H. J. 1971. The glucose oxidase mechanism. Interpretation of the pH dependence. J. Biol. Chem. 246, 2734–2744.

    CAS  Google Scholar 

  • Ye, W.-N., and Combes, D. 1989. The relationship between the glucose oxidase sub- unit structure and its thermostability. Biochim. Biophys. Acta 999, 86–93.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wong, D.W.S. (1995). Glucose Oxidase. In: Food Enzymes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2349-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2349-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4722-2

  • Online ISBN: 978-1-4757-2349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics