Skip to main content

Second-Messenger Systems Coupled to Metabotropic Glutamate Receptors

  • Chapter
The Metabotropic Glutamate Receptors

Part of the book series: The Receptors ((REC))

Abstract

Glutamate and other excitatory amino acids (EAAs) have long been known to increase the levels of various second-messenger systems in different nervous system preparations. However, until recent years, these effects were generally held to be secondary to activation of glutamate-gated cation channels, and subsequent increases in neurotransmitter release or intracellular calcium concentrations. The first direct evidence for the existence of glutamate receptors directly coupled to second-messenger systems via GTP-binding proteins (G-proteins) came in the mid1980s with the discovery of glutamate receptors coupled to activation of phosphoinositide hydrolysis. Since that time, it has become clear that members of the metabotropic glutamate receptor (mGluR) family are coupled, either directly or indirectly, to a variety of second-messenger systems, including activation of phosphoinositide hydrolysis, regulation of adenylyl cyclase, activation of phospholipase D, increased cyclic guanosine mono-phosphate (cGMP) accumulation, and arachidonic acid release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, P., Hajimohammadreza, I., Brammer, M. J., Campbell, I. C., and Meldrum, B. S. (1990) Presynaptic glutamate/quisqualate receptors: effects on synaptosomal free calcium concentrations. J. Neurochem. 55, 1850–1854.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, S. P. H., Hill, S. J., and Kendall, D. A. (1990) Excitatory amino acid-induced formation of inositol phosphates in guinea-pig cerebral cortical slices: involvement of ionotropic or metabotropic receptors? J. Neurochem. 55, 1439–1441.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, S. P. H., Curtis, A. R., Hill, S. J., and Kendall, D. A. (1992) Activation of a metabotropic excitatory amino acid receptor potentiates An adenosine receptor-stimulated cyclic AMP accumulation. Neurosci. Leu. 146, 231–233.

    Article  CAS  Google Scholar 

  • Ambrosini, A. and Meldolesi, J. (1989) Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J. Neurochem. 53, 825–833.

    Article  PubMed  CAS  Google Scholar 

  • Aniksztejn, L., Bregestovski, P., and Ben-Ari, Y. (1991) Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur. J. Pharmacol. 205, 327–328.

    Article  PubMed  CAS  Google Scholar 

  • Aniksztejn, L., Otani, S., and Ben-Ari, Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500–505.

    Article  PubMed  Google Scholar 

  • Aramon, I. and Nakanishi, S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8, 757–765.

    Article  Google Scholar 

  • Aronica, E., Condorelli, D. F., Nicoletti, F., Albani, P. D., Amico, C., and Balazs, R. (1993) Metabotropic glutamate receptors in cultured cerebellar granule cells: developmental profile. J. Neurochem. 60, 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Baba, A. (1987) Neurochemical characterization of cysteine sulfinic acid, an excitatory amino acid, in hippocampus. Japan. J. Pharmacol. 43, 1–7.

    Article  CAS  Google Scholar 

  • Baba, A., Saga, H., and Hashimoto, H. (1993) Inhibitory glutamate response on cyclic AMP formation in cultured astrocytes. Neurosci. Lett. 149, 182–184.

    Article  PubMed  CAS  Google Scholar 

  • Bashir, Z. I., Bortolotto, Z. A., Davies, C. H., Berretta, N., Irving, A. J., Seal, A. J., Henley, J. M., Jane, D. E., Watkins, J. C., and Collingridge, G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Billah, M. M. (1993) Phospholipase D and cell signalling. Curr. Opinion Immunol. 5, 114–123.

    Article  CAS  Google Scholar 

  • Billah, M. M. and Anthes, J. C. (1990) The regulation and cellular function of phosphatidylcholine hydrolysis. Biochem. J. 269, 281–291.

    PubMed  CAS  Google Scholar 

  • Birse, E. F., Eaton, S. A., Jane, D. E., St. Jones, P. L., Porter, R. H. P., Pook, P. C., Sunter, D. C., Udvarhelyi, M., Wharton, B., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Phenylglcine derivatives as new pharmacological tools for investigating the role of metabotropic glutamate receptors in the central nervous system. Neuroscience 3, 481–488.

    Article  Google Scholar 

  • Blackstone, C. D., Supattapone, S., and Snyder, S. H. (1989) Inositol phospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. USA 86, 4316–4320.

    Article  PubMed  CAS  Google Scholar 

  • Boss, V. and Conn, P. J. (1992) Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J. Neurochem. 59, 2340–2343.

    Article  PubMed  CAS  Google Scholar 

  • Boss, V., Nutt, K. M., and Conn, P. J. (1993) L-Cysteine sulfinic acid as an endogenous agonist of a novel metabotropic receptor coupled to stimulation of phospholipase D activity. Mol. Pharmacol. (in press).

    Google Scholar 

  • Boss V., Desai M. A., Smith, T. S., and Conn, P. J. (1992) Trans-ACPD-induced phosphoinositide hydrolysis and modulation of hippocampal pyramidal cell excitability do not undergo parallel developmental regulation. Brain Res. 594, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Bouchelouche, P., Belhage, B., Frandsen, A., Drejer, J., and Schousboe, A. (1989) Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Cat+ and activation of Cat* influx. Exp. Brain Res. 76, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S. and Snyder, S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86, 9030–9033.

    Article  PubMed  CAS  Google Scholar 

  • Briley, P. A., Kouyoumdjian, J. C., Maidamous, M., and Gonnard, P. (1979) Effect of L-glutamate and kainate on rat cerebellar cGMP levels in vivo. Eur. J. Pharmacol. 54, 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Bruns, R. F., Pons, F., and Daly, J. W. (1980) Glutamate-and veratridine-elicited accumulations of cyclic AMP in brain slices: a role for factors which potentiate adenosine-responsive systems. Brain Res. 189, 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Cartmell, J., Kemp, J. A., Alexander, S. P. H., Hill, S. J., and Kendall, D. A. (1992) Inhibition of forskolin-stimulated cyclic AMP formation by 1–aminocyclopentane-trans-1,3–dicarboxylate in guinea-pig cerebral cortical slices. J. Neurochem. 58, 1964–1966.

    Article  PubMed  CAS  Google Scholar 

  • Casabona, G., Genazzani, A. A., Di Stefano, M., Sortino, M. A., and Nicoletti, F. (1992) Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1S,3R-aminocyclopentane- 1,3–dicarboxlic acid in brain slices. J. Neurochem. 59, 1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Charpak, S., Gähwiler, B. H., Do, K. Q., and Knöpfel, T. (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347, 765–767.

    Article  PubMed  CAS  Google Scholar 

  • Chavez-Noriega, L. E. and Stevens, C. F. (1992) Modulation of synaptic efficacy in

    Google Scholar 

  • field CA1 of the rat hippocampus by forskolin. Brain Res 574 85–92.

    Google Scholar 

  • Chuang, D. (1989) Neurotransmitter receptors and phosphoinositide turnover. Ann.

    Google Scholar 

  • Rev. Pharmacol. Toxicol. 29 71–110.

    Google Scholar 

  • Chung, D. S., Winder, D. G., and Conn, P. J. (1993) 4–Bromohomoibotenic acid selectively activates an ACPD-insensitive metabotropic glutamate receptor coupled to phosphoinositide hydrolysis in rat cortical slices. J. Neurochem. (in press)

    Google Scholar 

  • Collins, D. R. and Davies, S. N. (1993) Co-administration of (1S,3R)-1–aminocyclopentane-1,3–dicarboxylic acid and arachidonic acid potentiates synaptic transmission in rat hippocampal slices. Eur. J. Pharmacol. 240, 325, 326.

    Google Scholar 

  • Conn, P. J. and Desai, M. A. (1991) Pharmacology and physiology of metabotropic glutamate receptors in mammalian central nervous system. Drug Dey. Res. 24, 207–229.

    Article  CAS  Google Scholar 

  • Curras, M. C. and Dingledine, R. (1992) Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3–hydroxy-5–methyl-4–isoxazolproprionate receptors. Mol. Pharmacol. 41, 520–526.

    PubMed  CAS  Google Scholar 

  • Desai, M. A. and Conn, P. J. (1990) Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Lett. 109, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse 12, 206–213.

    Article  PubMed  CAS  Google Scholar 

  • Doble, A. and Perrier, M. L. (1989) Pharmacology of excitatory amino acid receptors coupled to inositol phosphate metabolism in neonatal rat striatum. Neurochem. Int. 15, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, J., Kendall, D. A., and Hill, S. J. (1990) Discriminatory effects of forskolin and EGTA on the indirect cyclic AMP responses to histamine, noradrenaline, 5–hydroxytryptamine, and glutamate in guinea-pig cerebral cortical slices. J. Neurochem. 54, 1484–1491.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, S. M. and Bear, M. F. (1989) A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246, 673–675.

    Article  PubMed  CAS  Google Scholar 

  • Dumuis, A., Pin, J. P., Oomagari, K., Sebben, M., and Bockaert, J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347, 181–183.

    Article  Google Scholar 

  • Dumuis, A., Sebben, M., Fagni, L., Prezeau, L., Manzoni, O., Cragoe, E. J., Jr., and Bockaert, J. (1993) Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca2+ exchanger in neuronal cells. Mol. Pharmacol. 43, 976–981.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., Taylor, M., Heginbotham, L. R., and Proctor, W. R. (1992) Long-term increases in excitability in the CA1 region of rat hippocampus induced by 13–adrenergic stimulation: possible mediation by cAMP. J. Neurosci. 12, 506–517.

    PubMed  CAS  Google Scholar 

  • Eaton, S. A., Jane, D. E., Jones, P. L. S. J., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by (S)-4–carboxyphenylglycine and (RS)-a methyl-4–carboxyphenylglycine. Eur. J. Pharmacol. 244, 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein 3y subunits. Nature 356, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein, P. G., Schrader, K. A., Bakalyar, H. A., Tang, W., Krupinski, J., Gilman, A. G., and Reed, R. R. (1991) Molecular cloning and characterization of a Caz+/ calmodulin-insensitive adenylyl cyclase from rat brain. Proc. Natl. Acad. Sci. USA 88, 10,173–10, 177.

    Google Scholar 

  • Foster, G. A. and Roberts, P. J. (1980) Pharmacology of excitatory amino acid receptors mediating the stimulation of rat cerebellar cyclic GMP levels in vitro. Life Sci. 27, 215–221.

    Article  CAS  Google Scholar 

  • Foster, G. A. and Roberts, P. J. (1981) Stimulation of rat cerebellar guanosine 3’,5’-cyclic monophosphate (cyclic GMP) levels: effects of amino acid antagonists. Br. J. Pharmacol. 74, 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Furuya, S., Ohmori, H., Shigemoto, T., and Sugiyama, H. (1989) Intracellular calcium mobilization triggered by a glutamate receptor in rat cultured hippocampal cells. J. Physiol. 414, 539–548.

    PubMed  CAS  Google Scholar 

  • Garbarg, M. and Schwartz, J. (1988) Synergism between histamine H1– and H2–receptors in the cAMP response in guinea pig brain slices: effects of phorbol esters and calcium. Mol. Pharmacol. 33, 36–43.

    Google Scholar 

  • Garthwaite, J. and Balazs, R. (1978) Supersensitivity of the cyclic GMP response to glutamate during cerebellar maturation. Nature 275, 328, 329.

    Google Scholar 

  • Garthwaite, J., Garthwaite, G., Palmer, R. M. J., and Moncada, S. (1989a) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. 172, 413–416.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., Southam, E., and Anderton, M. (1989b) A kainate receptor linked to nitric oxide synthesis from arginine. J. Neurochem. 53, 1952–1954.

    Article  PubMed  CAS  Google Scholar 

  • Genazzani, A. A., Casabona, G., L’Episcopo, M. R., Condorelli, D. F., Dell’Albani, P., Shinozaki, H., and Nicoletti, F. (1993) Characterization of metabotropic glutamate receptors negatively linked to adenylyl cyclase in brain slices. Brain Res. 622, 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, U. and Gähwiler, B. H. (1992) 4C3HPG (RS-4–carboxy-3–hydroxyphenylglcine), a weak agonist at metabotropic glutamate receptors, occludes the action of trans-ACPD in hippocampus. Eur. J. Pharmacol. 221 401,402.

    Google Scholar 

  • Gerber, U., Sim, J. A., and Gähwiler, B. H. (1992) Reduction of potassium conductances mediated by metabotropic glutamate receptors in rat CA3 pyramidal cells does not require protein kinase A. Eur. J. Neurosci. 4, 792–797.

    Article  PubMed  Google Scholar 

  • Gereau, R. W. and Conn, P. J. (1994) A cyclic AMP-dependent form of associative synaptic plasticity induced by coactivation of 13–adrenergic receptors and metabotropic glutamate receptors in rat hippocampus. J. Neurosci. 14, 3310–3318.

    PubMed  CAS  Google Scholar 

  • Glaum, S. R. and Miller, R. J. (1993a) Zinc protoporphyrin-1X blocks the effects of metabotropic glutamate receptor activation in the rat nucleus tractus solitarius. Mol. Pharmacol. 43, 965–969.

    PubMed  CAS  Google Scholar 

  • Glaum, S. R. and Miller, R. J. (1993b) Activation of metabotropic glutamate receptor produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat. J. Neurosci. 13 (4), 1636–1641.

    PubMed  CAS  Google Scholar 

  • Glaum, S. R., Holzwarth, J. A., and Miller, R. J. (1990a) Glutamate receptors activate Cat+ mobilization and Ca’ influx into astrocytes. Proc. Natl. Acad. Sci. USA 87, 3454–3458.

    Article  PubMed  CAS  Google Scholar 

  • Glaum, S. R., Scholz, W. K., and Miller, R. J. (1990b) Acute and long-term glutamate-mediated regulation of [Ca++]i in rat hippocampal pyramidal neurons in vitro. J. Pharmacol. Exp. Ther. 253, 1293–1302.

    PubMed  CAS  Google Scholar 

  • Godfrey, P. P. and Taghavi, Z. (1990) The effect of non-NMDA antagonists and phorbol esters on excitatory amino acid-stimulated inositol phosphate formation in rat cerebral cortex. Neurochem. Int. 16, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Goh, J. W. and Ballyk, B. A. (1993) A cAMP-linked metabotropic glutamate receptor in hippocampus. NeuroReport 4, 454–456.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, R. (1990) Cysteine sulfinate (CSA) as an excitatory amino acid transmitter candidate in the mammalian central nervous system. Prog. Neurobiol. 35, 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Guiramand, J., Vignes, M., and Recasens, M. (1991) A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brain synaptoneurosomes: II. calcium dependency, cadmium inhibition. J. Neurochem. 57, 1501–1509.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L. and Gähwiler, B. H. (1992) Vasoactive intestinal polypeptide modulates neuronal excitability in hippocampal slices of the rat. Neurosci. 47 (2), 273–277.

    Article  CAS  Google Scholar 

  • Harvey, J. and Collingridge, G. L. (1993) Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br. J. Pharmacol. 109, 1085–1090.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham, L. R. and Dunwiddie, T. V. (1991) Long-term increases in the evoked population spike in the CA1 region of rat hippocampus induced by (3–adrenergic receptor activation. J. Neurosci. 11 (8), 2519–2527.

    PubMed  CAS  Google Scholar 

  • Herrero, I., Miras-Portugal, M. T., and Sanchez-Prieto, J. (1992) Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360, 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Hoehn, K. and White, T. D. (1990a) Role of excitatory amino acid receptors in K’-and glutamate-evoked release of endogenous adenosine from rat cortical slices. J. Neurochem. 54, 256–265.

    Article  PubMed  CAS  Google Scholar 

  • Hoehn, K. and White, T. D. (1990b) N-Methyl-D-aspartate, kainate, and quisqualate release endogenous adenosine from rat cortical slices. Neurosci. 39, 441–450.

    Article  CAS  Google Scholar 

  • Holler, T., Cappel, E., Klein, J., and Löffelholz, K. (1993) Glutamate activates phospholipase D in hippocampal slices of newborn and adult rats. J. Neurochem. 61, 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Houamed, K. M., Kuijper, J. L., Gilbert, T. L., Haldeman, B. A., O’Hara, P. J., Mulvihill, E. R., Almers, W., and Hagen, F. S. (1991) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252, 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G. and Storm, J. F. (1992) 2–Amino-3–phosphonopropionate fails to block postsynaptic effects of metabotropic glutamate receptors in rat hippocampal neurons. Acta. Physiol. Scand. 145, 187–191.

    Google Scholar 

  • Irving, A. J., Collingridge, G. L., and Schofield, J. G. (1992) L-Glutamate and acetylcholine mobilise Cat+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca“ sensitivities. Cell Calcium 13, 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Irving, A. J.., Schofield, J. G., Watkins, J. C., Sunter, D. C., and Collingridge, G. L. (1990)1 S,3R-ACPD stimulates and L-AP3 blocks Ca’ mobilization in rat cerebellar neurons. Eur. J. Pharmacol. 186, 363–365.

    Google Scholar 

  • Itano, Y., Murayama, T., Kitamura, Y., and Nomura, Y. (1992) Glutamate inhibits adenylate cyclase activity in dispersed rat hippocampal cells directly via an N-methyl-D-aspartate-like metabotropic receptor. J. Neurochem. 59, 822–828.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. D. and Minneman, K. P. (1987) Differentiation of a1–adrenergic receptors linked to phosphatidylinositol turnover and and cAMP accumulation in rat brain. Mol. Pharmacol. 31, 239–246.

    PubMed  CAS  Google Scholar 

  • Knöpfel T., Vranesic I., Gähwiler B. H., and Brown D. A. (1990) Muscarinic and 3adrenergic depression of the slow Cat+-activated potassium conductance in hippocampal CA3 pyramidal cells is not mediated by a reduction of depolarization-induced cytosolic Ca“ transients. Proc. Natl. Acad. Sci. USA 87, 4083–4087.

    Article  PubMed  Google Scholar 

  • Limbird, L. E. (1988) Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 2, 2686–2695.

    PubMed  CAS  Google Scholar 

  • Littman, L., Glatt, B. S., and Robinson, M. B. (1993) Multiple subtypes of excitatory amino acid receptors coupled to the hydrolysis of phosphoinositides in rat brain. J. Neurochem. 61, 586–593.

    Article  PubMed  CAS  Google Scholar 

  • Löffelholz, K. (1989) Receptor regulation of choline phospholipid hydrolysis. A novel source of diacylglycerol and phosphatididic acid. Biochem. Pharmacol. 38, 1543–1549.

    Article  PubMed  Google Scholar 

  • Madison, D. V., Malenka, R. C., and Nicoll, R. A. (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Ann. Rev. Neurosci. 14, 379–397.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti, P. J. and Schorderet, M. (1985) Norepinephrine and histamine potentiate the increases in cyclic adenosine 3’:5’-monophosphate elicited by vasoactive intestinal polypeptide in mouse cerebral cortical slices: mediation by al-adrenergic and HI-histaminergic receptors. J. Neurosci. 5, 362–368.

    PubMed  CAS  Google Scholar 

  • Manzoni, O., Prezeau, L., Rassendren, F. A., Sladeczek, F., Curry, K., and Bockaert, J. (1992a) Both enantiomers of 1–aminocyclopentyl-1,3–dicarboxylate are full agonists of metabotropic glutamate receptors coupled to phospholipase C. Mol. Pharmacol. 42, 322–327.

    PubMed  CAS  Google Scholar 

  • Manzoni, O., Prezeau, L., Sladeczek, F., and Bockaert, J. (1992b) Trans-ACPD inhibits cAMP formation via a pertussis toxin-sensitive G-protein. Eur. J. Pharmacol. 225, 357–358.

    CAS  Google Scholar 

  • Manzoni, O., Fagni, L., Pin, J. P., Rassendren, F., Poulat, F., Sladeczek, F., and Bockaert, J. (1990) (trans)-1–Amino-cyclopentyl-1,3–dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and Xenopus oocytes. Mol. Pharmacol. 38, 1–6.

    Google Scholar 

  • Manzoni, O. J. J., Poulat, F., Do, E., Sahuquet, A., Sassetti, I., Bockaert, J., and Sladeczek, F. A. J. (1991) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons. Eur. J. Pharmacol. 207, 231–241.

    Google Scholar 

  • Masu, M. and Nakanishi, S. (1993) Molecular biology of metabotropic glutamate receptors and their physiological function. Functional Neurology 8, 35.

    Google Scholar 

  • Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • McDonough, P. M., Goldstein, D., and Brown, J. H. (1988) Elevation of cytoplasmic calcium concentration stimulates hydrolysis of phosphatidylinositol bisphosphate in chick heart cells: effect of sodium channel activators. Mol. Pharmacol. 33, 310–315.

    PubMed  CAS  Google Scholar 

  • Milani, D., Facci, L., Buso, M., Toffano, G., Leon, A., and Skaper, S. D. (1990) Excitatory amino acid receptor agonists stimulate membrane inositol phospholipid hydrolysis and increase cytoplasmic free Ca“ in primary cultures of retinal neurons. Cellular Signalling 2, 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, S. N. and Miller, R. J. (1988) A glutamate receptor regulates Ca’ mobilization in hippocampal neurons. Proc. Natl. Acad. Sci. USA 85, 8737–8741.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, S. N. and Miller, R. J. (1989) Two distinct quisqualate receptors regulate Cat’ homeostasis in hippocampal neurons in vitro. Mol. Pharmacol. 35, 671–680.

    PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Saitoh, K., Ishihara, T., Ishida, M., and Haruhiko, S. (1990) (25,35,45)a-(carboxyciclopropyl)glycine is a novel agonist of metabotropic glutamate receptors. Eur. J. Pharmacol. 184, 205–206.

    Google Scholar 

  • Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2–amino-4phosphonobutyrate. J. Biol. Chem. 268, 11868–11873.

    PubMed  CAS  Google Scholar 

  • Nicoletti, F., Iadarola, M. F., Wroblewski, J. T., and Costa, E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with al-adrenoreceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Meek, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L., and Costa, E. (1986b) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Wroblewski, J. T., Fadda, E., and Costa, E. (1988) Pertussis toxin inhibits signal transduction at a specific metabolotropic glutamate receptor in primary cultures of cerebellar granule cells. Neuropharmacol. 27, 551–556.

    Article  CAS  Google Scholar 

  • Nicoletti, F., Magri, G., Ingrao, F., Bruno, V., Catania, M. V., Dell’Albani, P., Condorelli, D. F., and Avola, R. (1990) Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduce proliferation in cultured astrocytes. J. Neurochem. 54, 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Okada, D. (1992) Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J. Neurochem. 59, 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  • Ormandy, G. C. (1992) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in rat hippocampus by L-aspartate- 3–hydroxamate. Brain Res. 572, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, E., Monaghan, D. T., and Cotman, C. W. (1988) Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation. Mol. Brain Res. 4, 161–165.

    Article  CAS  Google Scholar 

  • Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–587.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, E., Nangel-Taylor, K., Krause, J. D., Roxas, A., and Cotman, C. W. (1990) Changes in excitatory amino acid modulation of phosphoinositide metabolism during development. Dey. Brain Res. 51, 132–134.

    Article  CAS  Google Scholar 

  • Park, T. S. and Gidday, J. M. (1990) Effect of dipyridamole on cerebral extracellular

    Google Scholar 

  • adenosine level in vivo. J. Cereb. Blood Flow Metab. 10 424–427.

    Google Scholar 

  • Patel, J., Keith, R. A., Salama, A. I., and Moore, W. C. (1991) Role of calcium in regulation of phosphoinositide signaling pathway. J. Mol. Neurosci. 3, 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Patel, J., Moore, W. C., Thompson, C., Keith, R. A., and Salama, A. I. (1990) Characterization of the quisqualate receptor linked to phosphoinositide hydrolysis in neurocortical cultures. J. Neurochem. 54, 1461–1466.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, B., Morrow, C., and Murphy, S. (1990) Further characterisation of excitatory amino acid receptors coupled to phosphoinositide metabolism in astrocytes. Neurosci. Lett. 113, 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Pilc, A. and Enna, S. J. (1986) Activation of a2–adrenergic receptors augments neurotransmitter-stimulated cyclic AMP accumulation in rat brain cerebral cortical slices. J. Pharmacol. Exp. Ther. 237, 725–730.

    Google Scholar 

  • Porter, P. H. P. and Roberts, P. J. (1993) Glutamate metabotropic receptor activation in neonatal rat cerebral cortex by sulphur-containing excitatory amino acids. Neurosci. Lett. 154, 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Porter, R. H. P., Briggs, R. S. J., and Roberts, P. J. (1992) L-Aspartate-13–hydroxamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortial slices. Neurosci. Lett. 144, 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Prezeau, L., Manzoni, O., Homburger, V., Sladeczek, F., Curry, K., and Bockaert, J. (1992) Characterization of a metabotropic glutamate receptor: direct negative coupling to adenylyl cyclase and involvement of a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. USA 89, 8040–8044.

    Article  PubMed  CAS  Google Scholar 

  • Pullan, L. M., Olney, J. W., Price, M. T., Compton, R. P., Hood, W. F., Michel, J., and Monahan, J. B. (1987) Excitatory amino acid receptor potency and subclass specificity of sulfur-containing amino acids. J. Neurochem. 49, 1301–1307.

    Article  PubMed  CAS  Google Scholar 

  • Rana, R. S. and Hokin, L. E. (1990) Role of phosphoinositides in transmembrane signalling. Physiological Rev. 70, 115–164.

    CAS  Google Scholar 

  • Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G. (1988) A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Recasens, M., Varga, V., Nanopoulos, D., Saadoun, F., Vincendon, G., andBenavides, J. (1982) Evidence for cysteine sulfinate as a neurotransmitter. Brain Res. 239, 153–173.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, P. L., Bruno, G. R., and Datta, S.C. (1990) Glutamate-stimulated, guanine nucleotide-mediated phosphoinositide turnover in astrocytes is inhibited by cyclic AMP. J. Neurochem. 55, 1727–1733.

    Article  PubMed  CAS  Google Scholar 

  • Schaad, N. C., Schorderet, M., and Magistretti, P. J. (1989) Accumulation of cyclic AMP elicited by vasoactive intestinal peptide is potentiated by noradrenaline, histamine, adenosine, baclofen, phorbol esters, and ouabain in mouse cerebral slices: studies on the role of arachadonic acid metabolites and protein kinase. J. Neurochem. 53, 1941–1951.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. J., Thornberry, J. F., and Molloy, B. B. (1977) Effects of kainate and other glutamate analogues on cyclic nucleotide accumulation in slices of rat cerebellum. Brain Res. 121, 182–189.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Hillman, C. C., Jr. (1990) Developmental and pharmacological characterization of quisqualate, ibotenate and trans-1–amino-1,3–cyclopentanedicarboxylic acid stimulations of phosphoinositide hydrolysis in rat cortical brain slices. Biogenic Amines 7, 331–340.

    CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1988) Excitatory amino acid agonist-antagonist interactions at 2–amino-4–phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50, 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1989a) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2–amino-3–phosphonopropionate. J. Neurochem. 53, 1865–1870.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1989b) Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-[3H] Acetylaspartylglutamate binding in rat brain: selective inhibition of phosphoinositide hydrolysis by 2–amino-3–phosphonopropionate. J. Neurochem. 53, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1993) Pharmacology of metabotropic glutamate receptor inhibition of cyclic AMP formation in the adult rat hippocampus. Neurochem. Int. 22, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D., Johnson, B. G., and Monn, J. M. (1992a) Inhibition of cyclic AMP formation by a selective metabotropic glutamate receptor agonist. J. Neurochem. 58, 1184–1186.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D., Johnson, B. G., Sacaan, A. I., True, R. A., and Monn, J. A. (1992b) In vitro and in vivo pharmacology of 1S,3R-and 1R,3S-ACPD: evidence for a role of metabotropic glutamate receptors in striatal motor function. Mol. Neuropharmacol. 2, 33–37.

    CAS  Google Scholar 

  • Schoepp, D. D., Johnson, B. G., True, R. A., and Monn, J. A. (1991) Comparison of (1S,3R)-1–aminocyclopentane-1,3–dicarboxylic acid (1S,3R-ACPD)-and 1R,3S- ACPD-stimulated brain phosphoinositide hydrolysis. Eur. J. Pharmacol. -Mol. Pharmacol. 207, 351–353.

    Article  CAS  Google Scholar 

  • Scholz, W. K. and Palfrey, H. C. (1991) Glutamate-stimulated protein phosphorylation in cultured hippocampal pyramidal neurons. J. Neurosci. 11 (8), 2422–2432.

    PubMed  CAS  Google Scholar 

  • Slack, J. R. and Pockett, S. (1991) Cyclic AMP induces long-term increase in synaptic efficacy in CA1 region of rat hippocampus. Neurosci. Lett. 130, 69–70.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717, 718.

    Google Scholar 

  • Sortino, M. A., Nicoletti, F., and Canonico, P. L. (1991) Metabotropic glutamate receptors in rat hypothalamus characterization and developmental profile. Dey. Brain Res. 61, 169–172.

    Article  CAS  Google Scholar 

  • Stratton, K. R., Worley, P. F., and Baraban, J. M. (1990) Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons. Eur. J. Pharmacol. 186, 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Ito, I., and Hirono, C. (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Ito, I., and Watanabe, M. (1989) Glutamate receptor subtypes may be classified into two major categories: a study of Xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992) A family of metabotropic glutamate receptors. Neuron 8, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, Y., Nomura, A., Masu, M., Shigemotor, R., Mizuno, N., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 1372–1378.

    PubMed  CAS  Google Scholar 

  • Tang, W.-J. and Gilman, A. G. (1991) Type-specific regulation of adenlyl cyclase by G protein 3y subunits. Science 254, 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Trombley, P. Q. and Westbrook, G. L. (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor. J. Neurosci. 12, 2043–2050.

    PubMed  CAS  Google Scholar 

  • Thomsen, C., Kristensen, P., Mulvihill, E., Haldeman, B., and Suzdak, P. D. (1992) L-2–amino-4–phosphonobutyrate (L-AP4) is an agonist at the type IV metabotropic glutamate receptor which is negatively coupled to adenylate cyclase. Eur. J. Pharmacol. 227, 361–362.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, C. and Suzdak, P. D. (1993) 4–carboxy-3–hydroxyphenylglycine, an antagonist at type I metabotropic glutamate receptors. Eur. J. Pharmacol. 245, 299–301.

    Google Scholar 

  • Verdoorn, T. A. and Dingledine, R. (1988) Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology. Mol. Pharmacol. 34, 298–307.

    PubMed  CAS  Google Scholar 

  • Verma, A., Hirsch, D. J., Glatt, G. V., Ronnett, G. V., and Snyder, S. H. (1993) Carbon monoxide: a putative neural messenger. Science 259, 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S. (1989) Two distinct quisqualate receptor systems are present on striatal neurons. Brain Res. 491, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Winder, D. G. and Conn, P. J. (1992) Activation of metabotropic glutamate receptors in the hippocampus increases cyclic AMP accumulation. J. Neurochem. 59, 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Winder, D. G. and Conn, P. J. (1993) Activation of metabotropic glutamate receptors increases cAMP accumulation in hippocampus by potentiating responses to endogenous adenosine. J. Neurosci. 13, 38–44.

    PubMed  CAS  Google Scholar 

  • Winder, D. G., Smith, T. S., and Conn, P. J. (1993) Pharmacological differentiation of metabotropic glutamate receptors coupled to potentiation of cAMP responses and phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 266, 518–525.

    PubMed  CAS  Google Scholar 

  • Wood, P. L., Emmett, M. R., Rao, T. S., Cler, J., Mick, S., and Iyengar, S. (1990) Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo. J. Neurochem. 55, 346–348.

    Article  PubMed  CAS  Google Scholar 

  • Wroblewska, B., Wroblewski, J. T., Saab, O. H., and Neale, J. H. (1993) N-acetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J. Neurochem. 61, 943–948.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Conn, P.J., Boss, V., Chung, D.S. (1994). Second-Messenger Systems Coupled to Metabotropic Glutamate Receptors. In: Conn, P.J., Patel, J. (eds) The Metabotropic Glutamate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2298-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2298-7_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-006-9

  • Online ISBN: 978-1-4757-2298-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics