Skip to main content

Modulation of Ionic Currents by Metabotropic Glutamate Receptors in the CNS

  • Chapter
The Metabotropic Glutamate Receptors

Part of the book series: The Receptors ((REC))

Abstract

Stimulation of neuronal metabotropic glutamate receptors (mGluRs) activates G-proteins initiating a multitude of intracellular processes. Electrophysiological observations indicate that ion channels are among the substrates for the intracellular messengers dispatched by activated mGluRs, thus modulating the electrical behavior of neurons owing to their coupling to numerous membrane ionic conductances. In some of the first experiments to demonstrate metabotropic effects of glutamate, electrophysiological techniques were employed using transfected oocytes to assay for changes in second-messenger levels in response to glutamate (Sugiyama et al., 1987, 1989). It has only recently been shown that activation of mGluRs can also modify the firing properties of neurons (Stratton et al., 1989, 1990; Baskys et al., 1990; Charpak et al., 1990; Desai and Conn, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, N., Shirasaki, T., and Harata, N. (1991) Metabotropic glutamate receptors activates the potassium conductance in freshly dissociated hippocampal CA1 neurons. Soc. Neurosci. 17, 255.

    Google Scholar 

  • Aniksztejn, L., Otani, S., and Ben-ari, Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500–505.

    Article  PubMed  Google Scholar 

  • Anwyl, R. (1992) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Rev. Neurosci. 3, 217–231.

    PubMed  CAS  Google Scholar 

  • Baraban, J. M., Snyder, S. H., and Alger, B. E. (1985) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons, Electrophysiological effects of phorbol esters. Proc. Natl. Acad. Sci. USA 82, 2538–2542.

    Article  PubMed  CAS  Google Scholar 

  • Bashir, Z. I., Bortolotto, Z. A., Davies, C. H., Berretta, N., Irving, A. J., Seal, A. J., Henley, J. M., Jane, D. E., Watkins, J. C., and Collingridge, G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Baskys, A. (1992) Metabotropic receptors and “slow” excitatory actions of glutamate agonists in the hippocampus. TINS 15, 92–96.

    PubMed  CAS  Google Scholar 

  • Baskys, A., Bernstein, N. K., Barolet, A. W., and Carlen, P. L. (1990) NMDA and quisqualate reduce a Ca-dependent K’ current by a protein kinase-mediated mechanism. Neurosci. Lett. 112, 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Bleakman, D., Rusin, K. I., Chard, P. S., Glaum, S. R., and Miller, R. J. (1992) Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol. Pharmacol. 42, 192–196.

    PubMed  CAS  Google Scholar 

  • Bockaert, J. (1991) G proteins and G-protein-coupled receptors: structure, function and interactions. Curr. Opinion Neurobiol. 1, 32–42.

    Article  CAS  Google Scholar 

  • Bossu, J. L., Fagni, L., Nooney, J., and Feltz, A. (1992) Increased Ca channel activity due to metabotropic glutamate receptor stimulation in isolated rat cerebellar granule cells. J. Physiol. 459, 250 P.

    Google Scholar 

  • Bossu, J. L., Nooney, J. M., Chavis, P., Fagni, L., Bockaert, J., and Feltz, A. (1993) Facilitatory effect on L-type Ca channels of glutamate metabotropic receptors in rodent cerebellar granule cells. J. Neurochem. 61, S197B.

    Google Scholar 

  • Brown, D. A. and Adams, P. R. (1980) Muscarinic suppression of a novel voltage-sensitive K’-current in a vertebrate neuron. Nature 283, 673–676.

    Article  PubMed  CAS  Google Scholar 

  • Caeser, M., Brown, D. A., Gähwiler, B. H., and Knöpfel, T. (1993) Characterization of a calcium-dependent current generating a slow after depolarization of CA3 pyramidal cells in rat hippocampal slice cultures. Eur. J. Neurosci. 5, 560–569.

    Article  PubMed  CAS  Google Scholar 

  • Cerne, R. and Randic, M. (1992) Modulation of AMPA and NMDA responses in rat spinal dorsal horn neurons by trans-1-aminocyclopentane-1,3-dicarboxylic acid. Neurosci. Lett. 144, 180–184.

    Article  PubMed  CAS  Google Scholar 

  • Charpak, S. and Gähwiler, B. H. (1991) Glutamate mediates a slow synaptic response in hippocampal slice cultures. Proc. R. Soc. Lond. (Biol.) 243, 221–226.

    Article  CAS  Google Scholar 

  • Charpak, S., Gähwiler, B. H., Do, K. Q., and Knöpfel, T. (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino acid transmitters. Nature 347, 765–767.

    Article  PubMed  CAS  Google Scholar 

  • Chavis, P., Fagni, L., and Bockaert, J. (1993) Metabotropic glutamate receptors inhibit L-type calcium channels in cultured cerebellar granule cells. J. Neurochem. 61, SI5C.

    Google Scholar 

  • Colino, A. and Halliwell, J. V. (1993) Carbachol potentiates Q current and activates a calcium-dependent non-specific conductance in rat hippocampus in vitro. Eur. J. Neurosci. 5, 1198–1209.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G. G. S. (1993) Actions of agonists of metabotropic glutamate receptors on synaptic transmission and transmitter release in the olfactory cortex. Br. J. Pharmacol. 108, 422–430.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. J. and Desai, M. A. (1991) Pharmacology and physiology of metabotropic glutamate receptors in mammalian central nervous system. Drug Dey. Res. 24, 207–229.

    Article  CAS  Google Scholar 

  • Constanti, A. and Libri, V. (1992) Trans-ACPD induces a slow post-stimulus inward tail current (IADP) in guinea-pig olfactory cortex neurones. Eur. J. Pharmacol. 214, 105–106.

    Article  CAS  Google Scholar 

  • Crépel, F., Daniel, H., Hemart, N., and Jaillard, D. (1991) Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Exp. Brain Res. 86, 402–406.

    Article  PubMed  Google Scholar 

  • Desai, M. A. and Conn, P. J. (1990) Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Lett. 109, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Desai, M. A., Smith, T. S., and Conn, P. J. (1991) Excitatory effects of ACPD receptor activation in the hippocampus are mediated by direct effects on pyramidal cells and blockade of synaptic inhibition. J. Neurophysiol. 66, 40–52.

    PubMed  CAS  Google Scholar 

  • Desai, M. A. and Conn, P. J. (1992) Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse 12, 206–213.

    Article  PubMed  CAS  Google Scholar 

  • East, S. J. and Garthwaite, J. (1992) Actions of a metabotropic glutamate receptor agonist in immature and adult cerebellum. Eur. J. Pharmacol. 219, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, S. A., Jane, D. E., Jones, P. L., St., J., Porter, R. H. P., Pook, P. C. K., Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by S-4-carboxyphenylglycine and RS-a-methyl-4-carboxyphenylglycine. Eur. J. Pharmacol. 244, 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Fagni, L., Bossu, J. L., and Bockaert, J. (1991) Activation of a large-conductance Cat+-dependent K’ channel by stimulation of glutamate phosphoinositide-coupled receptors in cultured cerebellar granule cells. Eur. J. Neurosci. 3, 778–789.

    Article  PubMed  Google Scholar 

  • Fagni, L., Chavis, P., Bossu, J. L., Nooney, J. M., Feltz, A., and Bockaert, J. (1993) Control of ionic channels by metabotropic glutamate receptors. J. Neurochem. 61, S198A.

    Google Scholar 

  • Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein 3y subunits. Nature 356, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, U., Lüthi, A., and Gähwiler, B. H. (1993) Inhibition of a slow synaptic response by a metabotropic glutamate receptor antagonist in hippocampal CA3 pyramidal cells. Proc. R. Soc. Lond. (Biol.) 254, 169–172.

    Article  CAS  Google Scholar 

  • Gerber, U., Sim, J. A., and Gähwiler, B. H. (1992) Reduction of potassium conductances mediated by metabotropic glutamate receptors in rat CA3 pyramidal cells does not require protein kinase C or protein kinase A. Eur. J. Neurosci. 4, 792–797.

    Article  PubMed  Google Scholar 

  • Gilman, A. G. (1987) G proteins, transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Glaum, S. R. and Miller, R. J. (1992) Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J. Neurosci. 12, 2251–2258.

    PubMed  CAS  Google Scholar 

  • Glaum, S. R., Slater, N. T., Rossi, D. J., and Miller, R. J. (1992) Role of metabotropic glutamate ACPD) receptors at the parallel fiber-Purkinje cell synapse. J. Neurophysiol. 68, 1453–1461.

    PubMed  CAS  Google Scholar 

  • Greene, C., Schwindt, P., and Crill, W. (1992) Metabotropic receptor mediated after depolarization in neocortical neurons. Eur. J. Pharmacol. 226, 279–280.

    Article  PubMed  CAS  Google Scholar 

  • Guérineau, N. C., Gähwiler, B. H., and Gerber, U. (1994) G-proteins mediate reduction of resting K+ current by metabotropic glutamate and muscarinic receptors in rat CA3 cells. J. Physiol. 474, 27–33.

    PubMed  Google Scholar 

  • Halliwell, J. V. and Adams, P. R. (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res. 250, 71–92.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, J. and Collingridge, G. L. (1993) Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br. J. Pharmacol. 109, 1085–1090.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G.-Y. and Storm, J. F. (1992) Excitatory amino acids acting on metabotropic glutamate receptors broaden the action potential in hippocampal neurons. Brain Res. 568, 339–344.

    Article  Google Scholar 

  • Inoue, T., Miyakawa, H., Ito, K., Mikoshiba, K., and Kato, H. (1992) A hyperpolarizing response induced by glutamate in mouse cerebellar Purkinje cells. Neurosci. Res. 15, 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Irving, A. J., Schofield, J. G., Watkins, J. C., Sunter, D. C., and Collingridge, G. L. (1990)1 S,3R-ACPD stimulates and L-AP3 blocks Cat+ mobilization in rat cerebellar neurons. Eur. J. Pharmacol. 186, 363–365.

    Google Scholar 

  • Ito, M. and Karachot, L. (1990) Messengers mediating long-term desensitization in cerebellar Purkinje cells. NeuroReport 1, 129–132.

    CAS  Google Scholar 

  • Jan, L. Y. and Jan, Y. N. (1992) Tracing the roots of ion channels. Cell 69, 715–718.

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L. K. and Levitan, I. B. (1987) Neuromodulation: The Biochemical Control of Neuronal Excitability (Oxford University Press, Oxford, UK).

    Google Scholar 

  • Katada, T. and Ui, M. (1982) Direct modification of the membrane adenylyl cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.

    Article  PubMed  CAS  Google Scholar 

  • Kinney, G. A. and Slater, N. T. (1992) Potentiation of mossy fiber-evoked EPSPs in turtle cerebellar Purkinje cells by the metabotropic glutamate receptor agonist 1S,3R-ACPD. J. Neurophysiol. 67, 1006–1008.

    PubMed  CAS  Google Scholar 

  • Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N., and Jan, L. Y. (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, B., and Adams, P. R. (1986) Calcium-dependent current generating the after hyperpolarization of hippocampal neurons. J. Neurophysiol. 55, 1268–1282.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., Nicoll, R. A., and Perkel, D. J. (1991) Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J. Neurosci. 11, 23–30.

    PubMed  CAS  Google Scholar 

  • Lester, R. A. J. and Jahr, C. E. (1990) Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron 4, 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Lüthi, A., Gähwiler, B. H., and Gerber, U. (1993) Interaction between ionotropic and metabotropic glutamate receptors in the hippocampus. Experientia 49, A74.

    Google Scholar 

  • Madison, D. V. and Nicoll, R. A. (1986) Cyclic adenosine 3’,5’-monophosphate mediates -receptor actions of noradrenaline in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 372, 245–259.

    CAS  Google Scholar 

  • Malenka, R. C., Madison, D. V., Andrade, R., and Nicoll, R. A. (1986) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J. Neurosci. 6, 475–480.

    PubMed  CAS  Google Scholar 

  • Manzoni, O., Fagni, L., Pin, J.-P., Rassendren, F., Poulat, F., Sladeczek, F., and Bockaert, J. (1990) (trans)-1-amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes. Mol. Pharmacol. 38, 1–6.

    Google Scholar 

  • Masu, M., Tanable, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A. (1991) Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J. Neurosci. 12, 278–289.

    Google Scholar 

  • McCormick, D. A. and von Krosigk, M. (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778.

    Article  PubMed  CAS  Google Scholar 

  • Miles, R. and Poncer, J.-C. (1993) Metabotropic glutamate receptors mediate a posttetanic excitation of guinea-pig hippocampal inhibitory neurones. J. Physiol. Lond. 463, 461–473.

    PubMed  CAS  Google Scholar 

  • Miller, R. J. (1991) Metabotropic excitatory amino acid receptors reveal their true colors. TiPS 146, 365–367.

    Google Scholar 

  • Müller, W., Petrozzino, J. J., Griffith, L. C., Dahno, W., and Connor, J. A. (1992) Specific involvement of Ca2+-calmodulin kinase II in cholinergic modulation of neuronal responsiveness. J. Neurophysiol. 68, 2264–2269.

    PubMed  Google Scholar 

  • Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–587.

    Article  PubMed  CAS  Google Scholar 

  • Rüegg, U. T. and Burgess, G. M. (1989) Staurosporine, K-252 and UCN-01, potent but nonspecific inhibitors of protein kinases. TiPS 10, 218–220.

    PubMed  Google Scholar 

  • Sahara, Y. and Westbrook G. L. (1993) Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons. J. Neurosci. 13, 3041–3050.

    PubMed  CAS  Google Scholar 

  • Sayer, R. J., Schwindt, P.C., and Crill, W. E. (1992) Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neocortical neurons. J. Neurophysiol 68, 833–842.

    PubMed  CAS  Google Scholar 

  • Schoepp, D., Bockaert, J., and Sladeczek, F. (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. TiPS 11, 508–515.

    PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. TiPS 14, 13–20.

    PubMed  CAS  Google Scholar 

  • Schwartz, E. A. (1993) L-glutamate conditionally modulates the K. current of Müller glial cells. Neuron 10, 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Staub, C., Vranesic, I., and Knöpfel, T. (1992) Responses to metabotropic glutamate receptor activation in cerebellar Purkinje cells: induction of an inward current. Eur. J. Neurosci. 4, 832–839.

    Article  PubMed  Google Scholar 

  • Sternweis, P. C. and Smrcka, A. V. (1992) Regulation of phospholipase C by G proteins. TIBS 17, 502–506.

    PubMed  CAS  Google Scholar 

  • Stratton, K. R., Worley, P. F., and Baraban, J. M. (1989) Excitation of hippocampal neurons by stimulation of glutamate Qp receptors. Eur. J. Pharmacol. 173, 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Stratton, K. R., Worley, P. F., and Baraban, J. M. (1990) Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons. Eur. J. Pharmacol. 186, 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Ito, I., and Hirono, C. (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Ito, I., and Watanabe, M. (1989) Glutamate receptor subtypes may be classified into two major categories, A study on Xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, K. J. and Bean, B. P. (1992) Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor. J. Neurosci. 12, 4358–4371.

    PubMed  CAS  Google Scholar 

  • Takagi, H., Takimizu, H., Yoshioka, T., Suzuki, N., and Kudo, Y. (1992) Delayed appearance of a G-protein coupled signal transduction system in cerebellar Purkinje cell dendrites. Neurosci. Res. 15, 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Tang, W.-J. and Gilman, A. G. (1991) Type-specific regulation of adenylyl cyclase by G-protein ßy subunits. Science 254, 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Trombley, P. Q. and Westbrook, G. L. (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor. J. Neurosci. 12, 2043–2050.

    PubMed  CAS  Google Scholar 

  • Trussell, L. O. and Jackson, M. B. (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosci. 7, 3306–3316.

    PubMed  CAS  Google Scholar 

  • Vranesic, I., Batchelor, A., Gähwiler, B. H., Garthwaite, J., Staub, C., and Knöpfel, T. (1991) Trans-ACPD-induced Ca2+ signals in cerebellar Purkinje cells. NeuroReport 2, 759–762.

    CAS  Google Scholar 

  • Vranesic, I., Staub, C., and Knöpfel, T. (1993) Activation of metabotropic glutamate receptors induces an outward current which is potentiated by methylxanthines in rat cerebellar Purkinje cells. Neurosci. Res. 16, 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. and McCormick, D. A. (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R-ACPD. J. Neurosci. 13, 2199–2216.

    PubMed  CAS  Google Scholar 

  • Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L., and Brown, A. M. (1987) A G-protein directly regulates mammalian cardiac calcium channels. Science 238, 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  • Yool, A. J., Krieger, R. M., and Gruol, D. L. (1992) Multiple ionic mechanisms are activated by the potent agonist quisqualate in cultured cerebellar Purkinje neurons. Brain Res. 573, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Zegarra-Moran, O., and Moran, O. (1993) Modulation of voltage-dependent calcium channels by glutamate in rat cerebellar granule cells. Exp. Brain Res. 95, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, F. and Gallagher, J. P. (1991) Trans-ACPD (trans-D,L-1-amino-1,3cyclopentanedicarboxylic acid) elicited oscillation of membrane potentials in rat dorsolateral septal nucleus neurons recorded intracellularly in vitro. Neurosci. Lett. 125, 147–150.

    CAS  Google Scholar 

  • Zheng, F. and Gallagher, J. P. (1992a) Metabotropic glutamate receptor agonists potentiate a slow after hyperpolarization in CNS neurons. NeuroReport 3, 622–624.

    CAS  Google Scholar 

  • Zheng, F. and Gallagher, J. P. (1992b) Burst firing of rat septal neurons by 1S,3R-ACPD requires influx of extracellular calcium. Eur. J. Pharmacol. 211, 281–282.

    Article  PubMed  CAS  Google Scholar 

  • Zorumski, C. F. and Thio, L. L. (1992) Properties of vertebrate glutamate receptors: calcium mobilization and desensitization. Prog. Neurobiol. 39, 295–336.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gerber, U., Gähwiler, B.H. (1994). Modulation of Ionic Currents by Metabotropic Glutamate Receptors in the CNS. In: Conn, P.J., Patel, J. (eds) The Metabotropic Glutamate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2298-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2298-7_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-006-9

  • Online ISBN: 978-1-4757-2298-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics