Acute Regulation of Synaptic Transmission by Metabotropic Glutamate Receptors

  • Steven R. Glaum
  • Richard J. Miller
Chapter
Part of the The Receptors book series (REC)

Abstract

Two principal classes of glutamate receptors have been identified: (1) ligand-gated ion channels and (2) G-protein-coupled “metabotropic” receptors (Sugiyama et al., 1989). Activation of ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), kainate (KA), and N-methyl-d-aspartate (NMDA) receptors represents the principal route of fast excitatory transmission in the CNS. However, it is becoming increasingly clear that synaptic transmission also appears to be influenced by the actions of glutamate on metabotropic glutamate receptors (mGluRs) at both pre- and postsynaptic sites. At least seven mGluR subtypes (mGluR1–7) plus several splice varients have been identified by molecular biological methods (see Chapter 1). Expression of these receptors in a variety of cell types has shown that they are capable of interacting with most of the commonly recognized second-messenger systems. As detailed elsewhere in this volume, each expressed mGluR subtype also displays unique pharmacological specificity and shows a particular preference for one of the effector systems (Nakajima et al., 1993; Tanabe et al., 1993). However, which mGluRs mediate the various acute effects of mGluR activation on synaptic transmission and the underlying mechanisms are still poorly understood. In this chapter, we will review the current understanding regarding acute regulation of synaptic transmission by mGluRs and examine possible mechanisms of this regulation.

Keywords

Glutamate Receptor Synaptic Transmission Metabotropic Glutamate Receptor Cerebellar Granule Cell Purkinje Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267,13, 36113, 368.Google Scholar
  2. Ambrosini, A. and Meldolesi., J. (1989) Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J. Neurochem. 53, 825–833.PubMedCrossRefGoogle Scholar
  3. Aniksztejn, L., Bregestovski, P., and Ben-Ari, Y. (1991) Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur. J. Pharmacol. 205, 327, 328.Google Scholar
  4. Aramori, I. and Nakanishi, S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8, 757–765.PubMedCrossRefGoogle Scholar
  5. Aronica, E., Condorelli, D. F., Nicoletti, F., Dell’Albani, P., Amico, C., and Balàzs, R. (1993) Metabotropic glutamate receptors in cultured cerebellar granule cells: Developmental profile. J. Neurochem. 60, 559–565.PubMedCrossRefGoogle Scholar
  6. Barinaga, R. (1993) Carbon monoxide: Killer to brain messenger in one step. Science 259, 309.PubMedCrossRefGoogle Scholar
  7. Baskys, A. and Malenka, R. C. (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSPs in neonatal rat hippocampus. J. Physiol. 444, 687–701.PubMedGoogle Scholar
  8. Batchelor, A. M. and Garthwaite, J. (1993) Novel synaptic potentials in cerebellar Purkinje cells: probable mediation by metabotropic glutamate receptors. Neuropharmacol. 32, 11–20.CrossRefGoogle Scholar
  9. Ben-Ari, Y., Aniksztejn, L., Otani, S., and Roisin, M. P. (1993) Quisqualate metabotropic glutamate receptors enhance NMDA currents and decrease the threshold for LTP induction through protein kinase C. J. Neurosci. 61, S183.Google Scholar
  10. Birse, E. F., Eaton, S. A., Jane, D. E., Jones, P. L. St. J., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Wharton, B., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Phenylglycine derivatives as new pharmacological tools for investigating the role of metabotropic glutamate receptors in the central nervous system. Neuroscience 52, 481–488.PubMedCrossRefGoogle Scholar
  11. Bleakman, D., Rusin, C., Chard, P., Glaum, S. R., and Miller, R (1992) Potentiation of ionotropic glutamate receptor signalling in substantia gelatinosa neurons by a metabotropic glutamate receptor agonist. Mol. Pharm. 42, 192–196.Google Scholar
  12. Boss, V. and Conn, P. J. (1993) Coupling of metabotropic excitatory amino acid receptors to phospholipase D: A novel pathway for generation of second messenger. Funct. Neurol. Suppl. 4, 12.Google Scholar
  13. Boss, V., Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Trans-ACPD-induced phosphoinositide hydrolysis and modulation of hippocampal pyramidal cell excitability do not undergo parallel developmental regulation. Brain Res. 594, 181–188.PubMedCrossRefGoogle Scholar
  14. Bossu, J. L., Fagni, L., Nooney, J., Bockaert, J., and Feltz, A. (1993) Increased Ca channel activity due to metabotropic glutamate receptor stimulation in isolated rat cerebellar granule cells. J. Physiol. 459, 250 P.Google Scholar
  15. Caciagli, F., Casabona, G., L’Episcopo, M. R., Di Iorio, P., Ciccarelli, R., Shinozaki, H. and Nicoletti, F. (1993) Activation of metabotropic receptors reduces adenosine release in rat hippocampal slices. Funct. Neurol. Suppl. 4, 13.Google Scholar
  16. Cartmell, J., Kemp, J. A., Alexander, S. P. H., Hill, S. T., and Kendall, D. A. (1992) Inhibition of forskolin stimulated cyclic AMP formation by 1-aminocyclopentanetrans-1,3,dicarboxylate in guinea-pig cerebral cortical slices. J. Neurochem. 58, 1964–1966.PubMedCrossRefGoogle Scholar
  17. Catania, M. V., Landwehrmeyer, B., Standaert, D., Testa, C., Penney, J. B., and Young, A. B. (1993) Differential expression patterns of metabotropic glutamate receptor mRNAs and binding sites in developing and adult rat brain. Funct. Neurol. Suppl. 4, 15.Google Scholar
  18. Charpak, S., Gähwiler, B. H., Do, K. Q., and Knöpfel, T. (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino acid transmitters. Nature 347, 765–767.PubMedCrossRefGoogle Scholar
  19. Coffey, E. T., Herrero, I., Sihra, T. S., and Nicholls, D. G. (1993) Metabotropic receptor activation of glutamate release is PKC mediated. J. Neurosci. 61, S253.Google Scholar
  20. Constanti, A. and Libri, V. (1992) Trans-ACPD induces a slow post-stimulus inward tail current (IADP) in guinea-pig olfactory cortex neurones in vitro. Eur. J. Pharmacol. 214, 105, 106.Google Scholar
  21. Crepel, F., Daniel, H., Hemart, N., and Jaillard, D. (1991) Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Exp. Brain Res. 86, 402–406.PubMedCrossRefGoogle Scholar
  22. Davies, J. and Watkins, J. C. (1982) Actions of D and L forms of 2-amino-5phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 235, 378–386.PubMedCrossRefGoogle Scholar
  23. Desai, M. A. and Conn, P. J. (1991) Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. J. Neurophys. 66, 40–52.Google Scholar
  24. Gerber, U., Lüthi, A., and Gähwiler, B. H. (1993) Inhibition of a slow synaptic response by a metabotropic glutamate receptor antagonist in hippocampal CA3 pyramidal cells. Proc. Royal Acad. Soc. 254, 169–172.CrossRefGoogle Scholar
  25. Glaum, S. R. and Miller, R. J. (1992) Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J. Neurosci. 12, 2251–2258.PubMedGoogle Scholar
  26. Glaum, S. R. and Miller, R. J. (1993a) Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus tractus solitarius. J. Neurosci. 13, 1636–1641.PubMedGoogle Scholar
  27. Glaum, S. R. and Miller, R. J. (1993b) Metabotropic glutamate receptors depress afferent excitatory transmission in the rat nucleus tractus solitarii. J. Neurophys. 70, 2669–2672.Google Scholar
  28. Glaum, S. R. and Miller, R. J. (1993c) Zinc protoporphyrin-IX blocks the effects of metabotropic glutamate receptor activation in the rat nucleus tractus solitarii. Mol. Pharmacol. 43, 965–969.PubMedGoogle Scholar
  29. Glaum, S. R. and Miller, R. J. (1994) Inhibition of phosphoprotein phosphatases block metabotropic glutamate receptor effects in the rat nucleus tractus solitarii. Mol. Pharmacol.,in press.Google Scholar
  30. Glaum, S. R., Scholz, W. K., and Miller, R. J. (1991) Acute and long term glutamate mediated regulation of [Ca2+]. in rat hippocampal pyramidal neurons in vitro. JPET 253, 1293–1302.Google Scholar
  31. Glaum, S. R., Slater, N. T., Rossi, D. J., and Miller, R. J. (1992) The role of metabotropic glutamate (ACPD) receptors at the parallel fiber-Purkinje cell synapse. J. Neurophysiol. 68, 1453–1462.Google Scholar
  32. Glaum, S. R., Sunter, D.C., Udvarhelyi, P. M., Watkins, J. C., and Miller, R. J. (1993) The actions of phenylglycine derived metabotropic glutamate receptor antagonists on multiple (1S,3R)-ACPD responses in the rat nucleus of the tractus solitarius. Neuropharmacology 32, 1419–1425.PubMedCrossRefGoogle Scholar
  33. Greene, C., Schwindt, P., and Crill, W. (1992) Metabotropic receptor mediated after depolarization in neocortical neurons. Eur. J. Pharmacol. 226, 279, 280.Google Scholar
  34. Harris, E. W. and Cotman, C. W. (1983) Effects of acidic amino acid antagonists on paired-pulse potentiation at the lateral perforant path. Exp. Brain Res. 52, 455–460.Google Scholar
  35. Hayashi, Y., Momiyama, A., Takahashi, T., Ohishi, H., Ogawa-Meguro, R., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Role of a metabotropic glutamate receptor, mGluR2, in synaptic modulation in the accessory olfactory bulb. Nature 366, 687–690.PubMedCrossRefGoogle Scholar
  36. Holler, T., Klein, J., and Löffelholz, K. (1993) Glutamate activates phospholipase D in rat hippocampus. Funct. Neurol. Suppl. 4, 26.Google Scholar
  37. Hu, G.-Y. and Storm, J. F. (1991) Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons. Brain Res. 568, 339–344.PubMedCrossRefGoogle Scholar
  38. Irving, A. J., Schofield, G., Watkins, J.C., Sunter, D. C., and Collingridge, G. L. (1990) (IS,3R)-ACPD stimulates and L-AP3 blocks Ca’ mobilization in rat cerebellar neurons. Eur. J. Pharmacol. 186, 363–365.Google Scholar
  39. Irving, A. J.,Boulton, C. L., Garthwaite, J., and Collingridge, G. L. (1993) cGMP may mediate transient synaptic depression in rat hippocampal slices. J. Physiol. 108, 89P.Google Scholar
  40. Ishida, M., Saitoh, T., Shimamoto, K., Ohfune, Y., and Shinozaki, H. (1993) A novel metabotropic glutamate receptor agonist: Marked depression of monosynaptic excitation in the newborn rat isolated spinal cord. Br. J. Pharmacol. 109, 11691177.Google Scholar
  41. Ito, M and Karachot, L. (1990) Messengers mediating long-term desensitization in cerebellar Purkinje cells. NeuroReport 1, 129–132.Google Scholar
  42. Kahle, J. S. and Cotman, C. W. (1993) L-2-amino-4-phosphonobutanoic acid and 1 S,3R-1-aminocyclopentane-1,3-dicarboxylic acid reduce paired-pulse depression recorded from medial perforant path in the dentate gyrus of rat hippocampal slices. JPET 266, 207–215.Google Scholar
  43. Katz, P. S. and Levitan, I. B. (1993) Quisqualate and ACPD are agonists for a glutamate-activated current in identified Aplysia neurons. J. Neurophys. 69, 143–150.Google Scholar
  44. Kelso, S. R., Nelson, T. E., and Leonard, J. P. (1992) Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in xenopus oocytes. J. Physiol. 449, 705–718.PubMedGoogle Scholar
  45. Kinney, G. A. and Slater, N. T. (1993) Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. J. Neurophys. 69, 585–594.Google Scholar
  46. Koerner, J. F. and Cotman, C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from entorhinal cortex. Brain Res. 216, 192–198.PubMedCrossRefGoogle Scholar
  47. Konnerth, A., Llano, I., and Armstrong, C. M. (1990) Synaptic currents in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 57, 2662–2665.CrossRefGoogle Scholar
  48. Kovalchuk, Y., Garaschuk, O., and Krishtal, O. A. (1993) Glutamate induces longterm increase in the frequency of single N-methyl-n-aspartate channel openings in hippocampal CAI neurons examined in situ. Neuroscience 54, 557–559.PubMedCrossRefGoogle Scholar
  49. Lanthorn, T. H.,Ganong, A. H.,and Cotman, C. W. (1984) 2-amino-4-phosphonobutyrate selectively blocks mossy fiber-CA3 responses in guinea pig but not rat hippocampus. Brain Res. 290, 174–178.Google Scholar
  50. Lester, R. A. and Jahr, C. E. (1990) Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron 4, 741–749.PubMedCrossRefGoogle Scholar
  51. Linden, D. J. and Connor, J. A. (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254, 1656–1659.PubMedCrossRefGoogle Scholar
  52. Liu, Y.-B., Disterhof, J. F., and Slater, N. T. (1993) Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus. J. Neurophys. 69, 1000–1004.Google Scholar
  53. Llano, I., Dreessen, J., Kano, M., and Konnerth, A. (1991) Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells. Neuron 7, 577–583.PubMedCrossRefGoogle Scholar
  54. Lovinger, D. M. (1991) Trans-l-amino-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci. Lett. 129, 17–21.Google Scholar
  55. Maines, M. (1993) Carbon monoxide: An emerging regulator of cGMP in the brain. Mol. Cell. Neurosci. 4, 389–397.PubMedCrossRefGoogle Scholar
  56. Manzoni, O., Prezeau, L., Rassendren, F. A., Sladeczek, F., Curry, K., and Bockaert, J. (1992) Both enantiomers of 1-aminocyclopentyl-1,3-dicarboxylate are full ago-Google Scholar
  57. nists of metabotropic glutamate receptors coupled to phospholipase. Mol. Pharmacol. 42, 322–327.Google Scholar
  58. Manzoni, O., Fagni, L., Pin, J-.P., Rassendren, F., Poulat, F., Sladeczek, F., and Bockaert, J. (1990) (trans)-1-amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes. Mol. Pharmacol. 38, 1–6.Google Scholar
  59. Marks, G. S., Brien, J. F., Nakatsu, K., and McLaughlin, B. F. (1991) Does carbon monoxide have a physiological function. Trends Pharmacol. Sci. 12, 185–188.PubMedCrossRefGoogle Scholar
  60. Martin, L. J., Blackstone, C. D., and Price, D. L. (1993) Cellular localization of metabotropic glutamate receptors in adult and developing brain. Funct. Neurol. Suppl. 4, 34, 35.Google Scholar
  61. McCormick, D. A. and von Krosigk, M. (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778.PubMedCrossRefGoogle Scholar
  62. McDonald, J. W. and Schoepp, D. D. (1993) The metabotropic excitatory amino acid receptor agonist (1S,3R)-ACPD selectively potentiates NMDA induced brain injury. Eur. J. Pharmacol. 215, 353, 354.Google Scholar
  63. Miles, R. and Poncer, J.-C. (1993) Metabotropic glutamate receptors mediate a posttetanic excitation of guinea-pig hippocampal inhibitory neurones. J. Physiol. 463, 461–473.PubMedGoogle Scholar
  64. Miller, R. J. (1990) Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. 4, 3291–3299.PubMedGoogle Scholar
  65. Milligan, G. (1993) Mechanisms of multifunctional signalling by G protein-linked receptors. Trends Pharmacol. Sci. 14, 239–244.PubMedCrossRefGoogle Scholar
  66. Mori-Okamoto, J., Okamoto, K., and Tatsuno, J. (1993) Intracellular mechanisms underlying the suppression of AMPA responses by trans-ACPD in cultured chick purkinje neurons. Mol. and Cell Neurosci. 4, 375–386.CrossRefGoogle Scholar
  67. Mulkey, R. M. and Zucker, R. S. (1992) Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation. J. Neurosci. 12, 4327–4336.PubMedGoogle Scholar
  68. Nadler, J. V., Zhou, M., and Duncan, C. P. (1993) Release of glutamate and aspartate from synaptosomes of the hippocampal Schaffer collateral-commissural pathway. J. Neurosci. 61, S253.Google Scholar
  69. Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4phosphonobutyrate. J. Biol. Chem. 268, 11,868–11, 873.Google Scholar
  70. Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.PubMedCrossRefGoogle Scholar
  71. Nawy, S. and Jahr, C. E. (1991) cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter. Neuron 7,677–683.Google Scholar
  72. Nicoletti, F., Meek, J. L., ladorola, M. J., Chuang, D. M., Roth, B. L., and Costa, E. (1986) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites rat hippocampus. J. Neurochem. 40, 40–46.CrossRefGoogle Scholar
  73. Okada, D. (1992) Two pathways of cGMP production through glutamate receptor mediated nitric oxide synthesis. J. Neurochem. 59, 1203–1210.PubMedCrossRefGoogle Scholar
  74. Pacelli, G. J. and Kelso, S. R. (1991) Trans-ACPD reduces multiple components of synaptic transmission in the rat hippocampus. Neurosci. Lett. 132, 267–269.PubMedCrossRefGoogle Scholar
  75. Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–587.Google Scholar
  76. Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., and Watkins, J. C. (1992) Evidence for presynaptic depression of monosynaptic excitation in neonatal rat moto-neurones by (1S,3S)- and (1S,3R)-ACPD. Exp. Physiol. 77, 529–532.PubMedGoogle Scholar
  77. Priddy, M., Drewe, J. A., and Kunze, D. L. (1992) L-glutamate inhibition of an inward potassium current in neonatal neurons from the nucleus of the solitary tract. Neurosci. Lett. 136, 131–135.PubMedCrossRefGoogle Scholar
  78. Rainnie, D. G. and Shinnick-Gallagher, P. (1992) Trans-ACPD and L-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA). Neurosci. Lett. 139, 87–91.PubMedGoogle Scholar
  79. Randall, A. D., Wheeler, D. B., and Tsien, R. W. (1993) Modulation of Q-type Cat+ channels and Q-type Ca’ channel-mediated synaptic transmission by metabotropic and other G-protein linked receptors. Funct. Neurol. Suppl. 4, 44–45.Google Scholar
  80. Raymond, L. A., Blackstone, C. D., and Huganir, R. L. (1993) Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361, 637–641.PubMedCrossRefGoogle Scholar
  81. Riedel, G. and Reymann, K. (1993) An antagonist of the metabotropic glutamate receptor prevents LTP in the dentate gyms of freely moving rats. Neuropharmacol. 9, 929–931.CrossRefGoogle Scholar
  82. Ruzicka, B. B., and Jhamandas, K. H. (1993) Excitatory amino acid action on the release of brain neurotransmitters and neuromodulators: Biochemical studies. Prog. Neurobiol. 40, 223–247.PubMedCrossRefGoogle Scholar
  83. Sacaan, A. I., Bymaster, F. P., and Schoepp, D. D. (1992) Metabotropic glutamate receptor activation produces extrapyramidal motor system activation that is mediated by striatal dopamine. J. Neurochem. 59, 245–251.PubMedCrossRefGoogle Scholar
  84. Sahara, Y. and Westbrook, G. L. (1993) Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons. J. Neurosci. 13, 3041–3050.PubMedGoogle Scholar
  85. Sanchez-Prieto, J., Herrero, J.,and Miras-Portugal, M. T. (1993) Potentiation of glutamate exocytosis by a presynaptic glutamate metabotropic receptor. J. Neurosci. 61, S253.Google Scholar
  86. Schoepp, D. D. (1993) The biochemical pharmacology of metabotropic glutamate receptors. Biochem. Soc. Trans. 21, 97–102.PubMedGoogle Scholar
  87. Sladeczek, F., Pin, J.-P., Recasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717–719.PubMedCrossRefGoogle Scholar
  88. Sladeczek, F., Momiyama, A., and Takahashi, T. (1993) Presynaptic inhibitory action of a metabotropic glutamate receptor agonist on excitatory transmission in visual cortical neurons. Funct. Neurol. Suppl. 4, 52.Google Scholar
  89. Staub, C., Vranesic, I., and Knöpfel, T. (1992) Responses to metabotropic glutamate receptor activation of cerebellar Purkinje cells: induction of an inward current. Eur. J. Neurosci. 4, 832–839.PubMedCrossRefGoogle Scholar
  90. Stelzer, A. and Wong R. K. S. (1989) GABA-A responses in hippocampal neurons are potentiated by glutamate. Nature 337, 170–173.PubMedCrossRefGoogle Scholar
  91. Stevens, C. F. and Wang, Y. (1993) Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature 364, 147–149.PubMedCrossRefGoogle Scholar
  92. Stratton, K. R., Worley, P. F., and Baraban, J. M. (1989) Excitation of hippocampal neurons by stimulation of glutamate Q receptors. Eur. J. Pharmacol. 173, 531–533.CrossRefGoogle Scholar
  93. Sugiyama, H., Ito, I., and Watanabe M. (1989) Glutamate receptor subtypes may be classified into two major categories: A study on Xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.PubMedCrossRefGoogle Scholar
  94. Swartz, K. (1993) Modulation of Ca“ channels by protein kinase C in rat central and peripheral neurons: Disruption of G protein-mediated inhibition. Neuron 11, 305–320.PubMedCrossRefGoogle Scholar
  95. Swartz, K. J. and Bean, B. P. (1992) Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor. J. Neurosci. 12, 4358–4371.PubMedGoogle Scholar
  96. Swartz, K. J., Merrit, A., Bean, B. P., and Lovinger, D. M. (1993) Protein kinase C modulates glutamate receptor inhibition of Ca“ channels and synaptic transmission. Nature 361, 165–168.PubMedCrossRefGoogle Scholar
  97. Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 1372–1378.PubMedGoogle Scholar
  98. Thomsen, C., Kristensen, P., Mulvihill, E., Haldeman, B., and Suzdak, P. D. (1992) L-AP4 is an agonist at the type IV metabotropic glutamate receptor which is negatively coupled to adenylyl cyclase. Eur. J. Pharmacol. Mol. Pharmacol. 227, 361–362.CrossRefGoogle Scholar
  99. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., and Snyder, S. H. (1993) Carbon monoxide: A putative neural messenger. Science 259, 381–384.PubMedCrossRefGoogle Scholar
  100. Vranesic, I., Batchelor, A., Gähwiler, B. H., Garthwaite, J., Staub, C., and Knöpfel, T. (1991) Trans-ACPD-induced Ca’ signals in cerebellar Purkinje cells. Neuroreport 2, 759–762.PubMedCrossRefGoogle Scholar
  101. Vranesic, I., Staub, C., and Knöpfel, T. (1993) Activation of metabotropic glutamate receptors induces an outward current which is potentiated by methylxanthines in rat cerebellar Purkinje cells. Neurosci. Res. 16, 209–215.PubMedCrossRefGoogle Scholar
  102. Westbrook, G. L., Sahara, Y., Saugstad, J. A., Kinzie, J. M., and Segerson, T. P. (1993) Regulation of ion channels by ACPD and AP4. Funct. Neurol. Suppl. 4, 56.Google Scholar
  103. Winder, D. G. and Conn, P. J. (1993) Activation of metabotropic glutamate receptors increases cAMP accumulation in hippocampus by potentiating responses to endogenous adenosine. J. Neurosci. 13, 38–44.PubMedGoogle Scholar
  104. Yool, A. J., Krieger, R. M., and Gruol, D. L. (1992) Multiple ionic mechanisms are activated by the potent agonist quisqualate in cultured cerebellar purkinje neurons. Brain Res. 573, 83–94.PubMedCrossRefGoogle Scholar
  105. Zeilhofer, H. U., Muller, T. H., and Swandulla, D. (1993) Inhibition of high voltage-activated calcium currents by L-glutamate receptor-mediated calcium influx. Neuron 10, 879–887.PubMedCrossRefGoogle Scholar
  106. Zheng, F. and Gallagher, J. P. (1992) Burst firing of rat septal neurons induced by (1S,3R)-ACPD requires influx of extracellular calcium. Eur. J. Pharmacol. 211, 281–282.PubMedCrossRefGoogle Scholar
  107. Zhu, P. J. and Krnjevic, K. (1993) Adenosine release is a major cause of failure of synaptic transmission during hypoglycemia in rat hippocampal slices. Neurosci. Lett. 155, 128–131.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Steven R. Glaum
  • Richard J. Miller

There are no affiliations available

Personalised recommendations