• J. Stoer
  • R. Bulirsch
Part of the Texts in Applied Mathematics book series (TAM, volume 12)


Consider a family of functions of a single variable x,
$$ \Phi \left( {x;{a_o}, \cdots ,{a_n}} \right), $$
having n + 1 parameters αo, ..., αn whose values characterize the individual functions in this family. The interpolation problem for Φ consists of determining these parameters ai so that for n + 1 given real or complex pairs of numbers (xi, fi), i=0, ..., n, with xi ≠ xk for i ≠ k,
$$ \Phi \left( {{x_i};{a_o}, \cdots ,{a_n}} \right) = {f_i},i = 0, \ldots ,n, $$
holds. We will call the pairs (x i, f i) support points, the locations x i support abscissas, and the values f i support ordinates. Occasionally, the values of derivatives of Φ are also prescribed.


Rational Expression Spline Function Polynomial Interpolation Interpolation Problem Support Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 2

  1. Achieser, N. I.: Theory of Approximations. Translated from the Russian by C. Hyman. New York: Frederick Ungar (1956).Google Scholar
  2. Ahlberg, J., Nilson, E., Walsh, J.: The Theory of Splines and Their Applications. New York: Academic Press (1967).zbMATHGoogle Scholar
  3. Bloomfield, P.: Fourier Analysis of Time Series. New York: Wiley (1976).zbMATHGoogle Scholar
  4. Böhmer, E. O.: Spline-Funktionen. Stuttgart: Teubner (1974).Google Scholar
  5. Brigham, E. O.: The Fast Fourier Transform. Englewood Cliffs, N.J.: Prentice-Hall (1974).zbMATHGoogle Scholar
  6. Bulirsch, R., Rutishauser, H.: Interpolation and genäherte Quadratur. In: Sauer, Szabó (1968).Google Scholar
  7. Bulirsch, R., Stoer, J.: Darstellung von Funktionen in Rechenautomaten. In: Sauer, Szabó (1968).Google Scholar
  8. Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems I. One dimensional problems. Numer. Math. 9, 294–430 (1967).MathSciNetCrossRefGoogle Scholar
  9. Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  10. Curry, H. B., Schoenberg, I. J.: On Polya frequency functions, IV: The fundamental spline functions and their limits. J. d’Analyse Math. 17, 73–82 (1966).MathSciNetGoogle Scholar
  11. Davis, P. J.: Interpolation and Approximation. New York: Blaisdell (1963), 2d printing (1965).Google Scholar
  12. de Boor, C.: On calculating with B-splines. J. Approximation Theory 6, 50–62 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  13. de Boor, A practical Guide to Splines. New York: Springer-Verlag (1978).zbMATHCrossRefGoogle Scholar
  14. de Boor, Pinkus, A.: Backward error analysis for totally positive linear systems. Numer. Math. 27, 485–490 (1977).zbMATHCrossRefGoogle Scholar
  15. Gautschi, W.: Attenuation factors in practical Fourier analysis. Numer. Math. 18, 373–400 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  16. Gentleman, W. M., Sande, G.: Fast Fourier transforms—For fun and profit. In: Proc. AFIPS 1966 Fall Joint Computer Conference, 29, 503–578. Washington, D.C.: Spartan Books (1966).Google Scholar
  17. Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Amer. Math. Monthly 65, 34–35 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  18. Greville, T. N. E.: Introduction to spline functions. In: Theory and Applications of Spline Functions. Edited by T. N. E. Greville. New York: Academic Press (1969).Google Scholar
  19. Hall, C. A., Meyer, W. W.: Optimal error bounds for cubic spine interpolation. J. Approximation Theory 16, 105–122 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  20. Herriot, J. G., Reinsch, C.: ALGOL 60 procedures for the calculation of interpolating natural spline functions. Technical Report STAN-CS-71–200, Computer Science Department, Stanford University, CA (1971).Google Scholar
  21. Karlin, S.: Total Positivity, Vol. 1. Stanford: Stanford University Press (1968). Kuntzmann, J.: Méthodes Numeriques, Interpolation—Dérivées. Paris: Dunod (1959).Google Scholar
  22. Maehly, H., Witzgall, Ch.: Tschebyscheff-approximation in kleinen intervallen II. Numer. Math. 2, 293–307 (1960).MathSciNetCrossRefGoogle Scholar
  23. Milne, E. W.: Numerical Calculus. Princeton, N.J.: Princeton University Press (1949), 2d printing (1950).Google Scholar
  24. Milne-Thomson, L. M.: The Calculus of Finite Differences. London: Macmillan (1933), reprinted (1951).Google Scholar
  25. Reinsch, C.: Unpublished manuscript.Google Scholar
  26. Sauer, R., Szabó, I. (Eds.): Mathematische Hilfsmittel des Ingenieurs, Part III. Berlin, Heidelberg, New York: Springer (1968).Google Scholar
  27. Schoenberg, I. J., Whitney, A.: On Polya frequency functions, III: The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Amer. Math. Soc. 74, 246–259 (1953).MathSciNetzbMATHGoogle Scholar
  28. Schultz, M. H.: Spline analysis. Englewood Cliffs, N.J.: Prentice-Hall (1973). Singleton, R. C.: On computing the fast Fourier transform. Comm. ACM 10, 647–654 (1967).MathSciNetCrossRefGoogle Scholar
  29. Singleton, R. C.: Algorithm 338: ALGOL procedures for the fast Fourier transform. Algorithm 339: An ALGOL procedure for the fast Fourier transform with arbitrary factors. Comm. ACM 11, 773–779 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • J. Stoer
    • 1
  • R. Bulirsch
    • 2
  1. 1.Institut für Angewandte MathematikUniversität WürzburgWürzburgGermany
  2. 2.Institut für MathematikTechnische UniversitätMünchenGermany

Personalised recommendations