Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 94))

  • 250 Accesses

Abstract

A distinction is usually made between systems that are isolated, known as free systems, and those that interact with the outside world, known as forced systems. Often we reduce forced systems to (apparently) free ones by looking at the system stroboscopically or by introducing extra variables to describe external influences. Often we reduce free problems to ones that appear to be forced. For example, systems in which energy is conserved can have dissipative components within them, which can be uncovered by finding a timelike variable among the variables of the system and using it to reduce the problem to a dissipative one of lower order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.A. Coddington, N. Levinson, The Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    Google Scholar 

  2. J.K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1971.

    Google Scholar 

  3. M. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974.

    MATH  Google Scholar 

  4. A. Denjoy, Sur les courbes definies par les equations differentielles a la surface du tor, J. Math. Pures Appl. 9 (1932): 333–375.

    Google Scholar 

  5. F.C. Hoppensteadt, Introduction to the Mathematics of Neurons, Cambridge University Press, New York, 1986.

    MATH  Google Scholar 

  6. P. Horowitz, W. Hill, The Art of Electronics, 2nd ed., Cambridge University Press, New York, 1989.

    Google Scholar 

  7. W. Chester, The forced oscillations of a simple pendulum, J. Inst. Maths. Appl., 15 (1975): 298–306.

    Article  MathSciNet  Google Scholar 

  8. M. Levi, F.C. Hoppensteadt, W.L. Miranker, Dynamics of the Josephson junction, Quart. Appl. Math. (July 1978): 167–198.

    Google Scholar 

  9. R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol I, WileyInterscience, New York, 1968.

    Google Scholar 

  10. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  11. F.C. Hoppensteadt, Mathematical Methods of Population Biology, Cambridge University Press, New York, 1982.

    Book  MATH  Google Scholar 

  12. A.T. Fomenko, Integrable systems on Lie algebras and symmetric spaces, Gordon and Breach, New York, 1988.

    Google Scholar 

  13. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

    MATH  Google Scholar 

  14. A.I. Khinchin, An Introduction to Information Theory, Dover, New York, 1965.

    Google Scholar 

  15. C.L. Siegel, J. Moser, Lectures in Celestial Mechanics, Springer-Verlag, New York, 1971.

    Book  Google Scholar 

  16. P.R. Garabedian, Partial Differential Equations, Wiley, New York, 1964.

    MATH  Google Scholar 

  17. Preconditioned Conjugate Gradient Methods,Springer-Verlag, New York, 1990.

    Google Scholar 

  18. R. Thom, Structural Stability and Morphogenesis: An Outline of a General Theory of Models, W.A. Benjamin, Reading, Mass., 1975.

    Google Scholar 

  19. A.N. Sarkovski, Ukr. Math. Zh. 16(1964): 61–71. See also P. Stefan, A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977): 237–248.

    Article  MathSciNet  Google Scholar 

  20. T.Y. Li, J.A. Yorke, Period three implies chaos, Amer. Math. Montly, 82 (1975): 985–992.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Ulam, A Collection of Mathematical Problems, Wiley-Interscience, New York, 1960.

    MATH  Google Scholar 

  22. M.E. Munroe, Introduction to Measure and Integration. Addison-Wesley, Cambridge, Mass., 1953.

    MATH  Google Scholar 

  23. F.C. Hoppensteadt, J.M. Hyman, Periodic solutions of a logistic difference equation, SIAM J. Appl. Math. 58 (1977): 73–81.

    Article  MathSciNet  Google Scholar 

  24. K. Krohn, J.L. Rhodes, Algebraic Theory of Machines (M.A. Arbib, ed.), Academic Press, New York, 1968.

    Google Scholar 

  25. N.N. Minorsky, Nonlinear Oscillations, Van Nostrand, Princeton, 1962.

    MATH  Google Scholar 

  26. J. Moser, On the theory of quasi-periodic motions, SIAM Rev. 8(1966): 145171.

    Google Scholar 

  27. G.D. Birkhoff, Dynamical Systems, Vol. IX., American Mathematics Society, Providence, RI, 1966.

    MATH  Google Scholar 

  28. J. Hadamard, Sur l’iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France 29 (1901): 224–228.

    MATH  Google Scholar 

  29. V.I. Arnol’d, A. Avez, Ergodic problems in classical mechanics, W.A. Benjamin, New York, 1968.

    Google Scholar 

  30. R. Bellman, K. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.

    MATH  Google Scholar 

  31. P.E. Sobolevski, Equations of parabolic type in Banach space, AMS Translation, 49 (1966): 1–62.

    Google Scholar 

  32. H.T. Banks, F. Kappel, Spline approximations for functional differential equations, J. Differential Eqns., 34 (1979): 496–522.

    Article  MathSciNet  MATH  Google Scholar 

  33. R.D. Nussbaum, H.O. Peitgen, Special and spurious solutions of dx/dt —aF(x(t — 1)), preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoppensteadt, F.C. (1993). Free Oscillations. In: Analysis and Simulation of Chaotic Systems. Applied Mathematical Sciences, vol 94. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2275-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2275-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2277-2

  • Online ISBN: 978-1-4757-2275-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics