Arithmetic of Quadratic Maps

  • Takashi Ono
Part of the The University Series in Mathematics book series (USMA)


Let f: R nR m be a quadratic map. By definition there exist m quadratic forms f,... ,f m on R n such that
$$f(x) = ({f_1}(x),...,{f_m}(x)),x \in {R^n}$$


Left Ideal Maximal Order Quaternion Algebra Quadratic Field Quadratic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin, Abh. Math. Sem., 5, 261 (1928).CrossRefGoogle Scholar
  2. M. Deuring, Algebren, Ergeb. d. Math., 41, Springer, New York-Heidelberg-Berlin (1968).Google Scholar
  3. 3.
    L. E. Dickson, J. Math. Pures Appl, 2, 281 (1923).Google Scholar
  4. 4.
    M. Eichler, Quadratische Formen und orthogonale Gruppen, Die Grund, d. Math. Wiss., 63, Springer, New York-Berlin (1974).zbMATHCrossRefGoogle Scholar
  5. 5.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer, New York-Heidelberg-Berlin (1990).zbMATHGoogle Scholar
  6. 6.
    L. J. Mordell, J. Math. Pures Appl, 17, 41 (1938).zbMATHGoogle Scholar
  7. 7.
    T. Ono, Sûgaku Exp., Amer. Math. Soc, 1, 95 (1988).zbMATHGoogle Scholar
  8. 8.
    I. Reiner, Maximal Orders, Academic Press, New York (1975).zbMATHGoogle Scholar
  9. 9.
    J.-P. Serre, Cours d’Arithmétique, Press. Univ. France (1970).zbMATHGoogle Scholar

Copyright information

© Takashi Ono 1994

Authors and Affiliations

  • Takashi Ono
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations