Advertisement

Coding for Discrete Noiseless Channels

  • Solomon W. Golomb
  • Robert E. Peile
  • Robert A. Scholtz
Chapter
Part of the Applications of Communications Theory book series (ACTH)

Abstract

Agent 00111 was a legendary master of espionage because he had found answers ( sometimes only partial answers ) to several espionage dilemmas. One answer, discussed in Chapter 1, was an accounting and budgeting system for the amount of delivered information. However, the same principles could also be applied to other problem areas, such as communicating the information he received.

Keywords

Word Length Terminal Node Code Word Interior Node Tree Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. M. Apostol. 1976. Introduction to Analytic Number Theory. Springer-Verlag, UTM.zbMATHGoogle Scholar
  2. S. Even. 1963. “Test for Unique Decipherability.” IEEE Trans. Inform. Theory IT-9:109–12.zbMATHCrossRefGoogle Scholar
  3. R. M. Fano. 1961. Transmission of Information. MIT Press and Wiley, New York.Google Scholar
  4. E. Gilbert. 1971. “Codes Based on Inaccurate Source Probabilities.” IEEE Trans. Inform. Theory. Vol 15–17:304–14.CrossRefGoogle Scholar
  5. S. W. Golomb. 1980. “Sources Which Maximize the Choice of a Huffman Coding Tree.” Inf . Contr. 45:263–72.MathSciNetzbMATHCrossRefGoogle Scholar
  6. G. H. Hardy and M. Riesz. 1952. The General Theory of Dirichlet’s Series. Cambridge, UK: Cambridge University Press.Google Scholar
  7. D. A. Huffman. 1952. “A Method for the Construction of Minimum-Redundancy Codes.” Proc. IRE 40:1098–1101.CrossRefGoogle Scholar
  8. E. T. Jaynes. 1959. “Note on Unique Decipherability.” IRE Transactions on Information Theory IT-5:98–102.MathSciNetCrossRefGoogle Scholar
  9. F. Jelinek. 1968. “Buffer Overflow in Variable-Length Coding of Fixed-Rate Sources.” IEEE Trans. Inform. Theory IT-4:490–501.CrossRefGoogle Scholar
  10. F. Jelinek and K. S. Schneider. 1974. “Variable-Length Encoding of Fixed-Rate Markov Sources for Fixed-Rate Channels.” IEEE Trans. Inform. Theory IT-20:750–55.MathSciNetzbMATHCrossRefGoogle Scholar
  11. M. Kac. 1947. “On the Notion of Recurrence in Discrete Stochastic Processes.” Bull. Amer. Math. Soc. 53:1002–10, 1947.MathSciNetzbMATHCrossRefGoogle Scholar
  12. R. M. Karp. 1961. “Minimum-Redundancy Coding for the Discrete Noiseless Channel.” IRE Trans. Inform. Theory IT-7:27–38.MathSciNetzbMATHCrossRefGoogle Scholar
  13. A. N. Kolmogorov. 1965. “Three Approaches to the Quantitative Definition of Information.” Probl. Inf. Transm. 1:1–7.Google Scholar
  14. L. G. Kraft. 1949. “A Device for Quantizing, Grouping, and Coding Amplitude Modulated Pulses.” M.S. thesis, MITl.Google Scholar
  15. A. Lempel and J. Ziv. 1976. “On the Complexity of Finite Sequences.” IEEE Trans. Inform. Theory IT-22:75–81.MathSciNetzbMATHCrossRefGoogle Scholar
  16. A. Lempel and J. Ziv. 1978. “Compression of Individual Sequences via Variable-Rate Coding.” IEEE Trans. Inform. Theory IT-24:530–36.MathSciNetzbMATHCrossRefGoogle Scholar
  17. A. Lempel and J. Ziv. 1986. “Compression of Two-Dimensional Data.” IEEE Trans. Inform. Theory IT-32: pp. 2–8.CrossRefGoogle Scholar
  18. B. McMillan. 1956. “Two Inequalities Implied by Unique Decipherability.” IRE Trans. Inform. Theory 2:115–16.CrossRefGoogle Scholar
  19. P. Martin-Löf. 1966. “The Definition of Random Sequences.” Inf . Contr. 9:602–19.CrossRefGoogle Scholar
  20. E. Norwood. 1967. “The Number of Different Possible Compact Codes.” IEEE Trans. Inform. Theory IT-3:613–16.CrossRefGoogle Scholar
  21. M. Rodeh, V. R. Pratt, and S. Even. 1981. “Linear Algorithm for Data Compression via String Matching.” J. Ass. Comput. Mach. 28:16–24.MathSciNetzbMATHCrossRefGoogle Scholar
  22. A. A. Sardinas and G. W. Patterson. 1953. “A Necessary and Sufficient Condition for the Unique Decomposition of Coded Messages.” 1953 IRE Convention Record, Part 8, 106–08.Google Scholar
  23. M. P. Schützenberger and R. S. Marcus. 1959. “Full Decodable Code-Word Sets.” IRE Transactions on Information Theory, vol 5, 12–5.CrossRefGoogle Scholar
  24. C. E. Shannon. 1948. “A Mathematical Theory of Communication.” Bell Sys. Tech. J. 27:379–423, 623–56.MathSciNetzbMATHGoogle Scholar
  25. T. A. Welch. 1984. “A Technique for High-Performance Data Compression.” IEEE Comput. C17:8–19.CrossRefGoogle Scholar
  26. A. D. Wyner and J. Ziv. 1989. “Some Asymptotic Properties of the Entropy of a Stationary Ergodic Data Source with Applications to Data Compression.” IEEE Trans. Inform. Theory IT-35:1250–58.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Solomon W. Golomb
    • 1
  • Robert E. Peile
    • 2
  • Robert A. Scholtz
    • 3
  1. 1.Departments of Electrical Engineering and MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Racal Research, LimitedReading, BerkshireUK
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations