Methods of Averaging

  • Frank C. Hoppensteadt
Part of the Applied Mathematical Sciences book series (AMS, volume 94)

Abstract

Regular perturbation methods are based on Taylor’s formula and on implicit function theorems. However, there are many problems to which Taylor’s formula cannot be applied directly, in which case perturbation methods based on multiple time or space scales can often be used, sometimes even for chaotic systems.

Keywords

Rotation Number Rotation Vector Invariant Torus Small Divisor Quasiperiodic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 7.1.
    W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.MATHGoogle Scholar
  2. 7.2.
    J.K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1971.Google Scholar
  3. 7.3.
    F.C. Hoppensteadt, W.L. Miranker, Differential equations having rapidly changing solutions: Analytic methods for weakly nonlinear systems, J. Diff. Eqn. 22 (1976): 237–249.MathSciNetMATHCrossRefGoogle Scholar
  4. 7.4.
    H. Carrillo, The method of averaging and stability under persistent disturbances with applications to phase-locking, Dissertation, University of Utah, 1983.Google Scholar
  5. 7.5.
    C. Moler, On the calculation of exponentials of matrices, SIAM Review, 1980.Google Scholar
  6. 7.6.
    F.C. Hoppensteadt, W.L. Miranker, Multi-time methods for systems of difference equations. Studies Appl. Math., 56 (1977): 273–289.MathSciNetGoogle Scholar
  7. 7.7.
    W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1968.MATHGoogle Scholar
  8. 7.8.
    R. Novick, F.C. Hoppensteadt, On plasmid incompatibility, Plasmid 1 (1978): 421–434.CrossRefGoogle Scholar
  9. 7.9.
    J.K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York, 1963.MATHGoogle Scholar
  10. 7.10.
    N.N. Minorsky, Nonlinear Oscillations, Van Nostrand, Princeton, 1962.MATHGoogle Scholar
  11. 7.11.
    N. Krylov, N.N. Bogoliuboff, Introduction to Nonlinear Mechanics, Annals of Mathematics Studies, No. 11, Princeton University Press, Princeton, 1947.Google Scholar
  12. 7.12.
    N.N. Bogoliuboff, Y.A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon-Breach, New York, 1961.Google Scholar
  13. 7.13.
    J. Moser, Stable and Random Motions in Dynamical Systems: With Special Em-phasis on Celestial Mechanics, Princeton University Press, Princeton, 1973.Google Scholar
  14. 7.14.
    J.D. Cole, Perturbation Methods in Applied Mathematics, Blaisdale, Waltham, MA, 1968.MATHGoogle Scholar
  15. 7.15.
    J. Kevorkian, J.D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.MATHGoogle Scholar
  16. 7.16.
    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990.MATHGoogle Scholar
  17. 7.17.
    P.R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950.MATHGoogle Scholar
  18. 7.18
    J. Moser, On the theory of quasi-periodic motions, SIAM Rev 8(1966): 145171.Google Scholar
  19. 7.19.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass., 1950.Google Scholar
  20. 7.20.
    J. Grasman, E.J.M. Velig, G. Willems, Relaxation oscillations governed by a van der Pol equation, SIAM J. Appl. Math. 31 (1976): 667–676.MathSciNetMATHCrossRefGoogle Scholar
  21. 7.21.
    M.A. Cartwright, J.E. Littlewood, Ann. Math. 54 (1951): 1–37.MathSciNetCrossRefGoogle Scholar
  22. 7.22.
    J.E. Flaherty, F.C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies Appl. Math. 58 (1978): 5–15.MathSciNetGoogle Scholar
  23. 7.23.
    J.L. Lions, A. Bensoussan, G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland, New York, 1978.MATHGoogle Scholar
  24. 7.24.
    M.E. Munroe, Introduction to Measure and Integration, Addison-Wesley, Cambridge, Mass., 1953.MATHGoogle Scholar
  25. 7.25.
    F.C. Hoppensteadt, W.L. Miranker, An extrapolation method for the numerical solution of singular perturbation problems, SIAM J. Sci. Stat. Comp. 4 (1983): 612–625.MathSciNetMATHCrossRefGoogle Scholar
  26. 7.26.
    W.L. Miranker, Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel, Holland, 1981.Google Scholar
  27. 7.27.
    F.C. Hoppensteadt, A. Schiaffino, Stable oscillations of weakly nonlinear Volterra integro-differential equations, J. reine u. angewandte Math. 353 (1984): 1–13.MathSciNetMATHGoogle Scholar
  28. 7.28.
    D.S. Cohen, F.C. Hoppensteadt, R.M. Miura, Slowly modulated oscillations in nonlinear diffusion processes, SIAM J. Appl. Math. 33 (1977): 217–229.MathSciNetMATHCrossRefGoogle Scholar
  29. 7.29.
    S.C. Persek, F.C. Hoppensteadt, Iterated averaging methods for systems of ordinary differential equations with a small parameter, Comm. Pure Appl. Math. 31 (1978): 133–156.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Frank C. Hoppensteadt
    • 1
  1. 1.College of Natural SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations