Pharmacological Properties of Metabotropic Glutamate Receptors

  • Darryle D. Schoepp
Part of the The Receptors book series (REC)


Metabotropic glutamate receptors (mGluRs) were initially discovered by their unique coupling mechanism and pharmacological characteristics. This was preceded by the recognition in the early 1980s of phosphoinositide hydrolysis as a novel signal transduction pathway in the mammalian central nervous system (CNS) (Berridge and Irvine, 1984; Nishizuka, 1984). Pharmacological studies of receptor-mediated phosphoinositide hydrolysis in CNS tissues were greatly facilitated by use of lithium ion to amplify agonist-dependent responses. Lithium at concentrations of 1–10 mM uncompetitively inhibits the enzyme inositol-1-monophosphatase (Hallcher and Sherman, 1980). Using 3H-myo-inositol to label 3H-phosphoinositides and lithium to inhibit inositol-l-monophosphatase, Berridge et al. (1982) demonstrated in rat cerebral cortical slices that cholinergic and adrenergic receptor agonists will increase phosphoinositide hydrolysis and, thus, produce an easily measured increase in the formation of 3H-inositol-1-monophosphate. The use of this sensitive technique allowed other investigators to begin characterizing the various receptor systems that were linked to this novel second-messenger system in the CNS (see Fisher and Agranoff, 1987).


Glutamate Receptor Xenopus Oocyte Metabotropic Glutamate Receptor Ionotropic Glutamate Receptor Ibotenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Sugihara, H. Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+signal transduction. J. Biol. Chem. 267 13,361–13,368.Google Scholar
  2. Ahmed, Z., Lewis, C. A., and Faber, D. S. (1990) Glutamate stimulates release of Ca’ from internal stores in astroglia. Brain Res. 516, 165–169.PubMedCrossRefGoogle Scholar
  3. Anwyl, R. (1991) The role of the metabotropic receptor in synaptic plasticity. Trends Pharmacol. Sci. 12, 324–326.PubMedCrossRefGoogle Scholar
  4. Aramori, I. and Nakanishi, S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR 1, in transfected CHO cell. Neuron 8, 757–765.PubMedCrossRefGoogle Scholar
  5. Aronica, E., Nicoletti, F., Condorelli, D. F., and Balazs, R. (1993) Pharmacological characteristics of metabotropic glutamate receptors in cultured cerebellar granule cells. Neurochem. Res. 18, 605–612.PubMedCrossRefGoogle Scholar
  6. Bardsley, M. E. and Roberts, P. J. (1983) Stimulation of phosphatidylinositol turnover in rat brain by glutamate and aspartate. Br. J. Pharmacol. 79, 401 P.CrossRefGoogle Scholar
  7. Bashir, Z. I., Bortolotto, Z. A., Davies, C. H., Berretta, N., Irving, A. J., Seal, A. J., Henley, J. M., Jane, D. E., Watkins, J. C., and Collingridge, G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.Google Scholar
  8. Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.PubMedCrossRefGoogle Scholar
  9. Berridge, M. J., Downes, C. P., and Hanley, M. R. (1982) Lithium amplifies agonistdependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.Google Scholar
  10. Birse, E. F., Eaton, S. A., Jane, D. E., Jones P. L. St. J., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Wharton, B., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Phenylglycine derivatives as new pharmacological tools for investigating the role of metabotropic glutamate receptors in the central nervous system. Neuroscience 52, 481–488.Google Scholar
  11. Boss, V. and Conn, P. J. (1992) Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J. Neurochem. 59, 2340–2343.PubMedCrossRefGoogle Scholar
  12. Boss, V. and Conn, P. J. (1993) L-Cysteine sulfinic acid (L-CSA): an endogenous agonist of a metabotropic excitatory amino acid receptor subtype. Abstr. Soc. Neurosci. 19, 626.Google Scholar
  13. Boss, V., Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Trans-ACPD-induced phosphoinositide hydrolysis and modulation of hippocampal pyramidal cell excitability do not undergo parallel developmental regulation. Brain Res. 594, 181–188.PubMedCrossRefGoogle Scholar
  14. Cartmell, J., Kemp, J. A., Alexander, S. P. H., Hill, S. J., and Kendall, D. A. (1992) Inhibition of forskolin-stimulated cyclic AMP formation by 1-aminocyclopentanetrans-1,3-dicarboxylate in guinea-pig cerebral cortical slices. J. Neurochem. 58, 1964–1966.PubMedCrossRefGoogle Scholar
  15. Cartmell, J., Curtis, A. R., Kemp, J. A., Kendall, D. A., and Alexander, S. P. H. (1993) Subtypes of metabotropic excitatory amino acid receptor distinguished by stereoisomers of the rigid glutamate analogue, 1-aminocyclopentane-1,3-dicarboxylic acid. Neurosci. Lett. 153, 107–110.PubMedCrossRefGoogle Scholar
  16. Casabona, G., Genazzani, A. A., Di Stefano, M., Sortino, M. A., and Nicoletti, F. (1992) Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid in brain slices. J. Neurochem. 59, 1161–1163.PubMedCrossRefGoogle Scholar
  17. Catania, M. V., Hollingsworth, Z., Penney, J. B., and Young, A. B. (1993) Quisqualate resolves two distinct metabotropic [3H]glutamate binding sites. NeuroReport 4, 311–313.PubMedCrossRefGoogle Scholar
  18. Chung, D. S., Winder, D. G., and Conn, P. J. (1993) 4-Bromohomoibotenic acid selectively activates an ACPD-insensitive metabotropic glutamate receptor coupled to phosphoinositide hydrolysis in rat cortical slices. J. Neurochem. in press.Google Scholar
  19. Copani, A., Canonico, P. L., and Nicoletti, F. (1990) ß-N-Methylamino-L-alanine (L-BMAA) is a potent agonist of “metabolotropic” glutamate receptors. Eur. J. Pharmacol. 181, 327–328.PubMedCrossRefGoogle Scholar
  20. Copani, A., Canonico, P. L., Catania, M. V., Aronica, E., Bruno, V., Ratti, E., van Amsterdam, F. T. M., Gaviraghi, G., and Nicoletti, F. (1991) Interaction between ß-N-methylamino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res. 558, 79–86.Google Scholar
  21. Desai, M. A. and Conn, P. J. (1990) Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Lett. 109, 157–162.PubMedCrossRefGoogle Scholar
  22. Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse 12, 206–213.PubMedCrossRefGoogle Scholar
  23. Eaton, S. A., Jane, D. E., Jones, P. L. St. J., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxyphenylglycine and (RS)-a-methyl-4-carboxyphenylglycine. Eur. J. Pharmacol. 244, 195–197.PubMedCrossRefGoogle Scholar
  24. Fisher, S. K. and Agranoff, B. W. (1987) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999–1017.PubMedCrossRefGoogle Scholar
  25. Ganong, A. H. and Cotman, C. W. (1982) Acidic amino acid antagonists of lateral perforant path synaptic transmission: agonist-antagonist interactions in the dentate gyrus. Neurosci. Lett. 34, 195–200.PubMedCrossRefGoogle Scholar
  26. Gerber, U., Sim J. A., and Gahwiler, B. H. (1992) Reduction of potassium conductances mediated by metabotropic glutamate receptors in rat CA3 pyramidal cells does not require protein kinase C or protein kinase A. Eur. J. Neurosci. 4, 792–797.PubMedCrossRefGoogle Scholar
  27. Hallcher, L. M. and Sherman, W. R. (1980) The effects of lithium ions and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10,896–10, 901.Google Scholar
  28. Hayashi, Y., Tanabe, Y., Aramon, I., Masu, M., Shimamoto, K., Ohfune, Y., and Nakanishi, S. (1992) Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 107, 539–543.Google Scholar
  29. Holler, T., Cappel, E., Klein, J., and Löffelholz, K. (1993) Glutamate activates phospholipase D in hippocampal slices of newborn and adult rats. J. Neurochem. 61, 1569–1572.PubMedCrossRefGoogle Scholar
  30. Holzwarth, J. A., Gibbons, S. J., Brorson, J. R., Philipson, L. H., and Miller, R. J. (1993) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J. Neurosci. in press.Google Scholar
  31. Honore, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D., and Nielsen, F. E. (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241, 701–703.PubMedCrossRefGoogle Scholar
  32. Houamed, K. M., Kuijper, J. L., Gilbert, T. L., Haldeman, B. A., O’Hara, P. J., Mulvihill, E. R., Almers, W., and Hagen, F. S. (1991) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from the rat brain. Science 252, 1318–1321.Google Scholar
  33. Irving, A. J., Collingridge, G. L., and Schofield, J. G. (1992) Interactions between Ca“ mobilizing mechanisms in cultured rat cerebellar granule cells. J. Physiol. 456, 667–680.PubMedGoogle Scholar
  34. Irving, A. J., Schofield, J. G., Watkins, J. C., Sunter, D. C., and Collingridge, G. L. (1990)1 S,3R-ACPD stimulates and L-AP3 blocks Ca’ mobilization in rat cerebellar neurons. Eur. J. Pharmacol. 186, 363–365.Google Scholar
  35. Ishida, M., Akagi, H., Shimamoto, K., Ohfune, Y., and Shinozaki, H. (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res. 537, 311–314.PubMedCrossRefGoogle Scholar
  36. Ishida, M., Saitoh, T., Shimamoto, K., Ohfune, Y., and Shinozaki, H. (1993) A novel metabotropic glutamate receptor agonist: marked depression of mono-synaptic excitation in the newborn rat isolated spinal cord. Br. J. Pharmacol. 109, 1169–1177.PubMedCrossRefGoogle Scholar
  37. Ito, I. Kohda, A., Tanabe, S., Hirose, E., Hayashi, M., Mitsunaga, S., and Sugiyama, H. (1992) 3,5-Dihydroxyphenyl-glycine: A potent agonist of metabotropic glutamate receptors. NeuroReport 3 1013–1016.Google Scholar
  38. Jane, D. E., Jones, P. L. St. J., Pook, P. C.-K., Salt, T. E., Sunter, D. C., and Watkins, J. C. (1993) Stereospecific antagonism by (+)-a-methyl-4-carboxcyphenylglycine (MCPG) of (1S,3R)-ACPD-induced effects in neonatal rat motoneurones and rat thalamic neurones. Neuropharmacology 32, 725–727.PubMedCrossRefGoogle Scholar
  39. Koerner, J. F. and Cotman, C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 216, 192–198.PubMedCrossRefGoogle Scholar
  40. Kozikowski, A. P., Tuckmantel, W., Liao, Y., Manev, H., Ikonomovic, S., and Wroblewski, J. T. (1993) Synthesis and metabotropic receptor activity of the novel rigidified glutamate analogues (+)- and (—)-trans-azetidine-2,4-dicarboxylic acid and their N-methyl derivatives. J. Med. Chem. 36, 2706–2708.PubMedCrossRefGoogle Scholar
  41. Kristensen, P., Suzdak, P. D., and Thomsen, C. (1993) Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci. Lett. 155, 159–162.PubMedCrossRefGoogle Scholar
  42. Krogsgaard-Larsen, P., Honore, T., Hansen, J. J., Curtis, D. R., and Lodge, D. (1980) New class of glutamate agonist structurally related to ibotenic acid. Nature 284, 64–66.PubMedCrossRefGoogle Scholar
  43. Littman, L., Glatt, B. S., and Robinson, M. B. (1993) Multiple subtypes of excitatory amino acid receptors coupled to the hydrolysis of phosphoinositides in rat brain. J. Neurochem. 61, 586–593.PubMedCrossRefGoogle Scholar
  44. Lombardi, G., Alesiani, M., Leonardi, P., Cherici, G., Pellicciari, R., and Moroni, F. (1993) Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[’H1aspartate output in rat striatum. Brit. J. Pharmacol. 110, 1407–1412CrossRefGoogle Scholar
  45. Lonart, G., Alagarsamy, S., Ravula, R., Wang, J., and Johnson, K. M. (1992) Inhibition of the phospholipase C-linked metabotropic glutamate receptor by 2-amino3-phosphonopropionate is dependent on extracellular calcium. J. Neurochem. 59, 772–775.PubMedCrossRefGoogle Scholar
  46. Manzoni, O., Fagni, L., Pin, J.-P., Rassendren, F., Poulat, F., Sladeczek, F., and Bockaert, J. (1990) (trans)-1-Amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and xenopus oocytes. Mol. Pharmacol. 38, 1–6.Google Scholar
  47. Manzoni, O. J. J., Poulat, F., Do, E., Sahuquet, A., Sassetti, I., Bockaert, J., and Sladeczek, F. A. J. (1991a) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons. Eur. J. Pharmacol. 207, 231–241.PubMedCrossRefGoogle Scholar
  48. Manzoni, O. J. J., Prezeau, L., and Bockaert, J. (1991b) ß-N-methylamino-L-alanine is a low-affinity agonist of metabotropic glutamate receptors. NeuroReport 2, 609–611.PubMedCrossRefGoogle Scholar
  49. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.Google Scholar
  50. Mayer, M. L. and Miller, R. J. (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular Ca’ in mammalian neurons. Trends Pharmacol. Sci. 11, 254–260.PubMedCrossRefGoogle Scholar
  51. Meldrum, B. and Garthwaite, J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–387.PubMedCrossRefGoogle Scholar
  52. Miller, R. F. and Slaughter, M. M. (1986) Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms. Trends Neurosci. (May), 211–218.Google Scholar
  53. Minakami, R., Katsuki, F., and Sugiyama, H. (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionally conserved insertion with no termination codon. Biochem. Biophys. Res. Comm. 194, 622–627.PubMedCrossRefGoogle Scholar
  54. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.Google Scholar
  55. Murphy, S. N. and Miller, R. J. (1988) A glutamate receptor regulates Cat+ mobilization in hippocampal neurons. Proc. Natl. Acad. Sci. USA 85, 8737–8741.PubMedCrossRefGoogle Scholar
  56. Nakagawa, Y., Saitoh, K., Ishihara, T., Ishida, M., and Shinozaki, H. (1990) (2S,3S,4S)a-(Carboxycyclopropyl)glycine is a novel agonist of metabotropic glutamate receptors. Eur. J. Pharmacol. 184, 205–206.Google Scholar
  57. Nakajima, Y., Iwakabe, H. Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4phosphonobutyrate. J. Biol. Chem. 266 11,868–11,873.Google Scholar
  58. Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.PubMedCrossRefGoogle Scholar
  59. Nicoletti, F., Casabona, G., Genazzani, A. A., L’Episcopo, M. R., and Shinozaki, H. (1993) (2S,1’R,2’R,3’R)-2-(2,3-Dicarboxycyclopropyl)glycine enhances quisqualate-stimulated inositol phospholipid hydrolysis in hippocampal slices. Eur. J. Pharmacol. 245, 297–298.Google Scholar
  60. Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with a1-adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.PubMedCrossRefGoogle Scholar
  61. Nicoletti, F., Meek, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L., and Costa, E. (1986b) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40–46.PubMedCrossRefGoogle Scholar
  62. Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., Guidotti, A., and Costa, E. (1986c) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6, 1905–1911.PubMedGoogle Scholar
  63. Nishizuka, Y. (1984) Turnover of inositol phospholipids and signal transduction. Science 225, 1365–1370.PubMedCrossRefGoogle Scholar
  64. Ohfune, Y., Shimamoto, K., Ishida, M., and Shinozaki, H. (1993) Synthesis of L-2(2,3-dicarboxycyclopropyl)glycines, novel conformationally restricted glutamate analogues. Bioorganic & Med. Chem. Lett. 3, 15–18.Google Scholar
  65. Okada, D. (1992) Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J. Neurochem. 59, 1203–1210.PubMedCrossRefGoogle Scholar
  66. Ormandy G. C. (1992) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in rat hippocampus by L-aspartate- 3-hydroxamate. Brain Res. 572, 103–107.PubMedCrossRefGoogle Scholar
  67. Osborne N. N. (1990) Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones. Exp. Eye Res. 50, 397–405.PubMedCrossRefGoogle Scholar
  68. Palmer, E., Monaghan, D. T., and Cotman, C. W. (1988) Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation. Mol. Brain Res. 4, 161–165.CrossRefGoogle Scholar
  69. Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–587.PubMedCrossRefGoogle Scholar
  70. Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. (1986) Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72, 335–340.PubMedCrossRefGoogle Scholar
  71. Porter, R. H. P. and Roberts, P. J. (1993) Glutamate metabotropic receptor activation in neonatal rat cerebral cortex by sulphur-containing excitatory amino acids. Neurosci. Lett. 154, 78–80.PubMedCrossRefGoogle Scholar
  72. Porter, R. H. P., Briggs, R. S. J., and Roberts, P. J. (1992a) L-Aspartate-13-hydroxyamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortical slices. Neurosci. Lett. 144, 87–89.PubMedCrossRefGoogle Scholar
  73. Porter, R. H. P., Roberts, P. J., Jane, D. E., and Watkins, J. C. (1992b) (S)homoquisqualate: a potent agonist at the glutamate metabotropic receptor. Br. J. Pharmacol. 106, 509–510.Google Scholar
  74. Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G. (1988) A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13, 463–467.PubMedCrossRefGoogle Scholar
  75. Recasens, M., Sassetti, I., Nourigat, A., Sladeczek, F., and Bockaert, J. (1987) Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat brain synaptoneurosomes. Eur. J. Pharmacol. 141, 87–93.PubMedCrossRefGoogle Scholar
  76. Sacaan, A. I. and Schoepp, D. D. (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci. Lett. 139, 77–82.PubMedCrossRefGoogle Scholar
  77. Schoepp, D. D. (1993) The biochemical pharmacology of metabotropic glutamate receptors. Biochem. Soc. Trans. 21, 97–102.PubMedGoogle Scholar
  78. Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends in Pharmacol. Sci. 14, 13–20.CrossRefGoogle Scholar
  79. Schoepp, D. D. and Hillman, C. C. (1990) Developmental and pharmacological characterization of quisqualate, ibotenate, and trans-l-amino-1,3-cyclopentanedicarboxylic acid stimulations of phosphoinositide hydrolysis in rat cortical brain slices. Bio genic Amines 7, 331–340.Google Scholar
  80. Schoepp, D. D. and Johnson, B. G. (1988) Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50, 1605–1613.PubMedCrossRefGoogle Scholar
  81. Schoepp, D. D. and Johnson B. G. (1989a) Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-[’H]acetylaspartylglutamate binding in rat brain: Selective inhibition of phosphoinositide hydrolysis by 2-amino3-phosphonopropionate. J. Neurochem. 53 273–278.Google Scholar
  82. Schoepp, D. D. and Johnson, B. G. (1989b) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2 amino-3-phosphonopropionate. J. Neurochem. 53, 1865–1870.PubMedCrossRefGoogle Scholar
  83. Schoepp, D. D. and Johnson, B. G. (1991) In vivo 2-amino-3-phosphonopropionic acid administration to neonatal rats selectively inhibits metabotropic excitatory amino acid receptors ex vivo in brain slices. Neurochem. Int. 18, 411–417.Google Scholar
  84. Schoepp, D. D. and Johnson, B. G. (1993a) Pharmacology of metabotropic glutamate receptor inhibition of cyclic AMP formation in the adult rat hippocampus. Neurochem. Int. 22, 277–283.Google Scholar
  85. Schoepp, D. D. and Johnson, B. G. (1993b) Metabotropic glutamate receptor modulation of cAMP accumulation in the neonatal rat hippocampus. Neuropharmacology 32 1359–1365.Google Scholar
  86. Schoepp, D. D. and True, R. A. (1992) 1S,3R-ACPD-sensitive (metabotropic) [3H]glutamate receptor binding in membranes. Neurosci. Lett. 145, 100–104.Google Scholar
  87. Schoepp, D., Bockaert, J., and Sladeczek, F. (1990a) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends in Pharmacol. Sci. 11, 508–515.CrossRefGoogle Scholar
  88. Schoepp, D. D., Johnson, B. G., Smith, E. C. R., and McQuaid, L. A. (1990b) Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. MolecularPharmacol. 38, 222–228.Google Scholar
  89. Schoepp, D. D., Johnson, B. G., Salhoff, C. R. McDonald, J. W., and Johnston, M. V. (1991a) In vitro and in vivo pharmacology of trans-and cis-(±)-1-amino-1,3cyclopentanedicarboxylic acid: dissociation of metabotropic and ionotropic excitatory amino acid receptor effects. J. Neurochem. 56 1789–1796.Google Scholar
  90. Schoepp, D. D., Johnson, B. G., True, R. A., and Monn, J. A. (1991b) Comparison of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD)- and 1R,3SACPD-stimulated brain phosphoinositide hydrolysis. Eur. J. Pharmacol.—Mol. Pharmacol. Section 207, 351–353.CrossRefGoogle Scholar
  91. Schoepp, D. D., Johnson, B. G., and Monn, J. A. (1992) Inhibition of cyclic AMP formation by a selective metabotropic glutamate receptor agonist. J. Neurochem. 58, 1184–1186.PubMedCrossRefGoogle Scholar
  92. Shinozaki, H., and Ishida, M. (1992) A metabotropic L-glutamate receptor agonist: pharmacological difference between rat central neurones and crayfish neuromuscular junctions. Comp. Biochem. Physiol. 103C, 13–17.Google Scholar
  93. Sladeczek, F., Pin, J.-P., Recasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717–719.PubMedCrossRefGoogle Scholar
  94. Sugiyama, H., Ito, I., and Hirono, C. (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325, 531–533.PubMedCrossRefGoogle Scholar
  95. Sugiyama, H., Ito, I., and Watanabe, M. (1989) Glutamate receptor subtypes may be classified into two major categories: a study on xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.PubMedCrossRefGoogle Scholar
  96. Tanabe, S., Ito, I. and Sugiyama, H. (1991) Possible heterogeneity of metabotropic glutamate receptors induced in xenopus oocytes by rat brain mRNA. Neurosci. Res. 10 71–77.Google Scholar
  97. Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992) A family of metabotropic glutamate receptors. Neuron 8, 169–179.PubMedCrossRefGoogle Scholar
  98. Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 1372–1378.PubMedGoogle Scholar
  99. Thomsen, C. and Suzdak, P. D. (1993a) 4-Carboxy-3-hydroxyphenylglycine, an antagonist at type I metabotropic glutamate receptors. Eur. J. Pharmacol. 245, 299–301.Google Scholar
  100. Thomsen, C. and Suzdak, P. D. (1993b) Serine-O-phosphate has affinity for type-IV, but not type-I, metabotropic glutamate receptor. NeuroReport 4, 1099–1101.Google Scholar
  101. Thomsen, C., Mulvihill, E. R., Haldeman, B., Pickering, D. S., Hampson, D. R., and Suzdak, P. D. (1993) A pharmacological characterization of the mGluRla subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res. 619, 22–28.PubMedCrossRefGoogle Scholar
  102. Watkins, J. C., Krogsgaard-Larsen, P., and Honore, T. (1990) Structure—activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11, 25–33.PubMedCrossRefGoogle Scholar
  103. Watson, G. B., Monaghan, D. T., and Lanthorn, T. H. (1990) Selective activation of oscillatory currents by trans-ACPD in rat brain mRNA-injected xenopus oocytes and their blockade by NMDA. Eur. J. Pharmacol. 179, 479–481.Google Scholar
  104. Weiss, S. (1989) Two distinct quisqualate receptor systems are present on striatal neurons. Brain Res. 491, 189–193.PubMedCrossRefGoogle Scholar
  105. Weiss, J. H. Christine, C. W., and Choi, D. W. (1989) Bicarbonate dependence of glutamate receptor activation by (3-N-methylamino-L-alanine: channel recording and study with related compounds. Neuron 3 321–326.Google Scholar
  106. Winder, D. G. and Conn P. J. (1992) Activation of metabotropic glutamate receptors in the hippocampus increases cyclic AMP accumulation. J. Neurochem. 59 375378.Google Scholar
  107. Winder, D. G., Smith, T., and Conn, P. J. (1993) Pharmacological differentiation of metabotropic glutamate receptors coupled to potentiation of cyclic adenosine monophosphate responses and phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 266, 518–525.Google Scholar
  108. Wroblewska, B. Wroblewski, J. T., Saab, O. H., and Neale, J. H. (1993) NAcetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J. Neurochem. 61 943–948.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Darryle D. Schoepp

There are no affiliations available

Personalised recommendations