The Vascular Ornithine Decarboxylase/Polyamine System in Deoxycorticosterone Acetate-Salt Hypertension

  • E. E. Soltis
  • P. S. Newman
  • M. E. Brown
  • J. L. Trowbridge
  • H. Guo
  • S. Arcot
  • J. W. Olson
Part of the Experimental Biology and Medicine book series (EBAM, volume 26)


The present study was conducted to assess the time course of alterations in vascular polyamines and the associated changes in vascular structure and function in the deoxycorticosterone acetate-salt (DOCA-salt) rat. Cellular and molecular mechanisms involved in these alterations were examined in mesenteric resistance arteries at 1, 3, and 6 weeks of DOCA-salt treatment. Blood pressure increased progressively over the 6 week treatment period. Vascular polyamine contents and ornithine decarboxylase (ODC) activity were increased at all 3 time points in DOCA-salt rats. In contrast to ODC activity, ODC mRNA content was unaltered at 1 and 3 weeks and was significantly decreased at 6 weeks in DOCA-salt rats. Significant alterations in vascular structure and function accompanied the changes in the ODC/polyamine system. Coupled with previous reports from our laboratory, these data suggest that alterations in the ODC/polyamine system and the subsequent elevation in polyamines are required for the vascular changes observed in DOCA-salt hypertension.


Ornithine Decarboxylase Polyamine Content Liquid Scintillation Detection Mesenteric Resistance Artery Mesenteric Vasculature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berecek, K.H., M. Stocker and F. Gross. Changes in renal vascular reactivity at various stages of deoxycorticosterone hypertension in rats. Circ. Res. 46: 619–624, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown, M., P. Newman, J. Trowbridge, B. Rose, S. Pass, A. Feger, H. Guo, J. Olson, E. Soltis. Eflornithine (DFMO) treatment and vascular polyamines in established hypertension in the DOCA-salt rat. FASEB. J. 7: A548, 1993.Google Scholar
  3. 3.
    Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald and W.J. Rutter. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299, 1979.PubMedCrossRefGoogle Scholar
  4. 4.
    Claycomb, W.B. and N.A. Lanson. Proto-oncogene expression in proliferating and differentiating cardiac and skeletal muscle. Biochem. J. 247: 701–706, 1987.PubMedGoogle Scholar
  5. 5.
    Hart, M.N., D.D. Heistad, and M.J. Brody. Effect of chronic hypertension and sympathetic denervation and wall/lumen ratio of cerebral vessels. Hypertension 2: 419–423, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Heby, O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19: 120, 1981.CrossRefGoogle Scholar
  7. 7.
    Heby, O. and L. Persson. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem. Sciences 15: 153–158, 1990.CrossRefGoogle Scholar
  8. 8.
    Hinke, J.A.M. Effect of Ca++ upon contractility of small arteries from DCA-hypertensive rats. Circ. Res. 1819 (suppl I): II-23–II-33, 1966.Google Scholar
  9. 9.
    Katovich, M.J., E.E. Soltis, E. Iloeje and F.P. Field. Time course alterations in vascular adrenergic responsiveness in the DOCA/NaCl-treated rat. Pharmacology 29: 173–180, 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Koenig, H., A. Goldstone, and C.Y. Lu. Polyamines regulate calcium fluxxes in a rapid plasma membrane response. Nature 305: 530–534, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, R.M.K.W., M. Richardson and R. McKenzie. Vascular changes associated with deoxycorticosterone-NaC1induced hypertension. Blood Vessels 26: 137–156, 1989.PubMedGoogle Scholar
  12. 12.
    Leitschuh, M., V. Hingorani, P. Brecher and A.V. Chobanian. Aortic ornithine decarboxylase activity in deoxycorticosterone/salt hypertensive rats. Life Sciences 48: 465–468, 1991.PubMedCrossRefGoogle Scholar
  13. 13.
    Lever, A.F. Slow pressor mechanisms in hypertension: a role for hypertrophy of resistance vessels ? J. Hypertension 4: 515–524, 1986.CrossRefGoogle Scholar
  14. 14.
    Mangiarua, E., N. Basso, P. Ruiz and A.C. Taquini. Vascular structural changes in DOC-salt hypertensive rats. Hypertension 3 (suppl II): 183–186, 1981.Google Scholar
  15. 15.
    Pegg, A.E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234: 249–262, 1986.PubMedGoogle Scholar
  16. 16.
    Seiler, N. and F. Dezeure. Polyamine transport in mammalian cells. Int. J. Biochem. 22: 211–218, 1990.Google Scholar
  17. 17.
    Soltis, E.E. and D.F. Bohr. Cerebral vascular responsiveness in deoxycorticosterone acetate-salt hypertensive rats. Am. J. Physiol. 252: H981 - H203, 1987.Google Scholar
  18. 18.
    Soltis, E.E. and F.P. Field. Extracellular calcium and altered vascular responsiveness in the deoxycorticosterone acetate-salt rat. Hypertension 8: 526–532, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Soltis, E.E., P.S. Newman and J.W. Olson. Polyamines, vascular smooth muscle, and deoxycorticosterone acetate-salt hypertension. Hypertension. 18: 85–92, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Tabor, C.W. and H. Tabor. Polyamines. Annu. Rev. Biochem. 53: 749–790, 1984.CrossRefGoogle Scholar
  21. 21.
    Thadani, P.V. and S.M. Schanberg. Effect of stress and sympathetic activity on rat cardiac and aortic ornithine decarboxylase activity. Life Sciences 25: 1009–1016, 1979.PubMedCrossRefGoogle Scholar
  22. 22.
    Vial, J.H., A.C. Yong and G.W. Boyd. Structural changes vary along individual arterioles in deoxycorticosterone acetate hypertensive rats. J. Hypertension 7: 151–158, 1989.Google Scholar
  23. 23.
    Webb, R.C. Increased vascular sensitivity to serotonin and methysergide in hypertension in rats. Clin. Sci. 63: 73s - 75s, 1982.Google Scholar
  24. 24.
    Yamori, Y., T. Igawa, M. Tagami, T. Kanbe, Y. Nara, M. Kihara and R. Rorie. Humoral trophic influence on cardiovascular structural changes in hypertension. Hypertension 6 (suppl III): III-27–III-32, 1984.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • E. E. Soltis
    • 1
  • P. S. Newman
    • 1
  • M. E. Brown
    • 1
  • J. L. Trowbridge
    • 1
  • H. Guo
    • 1
  • S. Arcot
    • 1
  • J. W. Olson
    • 1
  1. 1.Division of Pharmacology and Experimental TherapeuticsUniversity of KentuckyLexingtonUSA

Personalised recommendations