Advertisement

Structural Considerations of the Sclera

  • C. Stephen Foster
  • Maite Sainz de la Maza

Abstract

The sclera, the dense connective tissue that encloses about five-sixths of the eye, is remarkable for its strength and for the firmness with which it maintains the shape of the globe. It aids in the maintenance of intraocular pressure, provides attachment sites for the extraocular muscles, and protects the intraocular structures from trauma and mechanical displacement.

Keywords

Collagen Fibril Trabecular Meshwork Lamina Cribrosa Structural Consideration Posterior Ciliary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noden DM: Periocular mesenchyme: neural crest and mesodermal interactions. In Tasman W, Jaeger EA (Eds): Duanes Foundations of Clinical Opthamology, Lippincott, Philadelphia, 1991, pp 1–23.Google Scholar
  2. 2.
    Snell RS, Lemp MA: Clinical Anatomy of the Eye, 1st ed. Blackwell Scientific Publications, Boston, 1989.Google Scholar
  3. 3.
    Ozanics V, Jakobiec FA: Prenatal development of the eye and its anexa. In Tasman W, Jaeger EA (Eds): Duane’s Foundations of Clinical Opthamology, Lippincott, Philadelphia, 1982, pp 1–93.Google Scholar
  4. 4.
    Johnston MC, Noden DM, Hazelton RD, Conlombre JL, Conlombre AJ: Origins of avian ocular and periocular tissues. Exp Eye Res 29: 27, 1979.PubMedGoogle Scholar
  5. 5.
    Ozanics F, Rayborn M, Sagun D: Some aspects of corneal and scleral differentiation of the primate. Exp Eye Res 22: 305, 1976.PubMedGoogle Scholar
  6. 6.
    Newsome. DA: Cartilage induction by retinal pigmented epithelium of the chick embryo. Dev Biol 27: 575, 1972.PubMedGoogle Scholar
  7. 7.
    Stewart PA, McCallion DJ: Establishment of the scleral cartilage in the chick. Dev Biol 46: 383, 1975.PubMedGoogle Scholar
  8. 8.
    Duke-Elder S, Cook CH: Normal and abnormal development. In Duke-Elder S (Ed): System of Ophthalmology, Vol 3, Part 1. C.V. Mosby, St. Louis, 1963, pp 1–77.Google Scholar
  9. 9.
    Weale RA: A Biography of the Eye. Lewis, London, 1982.Google Scholar
  10. 10.
    Sellheyer K, Spitznas M: Development of the human sclera. A morphological study. Graefe’s Arch Clin Exp Ophthalmol 226: 89, 1988.PubMedGoogle Scholar
  11. Tamura Y, Konomi H, Sawada H, et al.: Tissue distribution of type VIII collagen in human adult and fetal eyes. Invest Ophthalmol Vis Sci 32:2636, 1991.Google Scholar
  12. 12.
    Sugrue SP: Immunolocalization of type XII collagen at the corneoscleral angle of the embryonic avian eye. Invest Ophthalmol Vis Sci 32: 1876, 1991.PubMedGoogle Scholar
  13. 13.
    Spencer WH: Sclera. In Spencer WH (Ed): Ophthalmic Pathology, 3rd ed. W.B. Saunders, Philadelphia, 1985, pp 389–422.Google Scholar
  14. 14.
    Broekhuyse RM, Kuhlmann ED: Lipids in tissues of the eye. VI. Sphingomyelins and cholesterol esters in human sclera. Exp Eye Res 14: 111, 1972.PubMedGoogle Scholar
  15. 15.
    Broekhyse RM: The lipid composition of aging sclera and cornea. Ophthalmologica 171: 82, 1975.Google Scholar
  16. 16.
    Cogan DG, Kuwabara T: Focal senile translucency of the sclera. Arch Ophthalmol 62: 604, 1959.PubMedGoogle Scholar
  17. 17.
    Vannas S, Teir H: Observations on structure and age changes in the human sclera. Acta Ophthalmol 38: 268, 1960.Google Scholar
  18. 18.
    Moses RA, Grodzki WJ Jr: The scleral spur and scleral roll. Invest Ophthalmol Vis Sci 16: 925, 1977.PubMedGoogle Scholar
  19. 19.
    Anderson DR: Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol 82: 800, 1969.PubMedGoogle Scholar
  20. 20.
    Leber T: Die cirkulations-und Ernährungsverhältnisse des Auges. In Saemisch T (Ed): Graefe-Saemisch Handbuch der Gesamten Augenheilkunde, 2nd ed. Wilhelm Engelmann, Leipzig, 1903, pp 1–101.Google Scholar
  21. 21.
    Kiss F: Der Blutkreislauf der Auges. Ophthalmologica 106: 225, 1943.Google Scholar
  22. 22.
    Ashton N: Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Br J Ophthalmol 35: 291, 1951.PubMedGoogle Scholar
  23. 23.
    Ashton N: Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. II. Aqueous veins. Br J Ophthalmol 36: 265, 1952.PubMedGoogle Scholar
  24. 24.
    Ashton N, Smith R: Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. III. Arterial relations of Schlemm’s canal. Br J Ophthalmol 37: 577, 1953.PubMedGoogle Scholar
  25. 25.
    Van Buskirk EM: The canine eye: the vessels of aqueous drainage. Invest Ophthalmol Vis Sci 18: 223, 1979.PubMedGoogle Scholar
  26. 26.
    Morrison JC, Van Buskirk EM: Anterior collateral circulation in the primate eye. Ophthalmology 90: 707, 1983.PubMedGoogle Scholar
  27. 27.
    Fryczkowski AW, Sherman MD, Walker J: Observations on the lobular organization of the human choriocapillaris. Intern Ophthalmol 15: 109, 1991.Google Scholar
  28. 28.
    Hayreh SS, Scott WE: Fluorescein iris angiography. II. Disturbances in iris circulation following strabismus operation on the various recti. Arch Ophthalmol 96: 1390, 1978.PubMedGoogle Scholar
  29. 29.
    Virdi PS, Hayreh SS: Anterior segment ischemia after recession of various recti: an experimental study. Ophthalmology 94: 1258, 1987.PubMedGoogle Scholar
  30. 30.
    Bron AJ, Easty DL: Fluorescein angiography of the globe and anterior segment. Trans Ophthalmol Soc UK 90: 339, 1970.PubMedGoogle Scholar
  31. 31.
    Ikegami M: Fluorescein angiography of the anterior ocular segment. I. Hemodynamics in the anterior ciliary arteries. Acta Soc Ophthalmol Jpn 78: 39, 1974.Google Scholar
  32. 32.
    Talusan ED, Swartz B: Fluorescein angiography: demonstration of flow pattern of anterior ciliary arteries. Arch Ophthalmol 99: 1074, 1981.PubMedGoogle Scholar
  33. 33.
    Meyer PA, Watson PG: Low dose fluorescein angiography of the conjunctiva and episclera. Br J Ophthalmol 71: 2, 1987.PubMedGoogle Scholar
  34. 34.
    Meyer PA: Patterns of blood flow in episcleral vessels studied by low-dose fluorescein videoangiography. Eye 2: 533, 1988.PubMedGoogle Scholar
  35. 35.
    Ormerod LD, Fariza E, Hughes GW, Doane MG, Webb RH: Anterior segment fluorein videoangiography with a scanning angiographic microscope. Ophthalmology 97: 745, 1990.PubMedGoogle Scholar
  36. 36.
    Norn MS: Topography of scleral emissaries and sclera-perforating blood vessels. Acta Ophthalmol (Copenhagen) 63: 320, 1985.Google Scholar
  37. 37.
    Torczynski E: Sclera. In Jakobiec FA (Ed): Ocular Anatomy, Embryology, and Teratology. Harper & Row, Philadelphia, 1982, pp 587–599.Google Scholar
  38. 38.
    Brancato R, Frosini R, Boshi M: L’Angiografia superficiale a fluorescein del bulbo oculare. Ann Ottal Clin Ocul 95: 433, 1969.Google Scholar
  39. 39.
    Laatikainen L: Perilimbal vasculature in glaucomatous eyes. Acta Ophthalmol 111 (suppl 54), 1971.Google Scholar
  40. 40.
    Raitta C, Vannas S: Fluorescein angiographic features of the limbus and perilimbal vessels. Ear Nose Throat J 50: 58, 1971.Google Scholar
  41. 41.
    Shimizu K, Ujie K: [Structure of Ocular Vessels.] Igaku-Shoin, Tokyo, 1978.Google Scholar
  42. 42.
    Watson PG, Bovey E: Anterior segment fluorescein angiography in the diagnosis of scleral inflammation. Ophthalmology 92: 1, 1985.PubMedGoogle Scholar
  43. 43.
    Meyer PA: The circulation of the human limbus. Eye 3: 121, 1989.PubMedGoogle Scholar
  44. 44.
    Amalric P, Rebière P, Jourdes JC: Nouvelles indications de l’angiographie fluoresceinique du segment anterieur de l’oeil. Ann Ocul 204: 455, 1971.Google Scholar
  45. 45.
    Crandall AS, Yanoff M, Schaffer DB: Intrascleral nerve loop mistakenly identified as a foreign body. Arch Ophthalmol 95: 497, 1977.PubMedGoogle Scholar
  46. 46.
    Fine BS, Yanoff M: 76 cornea and sclera. In Hagerstown MD (Ed): Ocular Histology, 2nd ed. Harper & Row, Philadelphia, 1979, pp 161–193.Google Scholar
  47. 47.
    Hogan MJ, Alvarado JA, Weddell JE: Histology of the Human Eye. W.B. Saunders, Philadelphia, 1971.Google Scholar
  48. 48.
    Jakus MA: Ocular Fine Structure: Selected Electron Micrographs. Little, Brown, Boston, 1964.Google Scholar
  49. 49.
    Komai Y, Ushiki T: The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32: 2244, 1991.PubMedGoogle Scholar
  50. 50.
    Curtin BJ, Iwamoto T, Renaldo DP: Normal and staphylomatous sclera of high myopia. Arch Ophthalmol 97: 912, 1979.PubMedGoogle Scholar
  51. 51.
    Kanai A, Kaufman HE: Electron microscopic studies of the elastic fiber in human sclera. Invest Ophthalmol Vis Sci 11: 816, 1972.Google Scholar
  52. 52.
    Young RD: The ultrastructural organization of proteoglycans and collagen in human and rabbit scleral matrix. J Cell Sci 74: 95, 1985.PubMedGoogle Scholar
  53. 53.
    Raviola G: Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthalmol Vis Sci 24: 725, 1983.PubMedGoogle Scholar
  54. 54.
    Cole DF, Monro PAG: The use of fluorescein-labelled dextrans in investigation of aqueous humor outflow in the rabbit. Exp Eye Res 23: 571, 1976.PubMedGoogle Scholar
  55. 55.
    Dische J: Biochemistry of connective tissues of the vertebrate eye. Int Rev Connect Tissue Res 5: 209, 1970.PubMedGoogle Scholar
  56. 56.
    Keeley FW, Morin JD, Vesely S: Characterization of collagen from normal human sclera. Exp Eye Res 39: 533, 1984.PubMedGoogle Scholar
  57. 57.
    Lee RE, Davidson PF: Collagen composition and turnover in ocular tissues of the rabbit: Exp Eye Res 32: 737, 1981.PubMedGoogle Scholar
  58. 58.
    Tengroth B, Rehnberg M, Amitzboll T: A comparative analysis of the collagen type and distribution in the trabecular meshwork, sclera, lamina cribrosa and the optic nerve in the human eye. Acta Ophthalmol (Copenhagen) 63 (suppl 173): 91, 1985.Google Scholar
  59. 59.
    Moses RA, Grodzki WJ, Starcherd BC, Galione MJ: Elastic content of the scleral spur, trabecular meshwork, and sclera. Invest Ophthalmol Vis Sci 17: 817, 1978.PubMedGoogle Scholar
  60. 60.
    Borcherding MS, Blacik LJ, Sittig RA, Bizzell JW, Breen M, Weinstein HG: Proteoglycans and collagen fiber organization in human cornescleral tissue. Exp Eye Res 21: 59, 1975.PubMedGoogle Scholar
  61. 61.
    Trier K, Olsen EB, Ammitzboll T: Regional glycosaminoglycan composition of the human sclera. Acta Ophthalmol (Copenhagen) 68: 304, 1990.Google Scholar
  62. 62.
    St Helen R, McEwen WK: Rheology of the human sclera. I. Anelastic behavior. Am J Ophthalmol 52: 539, 1961.Google Scholar
  63. 63.
    Richards RD, Tittel PG: Corneal and scleral distensibility ratio on enucleated human eyes. Invest Ophthalmol Vis Sci 12: 145, 1973.Google Scholar
  64. 64.
    Curtin BJ: Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc 67: 417, 1969.PubMedGoogle Scholar
  65. 65.
    Friberg TR, Lace JW: A comparison of the elastic properties of human choroid and sclera. Exp Eye Res 47: 429, 1988.PubMedGoogle Scholar
  66. 66.
    Bettelhein FA, Ehrlich SH: Water vapor sorption of mucopolysaccharides. J Physiol Chem 67: 1948, 1963.Google Scholar
  67. 67.
    Loewi G, Meyer K: The acid mucopolysaccharides of embryonic skin. Biochim Biophys Acta 27: 456, 1958.Google Scholar
  68. 68.
    Gregory JD, Damle SP, Covington HI, Citron C: Developmental changes in proteoglycans of rabbit corneal stroma. Invest Ophthalmol Vis Sci 29: 1413, 1988.PubMedGoogle Scholar
  69. 69.
    Caparas VL, Cintrom C, Hernandez-Neufeld MR: Immunohistochemistry of proteoglycans in human lamina cribrosa. Am J Ophthalmol 112: 489, 1991.PubMedGoogle Scholar
  70. 70.
    Watson PG, Hazelman BL: The Sclera and Systemic Disorders. W.B. Saunders, London, 1976.Google Scholar
  71. 71.
    Edelhauser HF, Van Horn DL, Records RE: Cornea and sclera. In Duane TD, Jaeger EA (Eds): Biomedical Foundations of Ophthalmology,Vol 2. Harper & Row, Philadelphia, 1982, Ch 4, pp 1–26.Google Scholar
  72. 72.
    Kivirikko KI, Myllyla R: Biosynthesis of collagens. In Piez KA, Reddi AH (Eds): Extra-cellular Matrix Biochemistry. Elsevier, New York, 1984, Ch 3, pp 83–112.Google Scholar
  73. 73.
    Postlethwaite AE, Kang AH: Fibroblasts. In Gallin JI, Goldstein IM, Snyderman R (Eds): Inflammation: Basic Principles and Clinical Correlates. Raven, New York, 1988, pp 747774.Google Scholar
  74. 74.
    Chu ML, De Wet W, Bernard M, Ding JF, Morabito M, Myers J, Williams C, Ramirez F: Human pro-al(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature (London) 310: 337, 1984.Google Scholar
  75. 75.
    Chu ML, De Wet W, Bernard M, Ramirez F: Isolation of cDNA and genomic clones encoding human pro-al(III) collagen. J Biol Chem 260: 2315, 1985.PubMedGoogle Scholar
  76. 76.
    Chu ML, Weil D, De Wet W, Bernard M, Sippola M, Ramirez F: Isolation of cDNA and genomic clones encoding human pro-ai(III) collagen. Partial characterization of the 3’ end region of the gene. J Biol Chem 260: 4357, 1985.PubMedGoogle Scholar
  77. 77.
    Seyer JM, Kang AH: Structural proteins: collagen, elastin and fibronectin. In Kelley WN, Harris E Jr, Ruddy S, Sledge CB (Eds): Textbook of Rheumatology. W.B. Saunders, Philadelphia, 1985, pp 211–230.Google Scholar
  78. 78.
    Tresltad RL, Birk DE, Silver FH: Collagen fibrillogenesis in tissues, in solution, and from modeling: a synthesis. J Invest Dermatol 79: 109, 1982.Google Scholar
  79. 79.
    Brandt KD: Glycosaminoglycans. In Kelley WN, Harris E Jr, Ruddy S, Sledge CB (Eds): Textbook of Rheumatology. W.B. Saunders, Philadelphia, 1985, pp 237–250.Google Scholar
  80. 80.
    Heinegard D, Paulson M: Structure and metabolism of proteoglycans. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984, pp 277–322.Google Scholar
  81. 81.
    Mathews MB, Deckers L: The effect of acid mucopolysaccharide proteins on fibril formation from collagen solutions. Biochem J 109: 517, 1969.Google Scholar
  82. 82.
    Toole BP, Lowther D: Dermatan sulphate protein: isolation from and interaction with collagen. Arch Biochem 128: 567, 1968.PubMedGoogle Scholar
  83. 83.
    Trelstad RL, Hayashi K, Toole BP: Epithelial collagens and glycosaminoglycans in the embryonic cornea: macromolecular order and morphogenesis in the basement membrane. J Cell Biol 62: 815, 1974.PubMedGoogle Scholar
  84. 84.
    Gelman RA, Blackwell J: Collagen—mucopolysaccharide interactions at acid pH. Biochim Biophys Acta 342: 254, 1974.PubMedGoogle Scholar
  85. 85.
    Ruoslahti E, Yamaguchi Y: Proteoglycans as modulators of growth factor activities. Cell 64: 867, 1991.PubMedGoogle Scholar
  86. 86.
    Ruoslahti E: Proteoglycans in cell regulation. J Biol Chem 264: 13369, 1989.PubMedGoogle Scholar
  87. 87.
    Hynes R: Molecular biology of fibronectin. Annu Rev Cell Biol 1: 67, 1985.PubMedGoogle Scholar
  88. 88.
    Kleinman HK, Klebe RJ, Martin GR: Role of collagenous matrices in adhesion and growth of cells. J Cell Biol 88: 473, 1981.PubMedGoogle Scholar
  89. 89.
    Yamada KM, Kennedy DW, Kimata K, Pratt PM: Characteristics of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem 255: 6055, 1980.PubMedGoogle Scholar
  90. 90.
    McDonald JA, Kelley DG, Broekelmann TJ: Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol 92: 485, 1982.PubMedGoogle Scholar
  91. 91.
    Kuusela P: Fibronectin binds to Staphylococcus aureus. Nature (London) 276: 719, 1978.Google Scholar
  92. 92.
    Menzel EJ, Smolen JS, Liotta L, Reid KBM: Interaction of fibronectin with Clq and its collagen-like fragment. FEBS Lett 129: 188, 1981.PubMedGoogle Scholar
  93. 93.
    Zardi L, Siri A, Carnemolla B, Santi L, Bardner WD, Hoch SO: Fibronectin: a chromatin-associated protein? Cell 18: 649, 1979.PubMedGoogle Scholar
  94. 94.
    Kornblihtt AR, Vibe-Pedersen K, Baralle FE: Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc Natl Acad Sci USA 80: 3218, 1983.PubMedGoogle Scholar
  95. 95.
    Tamkun JW, Schwarzbauer JE, Hynes RO: A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc Natl Acad Sci USA 81: 5140, 1984.Google Scholar
  96. 96.
    Vibe-Pedersen K, Kornblihtt AR, Petersen TE: Expression of a human a-globulin/fibronectin gene hybrid generates two mRNA by alternative splicing. EMBO J 3: 2511, 1984.Google Scholar
  97. 97.
    Mecham RP: Receptor for laminin on mammalian cells. FASEB J 5: 2538, 1991.Google Scholar
  98. 98.
    Albelda SM, Buck CA: Integrins and other cell adhesion molecules. FASEB J 4: 2868, 1990.Google Scholar
  99. 99.
    Kleinman HK, Cannon FB, Laurie GW: Biological activities of laminin. J Cell Biochem 27: 317, 1987.Google Scholar
  100. 100.
    Wooley DE: Mammalian collagenases. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984, pp 119–151.Google Scholar
  101. 101.
    Gosline JM, Rosenbloom J: Elastin. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984, pp 191–226.Google Scholar
  102. 102.
    Sandy JD, Brown HLG, Lowther DA: Degradation of proteoglycan in articular cartilage. Biochim Biophys Acta 543: 536, 1978.PubMedGoogle Scholar
  103. 103.
    Hakomori S, Fukuda M, Sekiguchi K, Carter WB: Fibronectin, laminin, and other extra-cellular glycoproteins. In Piez KA, Reddi AH (Eds): Extracellular Matrix Biochemistry. Elsevier, New York, 1984, pp 229–264.Google Scholar
  104. 104.
    Scher CD, Shepard RC, Antoniades HN, Stiles CD: Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle. Biochim Biophys Acta 560: 212, 1979.Google Scholar
  105. 105.
    Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ: Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci USA 76: L279, 1979.Google Scholar
  106. 106.
    Moses AC, Nissley SP, Rechler MM, Short A, Podskalny JM: The purification and characterization of multiplication stimulating activity (MSA) from media conditioned by a rat liver cell line. In Geordano G, Van Wyk JJ, Minuto F (Eds): Somatomedins and Growth. Academic Press, New York, 1979, pp 45–59.Google Scholar
  107. 107.
    Postlethwaite AE, Lachman LB, Kang AH: Induction of fibroblast proliferation by interleukin-1 derived from human monocytic leukemia cells. Arthritis Rheum 27: 995, 1984.PubMedGoogle Scholar
  108. 108.
    Schmidt JA, Mizel SB, Cohen D, Green I: Interleukin 1, a potential regulator of fibroblast proliferation. J Immunol 128: 2177, 1982.PubMedGoogle Scholar
  109. 109.
    Postlethwaite AE, Kang AH: Induction of fibroblast proliferation by human mononuclear derived proteins. Arthritis Rheum 26: 22, 1983.PubMedGoogle Scholar
  110. 110.
    Wahl SM, Wahl LM, McCarthy JB: Lymphocyte-mediated activation of fibroblast proliferation and collagen production. J Immunol 121: 942, 1978.PubMedGoogle Scholar
  111. 111.
    Brinkerhoff CE, Guyre PM: Increased proliferation of human synovial fibroblasts treated with recombinant immune interferon. J Immunol 134: 3142, 1985.Google Scholar
  112. 112.
    Duncan MR, Berman D: Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med 162: 516, 1985.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Stephen Foster
    • 1
  • Maite Sainz de la Maza
    • 2
  1. 1.Harvard Medical School, Immunology and Uveitis ServiceMassachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.Central University of BarcelonaBarcelonaSpain

Personalised recommendations