Practical Aspects of Coding

  • Solomon W. Golomb
  • Robert E. Peile
  • Robert A. Scholtz
Chapter
Part of the Applications of Communications Theory book series (ACTH)

Abstract

Feeling at an ebb after so much theory, Agent 00111 glanced at the pile of academic books and theoretical papers on coding that his scientists tried to persuade him were essential reading. They were not. He had long ago come to the conclusion that the number of practical error correction codes he needed to use on his missions were limited to a few techniques. It had taken him a long time, innumerable briefings and any number of overly long meetings before most of the scientists had conceded the point. There were still practical problems that he wanted solved; however, many problems had been solved since he had first felt the need for error correction, and it had been many years since he was hampered by the lack of coding technology.

Keywords

Block Code Forward Error Correction Code Word Convolutional Code Sphere Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Coding for Communication Systems

  1. G. C. Clark and J. B. Cain. 1981. Error Correcting Codes for Digital Communications. New York: Plenum Press.Google Scholar
  2. S. Lin and D. J. Costello, Jr. 1983. Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  3. W. W. Wu, D. Haccoun, R. E. Peile, and Y. Hirata. 1987. “Coding for Satellite Communication.” IEEE J. Sel. Areas Commun. SAC-5, No. 4, pp. 724–748.CrossRefGoogle Scholar

Convolutional Codes and the Viterbi Algorithm

  1. H. Bustamante, I. Kang, C. Nguyen, and R. E. Peile. 1989. “STEL Design of a VLSI Convolutional Decoder.” MILCOM ’89, Boston: Coherence Proceedings.Google Scholar
  2. S. Lin and D. J. Costello, Jr. 1983. Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  3. G. D. Forney, Jr. 1973. “The Viterbi Algorithm.” Proc. IEEE 61: 268–78.MathSciNetCrossRefGoogle Scholar
  4. I. M. Jacobs and E. R. Berlekamp. 1967. “A Lower Bound to the Distribution of Computation for Sequential Decoding.” IEEE Trans. Inform. Theory IT-13: 167–74.CrossRefGoogle Scholar
  5. J. P. Odenwalder. Error Control Handbook. San Diego, CA: Linkabit, Inc.Google Scholar
  6. A. J. Viterbi. 1971. “Convolutional Codes and Their Performance in Communication Systems.” IEEE Trans. Commun. Technol. COM-19: 751–72.MathSciNetCrossRefGoogle Scholar
  7. W. W. Wu, D. Haccoun, R. E. Peile, and Y. Hirata. 1987. “Coding for Satellite Communication.” IEEE J. Sel. Areas Commun. SAC-5.Google Scholar

Algebraic Coding

  1. E. R. Berlekamp. 1984. Algebraic Coding Theory. Revised. Laguna Hills, CA: Aegean Park Press Books.Google Scholar
  2. R. Blahut. 1983. Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley.MATHGoogle Scholar

Practical Aspects of Coding

  1. D. Chase. 1972. “A Class of Algorithms for Decoding Block Codes with Channel Measurement Information.” IEEE Trans. Inform. Theory IT-18: 170–82.MathSciNetMATHCrossRefGoogle Scholar
  2. G. C. Clark and J. B. Cain. 1981. Error Correcting Codes for Digital Communications. New York: Plenum Press.Google Scholar
  3. G. D. Forney, Jr. 1966. “Generalized Minimum-Distance Decoding.” IEEE Trans. Inform. Theory IT-12: 125–31;.MathSciNetMATHCrossRefGoogle Scholar
  4. V. D. Goppa. 1988. Geometry and Codes. Dortrecht, the Netherlands: Kluwer Academic Publishers.MATHGoogle Scholar
  5. R. Lidl and H. Niederreiter. 1983. Finite Fields. Reading, MA: Addison-Wesley.MATHGoogle Scholar
  6. J. H. van Lint. 1982. Introduction to Coding Theory. New York: Springer-Verlag.MATHGoogle Scholar
  7. J. H. van Lint and G. van der Geer. 1988. Introduction to Coding Theory and Algebraic Geometry. Berlin: Birkhauser.MATHCrossRefGoogle Scholar
  8. J. H. van Lint and T. A. Springer. 1987. “Generalized Reed-Solomon Codes from Algebraic Geometry.” IEEE Trans. Inform. Theory IT-33: 305–9.MathSciNetMATHCrossRefGoogle Scholar
  9. F. J. MacWilliams and N. J. A. Sloane. 1978. The Theory of Error-Correcting Codes. Amsterdam: North-Holland.Google Scholar
  10. T. R. N. Rao and E. Fujiwara, 1989. Error-Control Coding for Computer Systems, Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  11. W. W. Peterson and E. J. Weldon, Jr., 1972. Error-Correcting Codes, 2nd ed., Cambridge, MA: MIT Press.MATHGoogle Scholar
  12. I. S. Reed and G. Solomon. 1960. “Polynomial Codes over Certain Finite Fields.” J. Soc. Ind., Appl. Math. 8: 300–4.MathSciNetMATHCrossRefGoogle Scholar

Concatenation

  1. S. Dolinar. 1988. “A New Code for Galileo.” TDA Progress Report 42–93. Pasadena, CA: Jet Propulsion Laboratory. 83–96.Google Scholar
  2. G. D. Forney, Jr. 1966. Concatenated Codes. Cambridge, MA: MIT Press.Google Scholar
  3. J. P. Odenwalder. Error Control Handbook. San Diego, CA: Linkabit, Inc.Google Scholar
  4. J. Justesen. 1972. “A Class of Constructive Asymptotically Good Algebraic Codes.” IEEE Trans. Inform. Theory IT-18: 652–56.MathSciNetMATHCrossRefGoogle Scholar
  5. K. Y. Liu and J. J. Lee. 1984. “Recent Results on the Use of Concatenated Reed-Solomon / Viterbi Channel Coding and Data Compression for Space Communications.” IEEE Trans. Commun. Technol. COM-32: 518–523.CrossRefGoogle Scholar
  6. R. A. Scholtz. 1982. “The Origins of Spread-Spectrum Communications.” IEEE Trans. Commun. Technol. Com-30: pp 822–854.CrossRefGoogle Scholar
  7. M. K. Simon, J. K. Omura, R. A. Scholtz, B. K. Levitt. 1985. Spread-Spectrum Communications. Vols 1–3, Rockville, MD: Computer Science Press.Google Scholar
  8. J. H. Yuen and Q. D. Vo. 1985. “In Search of a 2-dB Coding Gain.” TDA Progress Report 42–83. Pasadena, CA: Jet Propulsion Laboratory. 26–33.Google Scholar

Interleaving

  1. W. W. Wu, D. Haccoun, R. E. Peile, and Y. Hirata. 1987. “Coding for Satellite Communication.” IEEE J. Sel. Areas Commun. SAC-5, vol. 4, pp. 724–748.CrossRefGoogle Scholar

Ring Theory

  1. A. A. Albert, ed. 1963. Studies in Modern Algebra. The Mathematical Association of America. Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  2. B. Hartley and T. O. Hawkes. 1970. Rings, Modules, and Linear Algebra. London: Chapman and Hall.MATHGoogle Scholar
  3. K. Ireland and M. Rosen. 1982. A Classical Introduction to Modern Number Theory. New York: Springer-Verlag.MATHCrossRefGoogle Scholar
  4. I. N. Stewart and D. O. Tall. 1987. Algebraic Number Theory. 2d ed. London: Chapman and Hall.MATHGoogle Scholar

Lattices

  1. A. R. Calderbank and N. J. A. Sloane. 1987. “New Trellis Codes Based upon Lattices and Cosets.” IEEE Trans. Inform. Theory IT-33: 177–195.MathSciNetMATHCrossRefGoogle Scholar
  2. J. H. Conway and N. J. A. Sloane. 1988. Sphere Packings, Lattices, and Groups. New York: Springer-Verlag.MATHGoogle Scholar
  3. N. D. Elkies, A. M. Odlyzko, J. A. Rush. 1991. “On the Packing Densities of Superballs and Other Bodies.” Invent. Math. 105: 613–639.MathSciNetMATHCrossRefGoogle Scholar
  4. G. D. Forney, Jr. 1988. “Coset Codes—Part I: Introduction and Geometrical Classification.” IEEE Trans. Inform. Theory 34: 1123–1151.MathSciNetCrossRefGoogle Scholar
  5. G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi. 1984. “Efficient Modulation for Band-Limited Channels.” IEEE J. Sel. Areas Commun. SAC-2: 632–647.CrossRefGoogle Scholar
  6. I. Peterson. 1990. “Curves for a Tighter Fit.” Science News 137: 316–317.CrossRefGoogle Scholar
  7. C. E. Shannon. 1948. “A Mathematical Theory of Communication.” Bell Syst. Tech. J. 27: 379–423; 623–656.MathSciNetMATHGoogle Scholar
  8. N. J. A. Sloane. 1977. “Binary Codes, Lattices, and Sphere Packings.” In Combinatorial Surveys: Proceedings of the Sixth British Combinatorial Conference, edited by P. J. Cameron. London: Academic Press.Google Scholar
  9. T. M. Thompson. 1983. From Error-Correcting Codes through Sphere Packings to Simple Groups. Washington, D.C.: Carus Mathematical Monographs, Mathematical Association of America.MATHGoogle Scholar
  10. G. Ungerboeck. 1982. “Channel Coding with Multilevel / Phase Signals.” IEEE Trans. Inform. Theory IT-28: 55–67.MATHCrossRefGoogle Scholar

FEC, ARQ, and Networks

  1. D. Bertekas and R. Gallagher. 1987. Data Networks. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  2. D. Chase. 1985. “Code Combining—A Maximum-Likelihood Decoding Approach for Combining an Arbitrary Number of Noisy Packets.” IEEE Trans. Commun. Technol. COM-33: 385–393.CrossRefGoogle Scholar
  3. S. Lin and D. J. Costello, Jr. 1983. Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  4. R. E. Peile and R. A. Scholtz. 1990. “Adaptive Channel / Code Matching Using Hidden Markov Chains.” Twenty-Fourth Asilomar Conference on Signals, Systems, and Computers. Conference Proceedings.Google Scholar
  5. A. S. Tanenbaum. 1988. Computer Networks. 2d ed. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Solomon W. Golomb
    • 1
  • Robert E. Peile
    • 2
  • Robert A. Scholtz
    • 3
  1. 1.Departments of Electrical Engineering and MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Racal Research, LimitedReading, BerkshireUK
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations