Skip to main content

EDNO of Venular Origin can Influence Arteriolar Diameter

  • Chapter
The Resistance Arteries

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 26))

  • 36 Accesses

Abstract

These experiments were designed to test the hypothesis that endothelium-derived nitric oxide (EDNO) produced by a venule can relax arteriolar smooth muscle. To test this hypothesis, large first-order venules were isolated and cannulated in series with arterioles of similar order. The venules contained an intact endothelium whereas arterioles were denuded of endothelium by a physical rubbing technique. Denudation of the arteriole was confirmed by the absence of dilation during exposure to acetylcholine (Ach;10−6M). The vessels were pressurized to 30 cmH2O and preconstricted with norepinephrine (Ne; 10−10M). Arteriolar diameter increased as a function of perfusing the venule in the direction of the arteriole with either bradykinin (Bdk; 10−9M) or Ach (10−6M). In contrast, reversing the flow (i.e., arteriole to venule) produced a slight degree of arteriolar constriction to each of the agents. The release of venular EDNO was then inhibited with N G-monomethyl-Larginine (L-NMMA; 10−5M; 1 hr) followed by a reassessment of the arteriolar responses to Bdk and Ach. After treatment with L-NMMA the arteriolar dilations previously observed during Ach or Bdk with flow from venule to arteriole were abolished. The collective results of these experiments demonstrate that venular EDNO can relax arteriolar vascular smooth muscle, independent of an intact arteriolar endothelium. Future experiments will address the venular responses to changes in tissue metabolism which may influence the diameter of nearby arterioles via EDNO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. BOHLEN, H.G. and R.W. GORE. Microvascular pressure in the small intestine. In: Physiology of the Intestinal Circulation,(edited by Shepherd, A.P. and D.N. Granger. New York: Raven Press, 1984, p. 249–260.

    Google Scholar 

  2. BUSSE, R., U. FORSTERMANN, H. MATSUDA, and U. POHL. The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch. 401: 77–83, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. BUSSE, R. and D. LAMONTAGNE. Endothelium-derived bradykinin is responsible for the increase in calcium produced by angiotensin-converting enzyme inhibitors in human endothelial cells. Arch. Pharinacol. 344: 126–129, 1991.

    CAS  Google Scholar 

  4. BUSSE, R., U. POHL, C. KELLNER, and U. KLEMM. Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch. 397: 78–80, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. DULING, B.R. and R.M. BERNE. Longitudinal gradients in periarteriolar oxygen tension. Circ. Res. 27: 669–678, 1970.

    Article  PubMed  CAS  Google Scholar 

  6. DULING, B.R., R.W. GORE, R.G. DACEY, and D.N. DAMON. Methods for isolation, cannulation, and in vitro study of single microvessels. Am. J. Physiol. 241: H108 - H116, 1981.

    PubMed  CAS  Google Scholar 

  7. FALCONE, J.C., M.J. DAVIS, and G.A. MEININGER. Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol. 260: H130 - H135, 1991.

    PubMed  CAS  Google Scholar 

  8. FURCHGOTT, R.F. Role of endothelium in responses of vascular smooth muscle. Circ. Res. 53 (5): 557–573, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. FURCHGOTT, R.F., P.D. CHERRY, J.V. ZAWADZKI, and D. JOTHIANANDAN. Endothelial cells as mediators of vasodilation of arteries. J. Cardiovasc. Pharanacol. 6: S336 - S343, 1984.

    Article  Google Scholar 

  10. GRANGER, H.J., A.H. GOODMAN, and B.H. COOK. Metabolic models of micocirculatory regulation. Fed. Proc. 34: 2025–2030, 1975.

    PubMed  CAS  Google Scholar 

  11. GRANGER, H.J., A.H. GOODMAN, and D.N. GRANGER. Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ. Res. 38 (5): 379–385, 1976.

    Article  PubMed  CAS  Google Scholar 

  12. GRIFFITH, T.M., D.H. EDWARDS, R.L. DAVIES, T.J. HARRISON, and K.T. EVANS. EDRF coordinates the behavior of vascular resistance vessels. Nature 329: 442–445, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. HESTER, R.L. Venular-arteriolar diffusion of adenosine in the hamster cremaster microcirculation. Am. J. Physiol. 258:H1918-HH 1924, 1990.

    Google Scholar 

  14. HESTER, R.L. and B.R. DULING. Red cell velocity during functional hyperemia: Implications for rheology and oxygen transport. Am. J. Physiol. 255: H236 - H244, 1988.

    PubMed  CAS  Google Scholar 

  15. KOLLER, A. and G. KALEY. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism. Am. J. Physiol. 258: H916 - H920, 1990.

    PubMed  CAS  Google Scholar 

  16. KUO, L., M.J. DAVIS, and W.M. CHILIAN. Endothelial modulation of arteriolar tone. NIPS 7: 5–9, 1992.

    Google Scholar 

  17. LASH, J.M. and H.G. BOHLEN. Perivascular and tissue PO2 in contracting rat spinotrapezius muscle. Arn. J. Physiol. 252: H1192 - H1202, 1987.

    CAS  Google Scholar 

  18. MEININGER, G.A., J.C. FALCONE, and M.A. HILL. A utoregulation and resistance-artery function. In: The Resistance Vaserilatrrre,(edited by Bevan, J.A., W. Halpern, and M.J. Mulvany. New Jersey: Humana Press, 1991, p. 345–371.

    Google Scholar 

  19. MEININGER, G.A., K.L. FEHR, and M.B. YATES. Anatomic and hemodynamic characteristics of the blood vessels feeding the cremaster skeletal muscle in the rat. Microvasc. Res. 33: 81–97, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. OSOL, G. and W. HALPERN. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am. J. Physiol. 249: H914 - H921, 1985.

    PubMed  CAS  Google Scholar 

  21. TIGNO, X.T., K. LEY, A.R. PRIES, and P. GAEHTGENS. V enulo-arteriolar communication and propagated response. A possible mechanism for local control of blood flow. Pflugers Arch. 414(4): 450–456, 1989.

    Google Scholar 

  22. WHALEN, W.J., J. RILEY, and P. NAIR. A microelectrode for measuring intracellular PO2. J. Appl. Physiol. 23 (5): 798–801, 1967.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Falcone, J.C., Meininger, G.A. (1994). EDNO of Venular Origin can Influence Arteriolar Diameter. In: Halpern, W., Bevan, J., Brayden, J., Dustan, H., Nelson, M., Osol, G. (eds) The Resistance Arteries. Experimental Biology and Medicine, vol 26. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2296-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2296-3_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-008-3

  • Online ISBN: 978-1-4757-2296-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics