Skip to main content

Injury to the Thoraco-Lumbar Spine and Pelvis

  • Chapter
Accidental Injury

Abstract

Injury to the bony portion of the thoracolumbar spine is rare in automotive collisions. Soft tissue injuries appear to be more common. Major modes of injury to the spine are described, followed by a discussion of the biomechanical response of the spine to vertical (+g x) and horizontal (−g x) acceleration. A form of spinal injury due to the wearing of shoulder belts is discussed. The biomechanics and neurophysiology of low back pain form the foundation for an understanding of soft tissue injury. The relationship between disc rupture and impact loading is considered to be remote as disc rupture is a degenerative process that occurs over a long period of time. Mathematical models of the spine are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MA, Huttan WC (1982) Prolapsed inter-vertebral disc. A hyperfletion injury. Spine 7: 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JR (1948) Traumatic dislocation of the hip joint. J Bone Joint Surg 30B: 430–445.

    Google Scholar 

  • Avramov AI, Cavanaugh JM, Ozaktay AC, King AI. Effects of controlled mechanical loading on Group III and IV afferents from the lumbar facet joint: An in vitro study. In Proceedings Eighteenth Annual Meeting of the Society for the Study of the Lumbar Spine. University of Heidelberg, Heidelberg, pp 23–24, 1991.

    Google Scholar 

  • Beaupre A. Trochanteric fractures. Proceedings Tenth Traffic Injury Research Foundation of Canada Annual Meeting. TIRF, Ottawa, pp 15–18, 1973.

    Google Scholar 

  • Begeman PC, King AI, Levine RS, Viano DC. Biodynamic response of the musculoskeletal system to impact accelerations. In Proceedings of the Twenty-fourth Stapp Car Crash Conference. SAE 801312. Society of Automotive Engineers, Warrendale, PA, 1980.

    Google Scholar 

  • Begeman PC, King AI, Prasad P. Spinal loads resulting from −g, acceleration. In Proceedings of the Seventeenth Stapp Car Crash Conference. SAE 730977. Society of Automotive Engineers, Warrendale, PA, 1973.

    Google Scholar 

  • Belytschko T, Privitzer E. A three-dimensional discrete element dynamic model of the spine head and torso. In von Gierke HE (ed) Models and analogues for the evaluation of human biodynamic response, performance and protection. AGARD Conf Proc No. 253, pp A9–1 to A9–15, 1978.

    Google Scholar 

  • Bogduk N, Twomey LT. Clinical anatomy of the lumbar spine. Churchill Livingstone, Melbourne, 1987.

    Google Scholar 

  • Brinckmann P (1986) Injury of the annulus fibrosus and disc protrusions. An in vitro investigation on human lumbar discs. Spine 11: 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Brown T, Hansen RJ, Yorra, AJ (1957) Some mechanical tests on the lumbosacral spine with particular references to the intervertebral discs. J Bone Joint Surg 39A: 1135–1164.

    PubMed  Google Scholar 

  • Brun-Cassan F, Leung YC, Tarriere C, Fayon A, Patel A, Got C, Hureau J. Determination of knee-femur-pelvis tolerance from the simulation of car frontal impacts. Proceedings Seventh International Conference on the Biomechanics of Impacts. IRCOBI, pp 101–115, 1982.

    Google Scholar 

  • Buckwalter JA. The fine structure of human inter-vertebral disc. In White AA, Gordon SL (eds) Idiopathic low back pain. Mosby, St. Louis, pp 108–143, 1982.

    Google Scholar 

  • Cavanaugh JM, Walilko TJ, Malhotra A, Zhu Y, King AI. Biomechanical response and injury tolerance of the pelvis in twelve sled side impact tests. In Proceedings Thirty-fourth Stapp Car Crash Conference. SAE 902307. Society of Automotive Engineers, Warrendale, PA, 1990.

    Google Scholar 

  • Cesari D, Bouquet R, Zac R. A new pelvis design for the European side impact dummy. In Proceedings Twenty-eighth Stapp Car Crash Conference. SAE 841650. Society of Automotive Engineers, Warrendale, PA, 1984.

    Google Scholar 

  • Cesari D, Ramet M. Pelvic tolerance and protection criteria in side impact. In Proceedings Twenty-sixth Stapp Car Crash Conference. SAE 821159. Society of Automotive Engineers, Warrendale, PA, 1982.

    Google Scholar 

  • Cesari D, Ramet M, Clair PY. Evaluation of pelvic fracture tolerance in side impact. In Proceedings Twenty-sixth Stapp Car Crash Conference. SAE 801306. Society of Automotive Engineers, Warrendale, PA, 1980.

    Google Scholar 

  • Cesari D, Ramet M, Bouquet R. Tolerance of human pelvis to fracture and proposed pelvic protection criterion to be measured on side impact dummies. In Proceedings Ninth International Technical Conference on Experimental Safety Vehicles. Washington, DC, U.S. Department of Transportation, National Highway Traffic Safety Administration, pp 261–269, 1983.

    Google Scholar 

  • Chance GO (1948) Note on a type of flexion fracture of the spine. Br J Radiol 21: 452–453.

    Article  PubMed  CAS  Google Scholar 

  • Conolly WB, Hedberg EA (1969) Observations on fractures of the pelvis. J Trauma 9: 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Doorly TPG (1978) Forces imposed on the hip-joint in car collisions. J Traffic Med 6: 44–46.

    Google Scholar 

  • Eiband AM. Human tolerance to rapidly applied accelerations: A summary of the literature. NASA Memorandum No. 5–19–59E, 1959.

    Google Scholar 

  • Eichenhotz SN, Stark RM (1964) Central acetabular fractures a review of thirty-five cases. J Bone Joint Surg 46: 695–714.

    Google Scholar 

  • El-Bohy AA, Yang KH, King AI (1989) Experimental verification of facet load transmission by direct measurement of facet/lamina contact pressure. J Biomechanics 22: 931–941.

    Article  CAS  Google Scholar 

  • Evans FG, Lissner HR (1955) Studies on pelvic deformations and fractures. Anat Rec 121: 141–165.

    Article  PubMed  CAS  Google Scholar 

  • Ewing CL, King AI, Prasad P (1972) Structural considerations of the human vertebral column under +gx impact acceleration. J Aircraft 9: 8490.

    Article  Google Scholar 

  • Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg 52A: 468–497.

    PubMed  CAS  Google Scholar 

  • Fasola AF, Baker RC, Hitchcock FA. Anatomical and physiological effects of rapid decelerations. WADC-TR 54–218. Wright-Patterson AFB, Ohio, 1955.

    Google Scholar 

  • Fayon A, Tarriere C, Walfisch G, Got C, Patel A. Contributions to defining the human tolerance to perpendicular side impact. Proc. Third International Conference on Impact Trauma, IRCOBI, pp 297–309, 1977.

    Google Scholar 

  • Giles LGF, Taylor JR (1987) Innervation of lumbar zygapophysial joint synovial folds. Acta Orthop Scand 58: 43–46.

    Article  PubMed  CAS  Google Scholar 

  • Gordon SJ, Yang KH, Mayer PJ, Mace AH, Kish VL, Radin, EL (1991) Mechanism of disc rupture -a preliminary report. Spine 16: 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Grattan E, Hobbs JA (1969) Injuries to hip joint in car occupants. Br Med J 11: 71–73.

    Article  Google Scholar 

  • Gray H. Anatomy of the human body. Lea & Febiger, Philadelphia, 1973.

    Google Scholar 

  • Hakim NS, King AI (1976) Programmed replication of in situ (whole-body) loading conditions during in vitro (substructure) testing of a vertebral column segment. J Biomech 9: 629–632.

    Article  PubMed  CAS  Google Scholar 

  • Hakim NS, King AI (1979) A three-dimensional finite element dynamic response analysis of a vertebra with experimental verification. J Biomech 12: 277–292.

    Article  PubMed  CAS  Google Scholar 

  • Hardy WG, Lissner HR, Webster JE, Gurdjian ES (1959) Repeated loading tests of the lumbar spine-a preliminary report. Surg Forum 9: 690–695.

    Google Scholar 

  • Hauser CW, Perry JF, Jr (1966) Massive hemorrhage from pelvic fractures. Minn Med 49: 285–290.

    PubMed  CAS  Google Scholar 

  • Henzel JH, Mohr GC, von Gierke HE (1968) Reappraisal of biodynamic implications of human ejections. Aerospace Med 39: 231–240.

    PubMed  CAS  Google Scholar 

  • Hess JL, Lombard CF (1958) Theoretical investigations of dynamic response of man to high vertical accelerations. Aviat Med 29: 66–75.

    CAS  Google Scholar 

  • Kazarian LE (1982) Injuries to the human spinal column: biomechanics and injury classification. Exerc Sport Sci Rev 9: 297–352.

    Google Scholar 

  • Kazarian LE, Beers K, Hernandez J (1979) Spinal injuries in the F/FB-111 crew escape system. Aviat Space Environ Med 50: 948–957.

    PubMed  CAS  Google Scholar 

  • Kazarian LE, Boyd D, von Gierke H. The dynamic biomechanical nature of spinal fractures and articular facet derangement. AGARD Publication CP-88–71, Paper No. 19, 1971.

    Google Scholar 

  • King AI, Chou CC (1976) Mathematical modelling, simulation and experimental testing of biomechanical system crash response. J Biomech 9: 301–317.

    Article  Google Scholar 

  • King AI, Vulcan AP, Cheng LK. Effects of bending on the vertebral column of the seated human during caudocephalad acceleration. Proceedings of the Twenty-first Annual Conf Engg Med Biol, p 32, 1968.

    Google Scholar 

  • King AI, Yamashita T, Ozaktay AC, Cavanaugh JM. A morphological study of the lumbar facet joint capsule and its innervation. Proceeding Sixth International Conference on Biomedical Engineering. National University of Singapore, Singapore, pp 32–35, 1990.

    Google Scholar 

  • King AI, Yang KH. Biomechanics of the lumbar spine. In Schmid-Schonbein G (ed) Frontiers in applied mechanics and biomechanics. Springer-Verlag, New York, pp 210–224, 1985.

    Google Scholar 

  • Kulowski J. Interconnected motorist injuries of the hip, femoral shaft and knee. In Proceedings Fifth Stapp Automotive Crash and Field Demonstration Conference. University of Minnesota, Minneapolis, pp 105–124, 1962.

    Google Scholar 

  • Latham FA (1957) A study in body ballistics: seat ejection. Proc R Soc [B] 147: 121–139.

    Article  CAS  Google Scholar 

  • Levine JI, Crampton RS (1963) Major abdominal injuries associated with pelvic fractures. Surg Gynecol Obstet 11: 223–226.

    Google Scholar 

  • Liu YK, Goel VK, Dejong A, Njus G, Nishiyama K, Buckwalter J (1985) Torsional fatigue of the lumbar intervertebral joints. Spine 10: 894–900.

    Article  PubMed  CAS  Google Scholar 

  • Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine 8: 857–865.

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine 15: 402–410.

    Article  PubMed  CAS  Google Scholar 

  • Marcus JH, Morgan RM, Eppinger RH, Kallieris D, Mattem R, Schmidt G. Human response to and injury from lateral impact. In Proceedings Twenty-seventh Stapp Car Crash Crash Conference. SAE 831634. Society of Automotive Engineers, Warrendale, PA, 1983.

    Google Scholar 

  • Markham DE (1972) Anterior-dislocation of the hip and diastatis of the contralateral sacroiliac joint: the rear-seat passenger’s injury? Br J Surg 59: 296–298.

    Article  PubMed  CAS  Google Scholar 

  • Melvin J, Nusholtz G. Tolerance and response of the knee-femur-pelvis complex to axial impacts. UM-HSRI-80–27. University of Michigan, Highway Safety Research Institute, Ann Arbor, 1980.

    Google Scholar 

  • Miniaci A, McLaren AC (1989) Anterolateral compression fracture of the thoracolumbar spine. A seat belt injury. Clin Orthop 240: 153–156.

    PubMed  Google Scholar 

  • Mooney V, Robertson J (1976) The facet syndrome. Clin Orthop 115: 149–156.

    PubMed  Google Scholar 

  • Moore JR (1966) Pelvic fractures: associated intes- tinal and mesenteric lesions. J Surg 9: 253–261.

    CAS  Google Scholar 

  • Nachemson A (1969) Intradiscal measurements of pH in patients with lumbar rhizopathies. Acta Orthop Scand 40: 23–42.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll EA (1949) Fractures of the dorso-lumbar spine. J Bone Joint Surg 31B: 376–393.

    Google Scholar 

  • Nusholtz G, Alem NM, Melvin JW. Impact response and injury to the pelvis. In Proceedings Twenty-sixth Stapp Car Crash Conference. SAE 821160. Society of Automotive Engineers, Warrendale, PA, 1982.

    Google Scholar 

  • Nyquist GW, Murton CJ. Static bending response of the human lower torso. In Proceedings Nineteenth Stapp Car Crash Conference. SAE 751158. Society of Automotive Engineers, Warrendale, PA, 1975.

    Google Scholar 

  • Patrick LM, Korell CK, Mertz HJ, Jr. Forces on the human body in simulated crashes. Proceedings Ninth Stapp Car Crash Conference. University of Minnesota, Minneapolis, pp 237–259, 1966.

    Google Scholar 

  • Patwardhan A, Vanderby R Jr, Lorenz M. Load bearing characteristics of lumbar facets in axial compressions. In Thibault L (ed) 1982 Advances in bioengineering. ASME, 155–160, 1982.

    Google Scholar 

  • Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86: 162–179.

    PubMed  CAS  Google Scholar 

  • Pearson JR, Hargadon EJ (1962) Fractures of the pelvis involving the floor of the acetabulum. J Bone Joint Surg 44B: 550–561.

    Google Scholar 

  • Pontius UR, Liu YK. Neuromuscular cervical spine model for whiplash. In SAE Publication No. SP-412, Mathematical modeling biodynamic response to impact. SAE 760770. Society of Automotive Engineers, Warrendale, PA, 1976.

    Google Scholar 

  • Prasad P, King AI (1974) An experimentally validated dynamic model of the spine. J Appl Mech 41: 545–550.

    Google Scholar 

  • Prasad P, King AI, Ewing CL (1974) The role of articular facets during +gz accelerations. J Appl Mech 41: 321–326.

    Article  Google Scholar 

  • Remet M, Cesari D. Experimental study of pelvis tolerance in lateral impact. Proceedings Fourth International Conference on the Biomechanics of Trauma. IRCOBI, pp 243–249, 1979.

    Google Scholar 

  • Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Joint Surg 42B: 810–823.

    Google Scholar 

  • Ruff S. Brief acceleration: less than one second. In German aviation medicine, World War II. U.S. Government Printing Office, Washington, DC, 1:584–597, 1950.

    Google Scholar 

  • Ryan P (1971) Traffic injuries of the pelvis at St. Vincent’s Hospital, Melbourne. Med J Aust 1: 475–479.

    PubMed  CAS  Google Scholar 

  • Schoenecker PL, Manske PR, Sertl GO (1978) Traumatic hip dislocation with ipsilateral femoral shaft fractures. Clin Orthop Rel Res 130: 233–238.

    Google Scholar 

  • Schultz A, Carter D, Grood E, King A, Panjabi M. Posterior support structures: basic science perspectives. In Frymoyer JW, Gordon SL (eds) New perspectives on low back pain. American Academy of Orthopedic Surgeons, Park Ridge, IL, 1988.

    Google Scholar 

  • Shirazi-Adl A. Three-dimensional nonlinear finite element stress analysis of a lumbar intervertebral joint. PhD Thesis. McGill University, Montreal, 1984.

    Google Scholar 

  • Shirazi-Adl A, Drouin G (1987) Load bearing role of facets in a lumbar segment under sagittal plane loadings. J Biomech 20: 601–613.

    Article  PubMed  CAS  Google Scholar 

  • Smith WS, Kaufer H. Lumbar seat belt fracture. In Selzer ML, Gikas PW, Huelke DF (eds) The prevention of highway injury. University of Michigan, Ann Arbor, MI, 1967.

    Google Scholar 

  • States JD, Annechiarico RP, Good RG, Lieou J, Andrews M, Cushman L, Ingersoll G. A time comparison study of the New York State safety belt use law utilizing hospital admission and police accident report information. In Proceedings Thirty-third Annual Conf of Assoc for the Advancement of Automotive Medicine. AAAM, Des Plaines, IL, pp 265–281, 1989.

    Google Scholar 

  • Steckler RM, Epstein JA, Epstein BS (1969) Seat belt trauma to the lumbar spine: an unusual manifestation of the seat belt syndrome. J Trauma 9: 508–513.

    Article  PubMed  CAS  Google Scholar 

  • Stokes IAF (1987) Surface strain on human inter-vertebral discs. J Orthop Res 5: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Tarriere C, Walfisch G, Fayon A, Rosey JP, Got C, Patel A, Delmas A. Synthesis of human tolerance obtained from lateral impact simulations. In Proceedings Seventh International Technical Conference on Experimental Safety Vehicles. U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, pp 359–373, 1979.

    Google Scholar 

  • Tennyson SA, King AI. A biodynamic model of the human spinal column. Trans SAE 760771, 1976.

    Google Scholar 

  • Tennyson SA, King AI. Mathematical models of the spine. In Avala XJR (ed) Proceedings of the First International Conference on Mathematical Modeling. Vol 2, pp 977–985, 1977.

    Google Scholar 

  • Viano DC, Lau IV, Asbury C, King AI, Begeman P. Biomechanics of the human chest, abdomen, and pelvis in lateral impact. In Proceedings Thirty-third Annual Conference of Assoc. for the Advancement of Automotive Medicine. AAAM, Des Plaines, IL, pp 367–382, 1989.

    Google Scholar 

  • Watson-Jones R. Fractures and joint injuries. Churchill Livingstone, London, 1976.

    Google Scholar 

  • Wiggishoff CC, Kiefer JH (1968) Urethral injury associated with pelvic fracture. J Trauma 8: 1042–1048.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Cavanaugh JM, El-Bohy AA, Getchell TV, King AI (1990) Mechanosensitive afferent units in the lumbar facet joint. J Bone Joint Surg 72A: 865–870.

    PubMed  CAS  Google Scholar 

  • Yang KH, Byrd III AJ, Kish VL, Radin EL (1988) Annulus fibrosus tears—an experimental model. Orthop Trans 12: 86–87.

    Google Scholar 

  • Yang KH, King AI (1984) Mechanism of facet load transmission as a hypothesis for low back pain. Spine 9: 557–565.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

King, A.I. (1993). Injury to the Thoraco-Lumbar Spine and Pelvis. In: Nahum, A.M., Melvin, J.W. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2264-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2264-2_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2266-6

  • Online ISBN: 978-1-4757-2264-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics