Noradrenaline-Induced Calcium Inflow Appears not Mediated by Receptor-Operated Calcium Channels in Rat Mesenteric Small Arteries

  • Holger Nilsson
  • Peter E. Jensen
  • Michael J. Mulvany
Part of the Experimental Biology and Medicine book series (EBAM, volume 26)


Activation of vascular smooth muscle requires elevation of the concentration of intracellular free calcium ([Ca2+]i). Calcium may either be released to the cytoplasm from intracellular stores, or it may enter the cytoplasm from the extracellular space via specific membrane channels (28). While large elastic arteries such as the aorta may contract for long periods with only intracellular calcium, the smooth muscle of resistance arteries is greatly dependent on the availability of extracellular calcium (9).


Calcium Inflow Resistance Artery Physiological Salt Solution Calcium Entry Blocker Large Elastic Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amédée, T., C. D. Benham, T. B. Bolton, N. G. Byrne, and W. A. Large. Potassium, chloride and non-selective cation conductances opened by noradrenaline in rabbit ear artery cells. J. Physiol. (Lond.) 423: 551–568, 1990.Google Scholar
  2. 2.
    Aprigliano, O. and K. Hermsmeyer. In vitro denervation of portal vein and caudal artery of the rat. J. Pharmacol. Exp. Ther. 198: 568–577, 1976.PubMedGoogle Scholar
  3. 3.
    Bean, B. P., M. Sturek, A. Puga, and K. Hermsmeyer. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ. Res. 59: 229–235, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Benham, C. D. ATP-gated channels in vascular smooth muscle cells. Ann. N. Y. Acad. Sci 603: 275–285, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Benham, C. D., P. Hess, and R. W. Tsien. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ. Res. 61 (Suppl. I): I-10-I-16, 1987.Google Scholar
  6. 6.
    Bolton, T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 606–718, 1979.PubMedGoogle Scholar
  7. 7.
    Declerck, I., B. Himpens, G. Droogmans, and R. Casteels. The a,-agonist phenylephrine inhibits voltage-gated Cali-channels in vascular smooth muscle cells of rabbit ear artery. Pflügers Arch. 417: 117–119, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Droogmans, G., L. Raeymaekers, and R. Casteels. Electro-and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J. Gen. Physiol. 70: 129–148, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Folkow, B., M. Hallbäck, J. V. Jones, and M. Sutter. Dependence on external calcium for the noradrenaline contractility of the resistance vessels in spontaneously hypertensive and renal hypertensive rats, as compared with normotensive controls. Acta Physiol. Scand. 101: 84–97, 1977.PubMedCrossRefGoogle Scholar
  10. 10.
    Hille, B. Ionic channels of excitable membranes. Sunderland, Mass.: Sinauer Associates, Inc., 1992, p. 1–607.Google Scholar
  11. 11.
    Janis, R. A., P. J. Silver, and D. J. Triggle. Drug action and cellular calcium regulation. Adv. Drug Res. 16: 309–591, 1987.Google Scholar
  12. 12.
    Jensen, P. E., M. J. Mulvany, and C. Aalkjær. Endogenous and exogenous agonistinduced changes in the coupling between [Ca211 and force in rat resistance arteries. Pflügers Arch. 420: 536–543, 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    Jensen, P. E., M. J. Mulvany, C. Aalkjer, H. Nilsson, and H. Yamaguchi. Free cytosolic Ca’ measured with Ca2*-selective electrodes and fura-2 in rat mesenteric resistance vessels. Am. J. Physiol. 265: H741 - H746, 1993.PubMedGoogle Scholar
  14. 14.
    Julou-Schaeffer, G. and J. L. Freslon. Effects of ryanodine on tension development in rat aorta and mesenteric resistance vessels. Br. J. Pharmacol. 95: 605–613, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Kitazawa, T., S. Kobayashi, K. Horiuti, A. V. Somlyo, and A. P. Somlyo. Receptor-coupled, permeabilized smooth muscle. J. Biol. Chem. 264: 5339–5342, 1989.PubMedGoogle Scholar
  16. 16.
    Miller, R. J. Voltage-sensitive Ca’ channels. J. Biol. Chem. 267: 1403–1406, 1992.PubMedGoogle Scholar
  17. 17.
    Mulvany, M. J. and W. Halpern. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 41: 19–26, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Mulvany, M. J., H. Nilsson, and J. A. Flatman. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J. Physiol. 332: 363–373, 1982.PubMedGoogle Scholar
  19. 19.
    Nelson, M. T., J. B. Patlak, J. F. Worley, and N. B. Standen. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 259: C3 - C18, 1990.PubMedGoogle Scholar
  20. 20.
    Nelson, M. T., N. B. Standen, J. E. Brayden, and J. F. Worley III. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336:382–385, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Nilsson. H., P. E. Jensen, and M. J. Mulvany. Minor role for direct adrenoceptormediated atcium entry in rat mesenteric small arteries. J. Vasc. Res. (submitted): 1994.Google Scholar
  22. 22.
    Nishimura, J., R. A. Khalil, J. P. Drenth, and C. Van Breemen. Evidence for increased myofilament Cat’ sensitiv in norepinephrine-activated vascular smooth muscle. Am. J. Physiol. 259: H2 - H8, 1990.PubMedGoogle Scholar
  23. 23.
    Nyborg, N. C. B. and M. J. Mulvany. Effect of felodipine, a new dihydropyridine vasodilator, on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J. Cardiovasc. Pharmacol. 6: 499–505, 1984.PubMedCrossRefGoogle Scholar
  24. 24.
    Rüegg, U. T., A. Wallnöfer, S. Weir, and C. Cauvin. Receptor-operated calcium-permeable channels in vascular smooth muscle. J. Cardiovasc. Pharmacol. 14 (Supp1.6): S49 - S58, 1989.PubMedGoogle Scholar
  25. 25.
    Somlyo, A. P. and A. V. Somlyo. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol. Rev. 30: 197–272, 1968.Google Scholar
  26. 26.
    Su, C., J. A. Bevan, and R. C. Ursillo. Electrical quiescence of pulmonary artery smooth muscle during sympathomimetic stimulation. Circ. Res. 15: 20–27, 1963.CrossRefGoogle Scholar
  27. 27.
    Van Breemen, C., P. Aaronson, and R. Loutzenhiser. Sodium-calcium interactions in mammalian smooth muscle. Pharmacol. Rev. 30: 167–208, 1979.Google Scholar
  28. 28.
    Van Breemen, C. and K. Saida. Cellular mechanisms regulating [Ca211 in smooth muscle. Annu. Rev. Physiol. 51: 315–329, 1989.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang, R., E. Karpinski, and P. T. Pang. Two types of calcium channels in isolated smooth muscle from rat tail artery. Am. J. Physiol. 256: H1361-H1368, 1989.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Holger Nilsson
    • 1
  • Peter E. Jensen
    • 1
  • Michael J. Mulvany
    • 1
  1. 1.Department of PharmacologyUniversity of AarhusAarhusDenmark

Personalised recommendations