Regulation of Neuronal Circuits and Animal Behavior by Metabotropic Glutamate Receptors

  • P. Jeffrey Conn
  • Danny G. Winder
  • Robert W. GereauIV
Part of the The Receptors book series (REC)


Within the nervous system, neurons are organized into circuits or networks of interconnected cells that mediate specific functional tasks. Traditionally, most of the major connections that make up a neural network have been viewed as synaptic connections in which activation of ligand-gated ion channels results in either excitation or inhibition of a receptive neuron (i.e., fast synaptic transmission). However, in recent years, the increase in our understanding of second messengers and their roles in modulating neuronal excitability and synaptic transmission has led to an enlargement of this concept. It is now clear that fast synaptic transmission through networks of neurons can be modulated by activation of receptors coupled to second-messenger systems through GTP-binding proteins. For instance, in a network of neurons connected by glutamatergic synapses, it was generally held that glutamate would elicit fast synaptic responses by activating members of the ionotropic glutamate receptor family. Neuromodulators from extrinsic afferents (i.e., acetylcholine, serotonin, norepinephrine, and so forth) could then modulate transmission through the network of glutamatergic neurons by activating GTP-binding protein-linked receptors and second-messenger systems. Although there are a number of neurotransmitters that activate both ligand-gated ion channels and receptors coupled to second-messenger systems, until recently, it was thought that all of the actions of glutamate, the major excitatory neurotransmitter in the brain, were mediated by activation of ionotropic glutamate receptors and generation of fast synaptic responses.


Purkinje Cell Glutamate Receptor Mossy Fiber Metabotropic Glutamate Receptor Neuronal Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13,361–13, 368.Google Scholar
  2. Albus, J. S. (1971) A theory of cerebellar function. Math. Biosci. 10, 25–61.CrossRefGoogle Scholar
  3. Aniksztejn, L., Otani, S., and Ben-Ari, Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500–505.PubMedCrossRefGoogle Scholar
  4. Bashir, Z. I., Bortolotto, Z. A., Davies, C. H., Berretta, N., Irving, A. J., Seal, A. J., Henley, J. M., Jane, D. E., Watkins, J. C., and Collingridge, G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.PubMedCrossRefGoogle Scholar
  5. Baskys, A. and Malenka, R. C. (1991a) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neuronal rat hippocampus. J. Physiol. 444, 687–701.PubMedGoogle Scholar
  6. Baskys, A. and Malenka, R. C. (1991b) Trans-ACPD depresses synaptic transmission in the hippocampus. Eur. J. Pharmacol. 193, 131, 132.Google Scholar
  7. Baskys, A., Wang, S., and Wojtowicz, J. M. (1993) Metabotropic agonist-induced changes in elementary synaptic events in the dentate gyrus neurons of the hippocampus. Functional Neurol. 8, 9.Google Scholar
  8. Batchelor, A. M. and Garthwaite, J. (1993) Novel synaptic potentials in cerebellar purkinje cells: probable mediation by metabotropic glutamate receptors. Neuropharmacol. 32, 11–20.CrossRefGoogle Scholar
  9. Blackstone, C. D., Supattapone, S., and Snyder, S. H. (1989) Inositol phospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. USA 86, 4316–4320.PubMedCrossRefGoogle Scholar
  10. Bleakman, D., Rusin, K. I., Chard, P. S., Glaum, S. R., and Miller, R. J. (1992) Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol. Pharmacol. 42, 192–196.PubMedGoogle Scholar
  11. Bloomfield S. A. and Dowling J. E. (1985) Roles of aspartate and glutamate in synaptic transmission in rabbit retina. I. Outer plexiform layer. J. Neurophysiol. 53, 699–713.PubMedGoogle Scholar
  12. Boss, V. and Conn, P. J. (1992) Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J. Neurochem. 59, 2340–2343.PubMedCrossRefGoogle Scholar
  13. Boss, V., Nutt, K. M., and Conn, P. J. (1994) L-Cysteine sulfinic acid as an endogenous agonist of a novel metabotropic receptor coupled to stimulation of phospholipase D activity. Mol. Pharmacol. (in press).Google Scholar
  14. Brown, T. H. and Zador, A. M. (1990) Hippocampus, in The Synaptic Organization of the Brain, ( Shepherd, G. M., eds.) Oxford University Press, New York, pp. 346–388.Google Scholar
  15. Calabresi, P., Mercuri, N. B., and Bernardi, G. (1992) Activation of quisqualate metabotropic receptors glutamate and GABA-mediated synaptic potentials in the rat striatum. Neurosci. Lett. 139, 41–44.PubMedCrossRefGoogle Scholar
  16. Cerne, R. and Randic, M. (1992) Modulation of AMPA and NMDA responses in rat spinal dorsal horn neurons by trans-1-aminocyclopentane-1,3-dicarboxylic acid. Neurosci. Lett. 144, 180–184.PubMedCrossRefGoogle Scholar
  17. Charpak, S. and Gahwiler, B. (1991) Glutamate mediates a slow synaptic response in hippocampal slice cultures. Proc. R. Soc. Lond. 243, 221–226.CrossRefGoogle Scholar
  18. Charpak, S., Gahwiler, B. H., Do, K. Q., and Knopfel, T. (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347, 765–767.PubMedCrossRefGoogle Scholar
  19. Collins, G. G. S. (1993) Actions of agonists of metabotropic glutamate receptors on synaptic transmission and transmitter release in the olfactory cortex. Br. J. Pharmacol. 108, 422–430.PubMedCrossRefGoogle Scholar
  20. Constanti, A. and Libri, V. (1992) Trans-ACPD induces a slow post-stimulus inward tail current (IADP) in guinea-pig olfactory cortex neurones in vitro. Eur. J. Pharmacol. 214, 105, 106.Google Scholar
  21. Crepel, F., Daniel, H., Hemart, N., and Jaillard, D. (1991) Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of purkinje cells in cerebellar slices in vitro. Exp. Brain Res. 86, 402–406.PubMedCrossRefGoogle Scholar
  22. Daniel, H., Hemart, N., Jaillard, D., and Crepel, F. (1992) Coactivation of metabotropic glutamate receptors and of voltage-gated calcium channels induces long-term depression in cerebellar purkinje cells in vitro. Exp. Brain Res. 90, 327–331.PubMedCrossRefGoogle Scholar
  23. Desai, M. A. and Conn, P. J. (1990) Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Lett. 109, 157–162.PubMedCrossRefGoogle Scholar
  24. Desai, M. A. and Conn, P. J. (1991) Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. J. Neurophysiol. 66, 40–52.PubMedGoogle Scholar
  25. Desai, M. A. and Conn, P. J. (1992) Activation of metabotropic glutamate receptors decreases synaptic inhibition in hippocampus by reducing excitation of inhibitory interneurons. Soc. Neurosci. Abs. 18, 804.Google Scholar
  26. Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse 12, 206–213.PubMedCrossRefGoogle Scholar
  27. Doze, V. A., Cohen, G. A., and Madison, D. V. (1991) Synaptic localization of adrenergic disinhibition in the rat hippocampus. Neuron 6, 889–900.PubMedCrossRefGoogle Scholar
  28. Dumuis, A., Pin, J. P., Oomagari, K., Sebben, M., and Bockaert, J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347, 181–183.CrossRefGoogle Scholar
  29. Dumuis, A., Sebben, M., Fagni, L., Prezeau, L., Manzoni, O., Cragoe, E. J., Jr., and Bockaert, J. (1993) Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca2+ exchanger in neuronal cells. Mol. Pharmacol. 43, 976–981.PubMedGoogle Scholar
  30. East, S. J. and Garthwaite, J. (1992) Actions of a metabotropic glutamate receptor agonist in immature and adult rat cerebellum. Eur. J. Pharmacol. 219, 395–400.PubMedCrossRefGoogle Scholar
  31. Fagni, L., Bossu, J. L., and Bockaert, J. (1991) Activation of a large-conductance Ca2+-dependent K+ channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells. Eur. J. Neurosci. 3, 778–789.PubMedCrossRefGoogle Scholar
  32. Fotuhi, M., Sharp, A. H., Glatt, C. E., Hwang, P. M., Krosigk, M. V., Snyder, S. H., and Dawson, T. M. (1993) Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5,-trisphosphate receptor in rat brain. J. Neurosci. 13 (5), 2001–2012.PubMedGoogle Scholar
  33. Genazzani, A. A., Casabona, G., L’Episcopo, M. R., Condorelli, D. F., Dell’Albani, P., Shinozaki, H., and Nicoletti, F. (1993) Characterization of metabotropic glutamate receptors negatively linked to adenylyl cyclase in brain slices. Brain Res. 622, 132–138.PubMedCrossRefGoogle Scholar
  34. Gereau, R. W. and Conn, P. J. (1993) A cyclic AMP-dependent form of associative synaptic plasticity induced by coactivation of 13-adrenergic receptors and metabotropic glutamate receptors in rat hippocampus. J. Neurosci. 14, 3310–3318.Google Scholar
  35. Ghez, C. (1991) The Cerebellum, in Principles of Neuroscience ( Kandel, E. R., Schwartz, J. H., and Jessell, T. M., eds.), Elsevier, New York, pp. 626–646.Google Scholar
  36. Glaum, S. R. and Miller, R. J. (1992) Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J. Neurosci. 12, 2251–2258.PubMedGoogle Scholar
  37. Glaum, S. R. and Miller, R. J. (1993) Activation of metabotropic glutamate receptor produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat. J. Neurosci. 13 (4), 1636–1641.PubMedGoogle Scholar
  38. Glaum, S. R., Slater, N. T., Rossi, D. J., and Miller, R. J. (1992) Role of metabotropic glutamate (ACPD) receptors at the parallel fiber-purkinje cell synapse. Eur. J. Pharmacol. 219, 395–400.CrossRefGoogle Scholar
  39. Gordon, F. J. and Talman, W. T. (1992) Role of excitatory amino acids and their receptors in bulbospinal control of cardiovascular function, in Central Neural Mechanisms in Cardiovascular Regulation, vol. 2 ( Kunos, G. and Ciriello, J., eds.) Birkhauser, Boston, pp. 209–225.CrossRefGoogle Scholar
  40. Greene, C., Schwindt, P., and Crill, W. (1992) Metabotropic receptor mediated after depolarization in neocortical neurons. Eur. J. Pharmacol.—Mol. Pharmacol. 226, 279, 280.Google Scholar
  41. Houamed, K. M., Kuijper, J. L., Gilbert, T. L., Haldeman, B. A., O’Hara, P. J., Mulvihill, E. R., Almers, W., and Hagen, F. S. (1991) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252, 1318–1321.PubMedCrossRefGoogle Scholar
  42. Hu, G. and Storm, J. F. (1991) Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons. Brain Res. 568, 339–344.PubMedCrossRefGoogle Scholar
  43. Hu, G. and Storm, J. F. (1992) 2-Amino-3-phosphonopropionate fails to block postsynaptic effects of metabotropic glutamate receptors in rat hippocampal neurones. Acta Physiol. Scand. 145, 187–191.Google Scholar
  44. Ito, M. (1989) Long-term depression. Annual Rev. Neurosci. 12, 85–102.CrossRefGoogle Scholar
  45. Ito, M. and Karachot, L. (1990) Receptor subtypes involved in, and time course of, the long-term desensitization of glutamate receptors in cerebellar purkinje cells. Neurosci. Res. 8, 303–307.PubMedCrossRefGoogle Scholar
  46. Kato, N. (1993) Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex. Proc. Natl. Acad. Sci. USA 90, 3650–3654.PubMedCrossRefGoogle Scholar
  47. Kikkawa, S., Nakagawa, M., Iwasa, T., Kaneko, A., and Tsuda, M. (1993) GTPbinding protein couples with metabotropic glutamate receptor in bovine retinal on-bipolar cell. Biochem. Biophys. Res. Commun. 195, 374–379.PubMedCrossRefGoogle Scholar
  48. Kristensen, P., Suzdak, P. D., and Thomsen, C. (1993) Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci. Lett. 155, 159–162.PubMedCrossRefGoogle Scholar
  49. Leone, C. and Gordon, F. J. (1989) Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius?. J. Pharmacol. Exp. Ther. 250, 953–962.PubMedGoogle Scholar
  50. Linden, D. J., Dickinson, M. H., Smeyne, M., and Connor, J. A. (1991) A long-term depression of AMPA currents in cultured cerebellar purkinje neurons. Neuron 7, 81–89.PubMedCrossRefGoogle Scholar
  51. Littman, L., Glatt, B. S., and Robinson, M. B. (1993) Multiple subtypes of excitatory amino acid receptors coupled to the hydrolysis of phosphoinositides in rat brain. J. Neurochem. 61, 586–593.PubMedCrossRefGoogle Scholar
  52. Liu, Y., Disterhoft, J. F., and Slater, N. T. (1993) Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. J. Neurophysiol. 69, 1000–1004.PubMedGoogle Scholar
  53. Llinas, R. R. and Walton, K. D. (1990) Cerebellum, in The Synaptic Organization of the Brain, (Anonymous, ed.) Oxford University Press, New York, pp. 214–246.Google Scholar
  54. Lothman, E. W., Bertram, E. H. I., and Stringer, J. L. (1991) Functional anatomy of hippocampal seizures. Prog. Neurobiol. 37, 1–82.PubMedCrossRefGoogle Scholar
  55. Lovinger, D. M. (1991) Trans-1-aminocyclopentante-1, 3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci. Lett. 129, 17–21.Google Scholar
  56. Lovinger, D. M., Tyler, E., Fidler, S., and Merritt, A. (1993) Properties of a presynaptic metabotropic glutamate receptor in rat neostriatal slices. J. Neurophysiol. 69, 1236–1244.PubMedGoogle Scholar
  57. Madison, D. V. and Nicoll, R. A. (1986) Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J. Physiol. 372, 221–224.PubMedGoogle Scholar
  58. Madison, D. V. and Nicoll, R. A. (1988) Enkephalin hyperpolarizes interneurones in the rat hippocampus. J. Physiol. 398, 123–130.PubMedGoogle Scholar
  59. Marr, D. (1969) A theory of cerebellar cortex. J. Physiol. 202, 437–470.PubMedGoogle Scholar
  60. Martin, L. J., Blackstone, C. D., Huganir, R. L., and Price, D. L. (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9, 259–270.PubMedCrossRefGoogle Scholar
  61. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.PubMedCrossRefGoogle Scholar
  62. McCormick, D. A. and von Krosigk, M. (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778.PubMedCrossRefGoogle Scholar
  63. McLennan, H. and Liu, J. (1982) The action of six antagonists of the excitatory amino acids on neurons of the rat spinal cord. Exp. Brain Res. 45, 151–156.PubMedCrossRefGoogle Scholar
  64. Miles, R. and Poncer, J. (1993) Metabotropic glutamate receptors mediate a posttetanic excitation of guinea-pig hippocampal inhibitory neurones. J. Physiol. 463, 461–473.PubMedGoogle Scholar
  65. Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4phosphonobutyrate. J. Biol. Chem. 268, 11,868–11, 873.Google Scholar
  66. Nawy, S. and Jahr, C. E. (1990) Suppression by glutamate of cGMP-activated conductances in retinal bipolar cells. Nature 346, 269–271.PubMedCrossRefGoogle Scholar
  67. Nicoletti, F., Iadarola, M. F., Wroblewski, J. T., and Costa, E. (1986) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with al-adrenoreceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  68. Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N. (1993a) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: An in situ hybridization study. J. Comp. Neurol. 335, 252–266.PubMedCrossRefGoogle Scholar
  69. Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N. (1993b) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53, 1009–1018.PubMedCrossRefGoogle Scholar
  70. Okada, D. (1992) Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J. Neurochem. 59, 1203–1210.PubMedCrossRefGoogle Scholar
  71. Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J. Biol. Chem. (in press).Google Scholar
  72. Oleskevich, S. and Lacaille, J. (1992) Reduction of GABAb inhibitory postsynaptic potentials by serotonin via pre-and postsynaptic mechanisms in CA3 pyramidal cells of rat hippocampus in vitro. Synapse 12, 173–188.PubMedCrossRefGoogle Scholar
  73. Pacelli, G. J. and Kelso, S. R. (1991) Trans-ACPD reduces multiple components of synaptic transmission in the rat hippocampus. Neurosci. Lett. 132, 267–269.Google Scholar
  74. Pawloski-Dahm, C. and Gordon, F. J. (1992) Evidence for a kynurenate-insensitive glutamate receptor in nucleus tractus solitarii. Am. J. Physiol. 262, H1611 - H1615.PubMedGoogle Scholar
  75. Pin, J., Waeber, C., Prezeau, L., Bockaert, J., and Heinemann, S. F. (1992) Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89,10, 331–10, 335.Google Scholar
  76. Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., and Watkins, J. C. (1992) Evidence for presynaptic depression of monosynaptic excitation in neonatal rat moto-neurones by (1S,3S)- and (1S,3R)-ACPD. Exp. Physiol. 77, 529–532.PubMedGoogle Scholar
  77. Prezeau, L., Manzoni, O., Homburger, V., Sladeczek, F., Curry, K., and Bockaert, J. (1992) Characterization of a metabotropic glutamate receptor: direct negative coupling to adenylyl cyclase and involvement of a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. USA 89, 8040–8044.PubMedCrossRefGoogle Scholar
  78. Rainnie, D. G. and Shinnick-Gallagher, P. (1992) Trans-ACPD and L-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA). Neurosci. Lett. 139, 87–91.PubMedGoogle Scholar
  79. Sacaan, A. I. and Schoepp, D. D. (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci. Lett. 139, 77–81.PubMedCrossRefGoogle Scholar
  80. Sacaan, A. I., Bymaster, F. P., and Schoepp, D. D. (1992) Metabotropic glutamate receptor activation produces extrapyramidal motor system activation that is mediated by striatal dopamine. J. Neurochem. 59, 245–251.PubMedCrossRefGoogle Scholar
  81. Sacaan, A. I., Monn, J. A., and Schoepp, D. D. (1991) Intrastriatal injection of a selective metabotropic excitatory amino acid receptor agonist induces contralateral turning in the rat. J. Pharmacol. Exp. Ther. 259, 1366–1370.PubMedGoogle Scholar
  82. Sah, P., Hestrin, S., and Nicoll, R. A. (1989) Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246, 815–818.PubMedCrossRefGoogle Scholar
  83. Salt, T. E. and Eaton, S. A. (1991) Excitatory actions of the metabotropic excitatory amino acid receptor agonist, trans-(±)-1-amino-cyclopentane-1,3-dicarboxylate (t-ACPD), on rat thalamic neurons in vivo. Eur. J. Neurosci. 3, 1104–1111.PubMedCrossRefGoogle Scholar
  84. Sayer, R. J., Schwindt, P. C., and Crill, W. E. (1992) Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neorcortical neurons. J. Neurophysiol. 68, 833–842.PubMedGoogle Scholar
  85. Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci. 14, 13–20.PubMedCrossRefGoogle Scholar
  86. Shiells, R. A. and Falk, G. (1992) Properties of the cGMP-activated channel of retinal on-bipolar cells. Proc. R. Soc. Lond. 247, 21–25.CrossRefGoogle Scholar
  87. Shigemoto, R., Nakanishi, S., and Mizuno, N. (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluRl) in the central nervous system: an in situ hybridization study in adult and developing rat. J. Comp. Neurol. 322, 121–135.PubMedCrossRefGoogle Scholar
  88. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717, 718.Google Scholar
  89. Staub, C., Vranesic, I., and Knopfel, T. (1992) Responses to metabotropic glutamate receptor activation in cerebellar purkinje cells: Induction of an inward current. Eur. J. Neurosci. 4, 832–839.PubMedCrossRefGoogle Scholar
  90. Sterling. P. (1990) Retina, in The Synaptic Organization of the Brain, ( Shepherd, G. M., ed.) Oxford University Press, New York, pp. 170–213.Google Scholar
  91. Stratton, K. R., Worley, P. F., and Baraban, J. M. (1989) Excitation of hippocampal neurons by stimulation of glutamate Qp receptors. Eur. J. Pharmacol. 173, 235–237.PubMedCrossRefGoogle Scholar
  92. Takagi, H., Takimizu, H., Barry, J., Kudo, Y., and Yoshioka, T. (1992) The expression of presynaptic t-ACPD receptor in rat cerebellum. Biochem. Biophys. Res. Commun. 189, 1287–1295.PubMedCrossRefGoogle Scholar
  93. Talman, W. T. (1989) Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci. Lett. 102, 247–252.PubMedCrossRefGoogle Scholar
  94. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992) A family of metabotropic glutamate receptors. Neuron 8, 169–179.PubMedCrossRefGoogle Scholar
  95. Tanabe, Y., Nomura, A., Masu, M., Shigemotor, R., Mizuno, N., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 1372–1378.PubMedGoogle Scholar
  96. Tsuchihashi, T. and Averill, D. B. (1993) Metabotropic glutamate receptors in the ventrolateral medulla of rats. Hypertension 21, 739–744.PubMedCrossRefGoogle Scholar
  97. Ungerstedt, U. (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 69–93.PubMedGoogle Scholar
  98. Vranesic, I., Staub, C., and Knopfel, T. (1993) Activation of metabotropic glutamate receptors induces an outward current which is potentiated by methylxanthines in rat cerebellar purkinje cells. Neurosci. Res. 16, 209–215.PubMedCrossRefGoogle Scholar
  99. Wang, Z. and McCormick, D. A. (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1 S,3R-ACPD. J. Neurosci. 13 (5), 2199–2216.PubMedGoogle Scholar
  100. Wilson, C. J. (1990) Basal ganglia, in The Synaptic Organization of the Brain, (Shepherd, G. M., ed.) Oxford University Press, New York, 279–316.Google Scholar
  101. Winder, D. G. and Conn, P. J. (1993) Activation of metabotropic glutamate receptors increases cAMP accumulation in hippocampus by potentiating responses to endogenous adenosine. J. Neurosci. 13, 38–44.PubMedGoogle Scholar
  102. Winder, D. G., Smith, T. S., and Conn, P. J. (1993) Pharmacological differentiation of metabotropic glutamate receptors coupled to potentiation of cAMP responses and phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 266, 518–525.PubMedGoogle Scholar
  103. Wroblewska, B., Wroblewski, J. T., Saab, O. H., and Neale, J. H. (1993) Nacetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J. Neurochem. 61, 943–948.Google Scholar
  104. Yamashita, M. and Wassle, H. (1991) Responses of rod bipolar cells from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB). J. Neurosci. 11, 2372–2382.PubMedGoogle Scholar
  105. Zheng, F. and Gallagher, J. P. (1991) Trans-ACPD (trans-D,L-1-amino- 1,3-cyclopentanedicarbioxylic acid elicited oscillation of membrane potentials in rat dorso-lateral septal nucleus neurons recorded intracellularly in vitro. Neurosci. Lett. 125, 147–150.Google Scholar
  106. Zheng, F. and Gallagher, J. P. (1992a) Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron 9, 163–172.PubMedCrossRefGoogle Scholar
  107. Zheng, F. and Gallagher, J. P. (1992b) Burst firing of rat septal neurons induced by IS,3R-ACPD requires influx of extracellular calcium. Eur. J. Pharmacol. 211, 281, 282.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Jeffrey Conn
  • Danny G. Winder
  • Robert W. GereauIV

There are no affiliations available

Personalised recommendations