Biomechanics pp 321-391 | Cite as

Mechanical Properties and Active Remodeling of Blood Vessels

  • Yuan-Cheng Fung


Blood vessels belong to the class of soft tissues discussed in Chapter 7. They do not obey Hooke’s law. Figure 7.5:1 in Chapter 7, Sec. 7.5 demonstrates the nonlinearity of the stress—strain relationship and the existence of hysteresis. They also creep under constant stress and relax under constant strain. These mechanical properties have a structural basis. In Sec. 8.2 we consider the structure of the blood vessel wall. From Sec. 8.3 on, however, our attention will be concentrated on the mathematical description of the mechanical properties. In seeking simplification whenever it is justifiable, we take advantage of the fact that most blood vessels are thin-walled tubes deforming axisymmetrically (including inflation, longitudinal stretching, and torsion), and that as far as hemodynamics is concerned, we need to know only the relationship between the blood pressure and the inner diameter of the tube. In this situation we may treat the vessel wall as a membrane. The stresses of concern are circumferential and longitudinal, the principal strains are also circumferential and longitudinal. The vessel wall may be treated as a two-dimensional body, the constitutive equation is biaxial. In Secs. 8.3–8.5, we formulate a two-dimensional quasi-linear viscoelastic constitutive equation for blood vessels, using the pseudo-elasticity concept introduced in Chapter 7. In Secs. 8.7 and 8.8, we treat the blood vessel wall as a three-dimensional body, and study the differences between the mechanical properties of the intima-media layer and those of the adventitia. The results can then be applied to general three-dimensional problems such as bifurcation, aneurysm, surgery, etc. In Secs. 8.9–8.11, we consider the mechanical properties of arterioles, capillary blood vessels, and veins.


Pulmonary Artery Arterial Wall Blood Vessel Wall Transmural Pressure Stretch Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Tinawi, A., Madden, J. A., Dawson, C. A., Linehan, J. H., Harder, D. R., and Rickaby, D. A. (1991) Distensibility of small arteries of the dog lung. J. Appl. Physiol, 71 1714–1722.PubMedGoogle Scholar
  2. Anliker, M. (1972) Toward a nontraumatic study of the circulatory system. In Bio-mechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 337–380.Google Scholar
  3. Anliker, M., Histand, M. B., and Ogden, E. (1968) Dispersion and attenuation of small artificial pressure waves in the canine aorta. Circulation Res. 23, 539–551.PubMedCrossRefGoogle Scholar
  4. Anliker, M., Wells, M. K., and Ogden, E. (1969) The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. Biomed. Eng. BME-16, 262–273.Google Scholar
  5. Ayorinde, O. A., Kobayashi, A. S., and Merati, J. K. (1975) Finite elasticity analysis of unanesthetized and anesthetized aorta. In 1975 Biomechanics Symposium. ASME, New York, p. 79.Google Scholar
  6. Azuma, T., Hasegawa, M., and Matsuda, T. (1970) Rheological properties of large arteries. In Proceedings of the 5th International Congress on Rheology, S. Onogi (ed.) University of Tokyo Press, Tokyo and University Part Press, Baltimore, pp. 129–141.Google Scholar
  7. Azuma, T. and Hasegawa, M. (1971) A rheological approach to the architecture of arterial walls. Jpn. J. Physiol. 21, 27–47.PubMedCrossRefGoogle Scholar
  8. Azuma, T. and Hasegawa, M. (1973) Distensibility of the vein: From the architectural point of view. Biorheology 10, 469–479.PubMedGoogle Scholar
  9. Baez, S., Lamport, H., and Baez, A. (1960) Pressure effects in living microscopic vessels. In Flow Properties of Blood and Other Biological Systems, A. L. Copley and G. Stainsby (eds.) Pergamon Press, Oxford, pp. 122–136.Google Scholar
  10. Baldwin, A. L. and Gore, R. W. (1989) Simultaneous measurement of capillary distensibility and hydraulic conductance. Microvasc. Res. 38, 1–22.PubMedCrossRefGoogle Scholar
  11. Bauer, R. D. and Pasch, T. (1971) The quasistatic and dynamic circumferential elastic modulus of the rat tail artery studied at various wall stresses and tones of the vascular smooth muscle. Pflügers Arch. 330, 335–346.PubMedCrossRefGoogle Scholar
  12. Bergel, D. H. (1972) The properties of blood vessels. In Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, Chapter 5, pp. 105–140.Google Scholar
  13. Bevan, J. A., Bevan, R. D., Chang, P. C., Pegram, B. L., Purdy, R. E., and Su, C. (1975) Analysis of changes in reactivity of rabbit arteries and veins 2 weeks after induction of hypertension by co-arctation of the abdominal aorta. Circulation Res. 37, 183–190.PubMedCrossRefGoogle Scholar
  14. Bevan, R. D. (1976) Auto radiographic and pathological study of cellular proliferation in rabbit arteries correlated with an increase in arterial pressure. Blood Vessels 13, 100–124.PubMedGoogle Scholar
  15. Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr. (eds.) (1980) Handbook of Physiology. Sec. 2 The Cardiovascular System. Vol 2: Vascular Smooth Muscle. American Physiological Society, Bethesda, MD.Google Scholar
  16. Bouskela, E. and Wiederhielm, C. (1979a) Viscoelastic properties of capillaries. (Abstract) Microvascu. Res. 17, No. 3, Part 2, p. Si.Google Scholar
  17. Bouskela, E. and Wiederhielm, C. A. (1979b) Microvascular myogenic reaction in the wing of the intact unanesthetized bat. Am. J. Physiol. 237, H59 — H65.PubMedGoogle Scholar
  18. Brankov, G., Rachev, A., and Stoychev, S. (1974) On the mechanical behavior of blood vessels. Biomechanica (Bulgarian Academy of Sciences, Sofia) 1, 27–35.Google Scholar
  19. Brankov, G., Rachev, A., and Stoychev, S. (1976) A structural model of arterial vessel. Biomechanica (Bulgarian Academy of Sciences, Sofia) 3, 3–11.Google Scholar
  20. Burton, A. C. (1944) Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34, 619–642.Google Scholar
  21. Burton, A. C. (1947) The physical equilibrium of small blood vessels. Am. J. Physiol. 149, 389–399. See also, ibid, 164, 319.Google Scholar
  22. Burton, A. C. (1962) Properties of smooth muscle and regulation of circulation. Physiol. Rev. 42, 1-6.Google Scholar
  23. Burton, A. C. (1966) Role of geometry, size, and shape in the microcirculation. Fed. Proc. 25, 1753–1760.PubMedGoogle Scholar
  24. Campbell, J. H. and Campbell, G. R. (1988) Vascular Smooth Muscle in Culture, 2 Vols. CRC Press, Boca Raton, FL.Google Scholar
  25. Carew, T. E., Vaishnav, R. N., and Patel, D. J. (1968) Compressibility of the arterial wall. Circulation Res. 23, 61–68.PubMedCrossRefGoogle Scholar
  26. Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978) The Mechanics of the Circulation. Oxford University Press, Oxford, 1978.Google Scholar
  27. Cheung, J. B. and Hsiao, C. C. (1972) Nonlinear anisotropic viscoelastic stresses in blood vessels. J. Biomech. 5, 607–619.PubMedCrossRefGoogle Scholar
  28. Chuong, C. J. and Fung, Y. C. (1983) Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105, 268–274.PubMedCrossRefGoogle Scholar
  29. Chuong, C. J. and Fung, Y. C. (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17, 35–40.PubMedCrossRefGoogle Scholar
  30. Chuong, C. J. and Fung, Y. C. (1986) Residual stress in arteries. In Frontiers in Biomechanics G. W. Schmid-Schönbein, S. L.-Y. Woo, and B. W. Zweifach. Springer-Verlag, New York, pp. 117–129. Also J. Biomech. Eng. 108, 189–192.Google Scholar
  31. Collins, R. and W. C. L. Hu (1972) Dynamic deformation experiments on aortic tissue. J. Biomech. 5, 333–337.PubMedCrossRefGoogle Scholar
  32. Cowan, M. J. and Crystal, R. G. (1975) Lung growth after unilateral pneumonectomy: Quantiation of collagen synthesis and content. Am. Rev. Respir. Disease 111, 267–276.Google Scholar
  33. Cox, R. H., Jones, A. W., and Fischer, G. M. (1974) Carotid artery mechanics, connec- tive tissue, and electrolyte changes in puppies. Am. J. Physiol. 227, 563–568.PubMedGoogle Scholar
  34. Cox, R. H. (1974) Three-dimensional mechanics of arterial segments in vitro: Method. J. Appl. Physiol. 36, 381–384.PubMedGoogle Scholar
  35. Cox, R. H. (1976a) Mechanics of canine iliac artery smooth muscle in vitro. Am. J. Physiol. 230, 462–470.PubMedGoogle Scholar
  36. Cox, R. H. (1976b) Effect of norepinephrine on mechanics of arteries in vitro. Am. J. Physiol. 231, 420–425, 1976; 233, H243 — H255, 1977.Google Scholar
  37. Cox, R. H. (1978) Comparison of carotid artery mechanics in the rat, rabbit, and dog. Am. J. Physiol. 234, H280 — H288.PubMedGoogle Scholar
  38. Cox, R. H. (1979a) Alterations in active and passive mechanics of rate carotid artery with experimental hypertension. Am. J. Physiol. 237, H597 — H605.PubMedGoogle Scholar
  39. Cox, R. H. (1979b) Regional, species, and age related variations in the mechanical properties of arteries. Biorheology 16, 85–94.PubMedGoogle Scholar
  40. Cox, R. H. (1982) Mechanical properties of the coronary vascular wall and the contractile process. In The Coronary Artery, S. Kalsner (eds.) Oxford University Press, New York, pp. 59–90.Google Scholar
  41. Crystal, R. G. (1974) Lung collagen: Definition, diversity, and development. Fed. Proc. 33, 2248–2255.PubMedGoogle Scholar
  42. Debes, J. C. (1992) Mechanics of Pulmonary Parenchyma and Arteries. Ph.D. Thesis. University of California, San Diego.Google Scholar
  43. Debes, J. C. and Fung, Y. C. (1992) Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73, 1171–1180.PubMedGoogle Scholar
  44. Demiray, H. J. (1972) A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311.PubMedCrossRefGoogle Scholar
  45. Doyle, J. M. and Dobrin, P. B. (1971) Finite deformation analysis of the relaxed and contracted dog carotid artery. Microvasc. Res. 3, 400–415.PubMedCrossRefGoogle Scholar
  46. Doyle, J. M. and Dobrin, P. B. (1973) Stress gradients in the walls of large arteries. J. Biomech. 6, 631–639.PubMedCrossRefGoogle Scholar
  47. Faulkner, J. A., Weiss, S. W., and McGeachie, J. K. (1983) Revascularization of skeletal muscle transplanted into the hamster cheek pouch: Intravital and light microscopy. Microvasc. Res. 26, 49–64.PubMedCrossRefGoogle Scholar
  48. Fisher, G. M. and Llaurado, J. G. (1967) Connective tissue composition of canine arteries. Effects of renal hypertension. Arch. Pathol. 84, 95–98.Google Scholar
  49. Folkman, J. (1985) Tumor angiogenesis. Adv. Cancer Res. 43, 175–203. Frank, O. (1920) Die elastizitat der blutgefasse J. Biol. 71, 255–272.Google Scholar
  50. Frasher, W. G. (1966) What is known about large blood vessels. In Biomechanics, Proc. Symp. Y. C. Fung (ed.) ASME, New York, pp. 1–19.Google Scholar
  51. Fronek, K., Schmid-Schönbein, G., and Fung, Y. C. (1976) A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro. J. Appl. Physiol. 40, 634–637.Google Scholar
  52. Fry, D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circulation Res. 22, 165–197.PubMedCrossRefGoogle Scholar
  53. Fry, D. L. (1969) Certain histological and chemical responses of the vascular interface of acutely induced mechanical stress in the aorta of the dog. Circulation Res. 24, 93–108.PubMedCrossRefGoogle Scholar
  54. Fung, Y. C. (1966a) Microscopic blood bessels in the mesentery. In Biomechanics, Proc. Symp. Y. C. Fung (ed.) ASME, New York, pp. 151–166.Google Scholar
  55. Fung, Y. C. (1966b) Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 25, 1761–1772.PubMedGoogle Scholar
  56. Fung, Y. C. (1967) Elasticity of soft tissues in simple elongation. Am. J. Physiol. 28, 1532–1544.Google Scholar
  57. Fung, Y. C. (1972) Stress—strain-history relations of soft tissues in simple elongation. In Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone and M. Anliker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.Google Scholar
  58. Fung, Y. C. (1973) Biorheology of soft tissues. Biorheology 10, 139–155.PubMedGoogle Scholar
  59. Fung, Y. C. (1979) Inversion of a class of nonlinear stress—strain relationships of biological soft tissues. J. Biomech. Eng. 101, 23–27.CrossRefGoogle Scholar
  60. Fung, Y. C. (1983) What principle governs the stress distribution in living organisms. In Biomechanics in China, Japan, and USA Y. C. Fung, E. Fakada, and J. J. Wang (eds.) Science Press, Beijing, China, pp. 1–13.Google Scholar
  61. Fung, Y. C. (1984) Biodynamics: Circulation. Springer-Verlag, New York.Google Scholar
  62. Fung, Y. C. (1984) The need for a new hypothesis for residual stress distribution. In Biodynamics: Circulation. loc cit, pp. 54–68.Google Scholar
  63. Fung, Y. C. (1990) Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.Google Scholar
  64. Fung, Y. C., Zweifach, B. W., and Intaglietta, M. (1966) Elastic environment of the capillary bed. Circulation Res. 19, 441–461.PubMedCrossRefGoogle Scholar
  65. Fung, Y. C. and Sobin, S. S. (1972) Elasticity of the pulmonary alveolar sheet. Circulation Res. 30, 451–469; 470–490.Google Scholar
  66. Fung, Y. C., Fronek, K., and Patitucci, P. (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620 — H631.PubMedGoogle Scholar
  67. Fung, Y. C. and Liu, S. Q. (1989) Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circulation Res. 65, 1340 1349.Google Scholar
  68. Fung, Y. C. and Liu, S. Q. (1991) Changes of zero stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70, 2455–2470.PubMedCrossRefGoogle Scholar
  69. Fung, Y. C. and Liu, S. Q. (1992) Strain distribution in small blood vessels with zero stress state taken into consideration. Am. J. Physiol. 262, H544 — H552.PubMedGoogle Scholar
  70. Gaehtgens, P. and Uekermann, U. (1971) The distensibility of mesenteric venous microvessels. Pflügers Arch. 330, 206–216.PubMedCrossRefGoogle Scholar
  71. Gore, R. W. (1972) Wall stress: A determinant of regional differences in response of frog microvessels to norepinephrine. Am. J. Physiol. 222, 82–91.PubMedGoogle Scholar
  72. Gore, R. W. (1974) Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circulation Res. 34, 581–591.PubMedCrossRefGoogle Scholar
  73. Gore, R. W. and Davis, M. J. (1984) Mechanics of smooth muscle in isolated single microvessels. Ann. Biomed. Eng. 12, 511–520.PubMedCrossRefGoogle Scholar
  74. Gou, P. F. (1970) Strain-energy function for biological tissues. J. Biomech. 3, 547–550.PubMedCrossRefGoogle Scholar
  75. Gow, B. S. and Taylor, M. G. (1968) Measurement of viscoelastic properties of arteries in the living dog. Circulation Res. 23, 111–122.PubMedCrossRefGoogle Scholar
  76. Han, H. C. and Fung, Y. C. (1991) Species dependence on the zero stress state of aorta: Pig vs. rat. J. Biomech. Eng. 113, 446–451.PubMedCrossRefGoogle Scholar
  77. Hardung, V. (1953) Vergleichende messungen der dynamischen elastizitat und viskositat von blutegefassen, Kautschuk und synthetischen elastomeren. Hely. Physiol. Pharmacol. Acta 11, 194–211.Google Scholar
  78. Harkness, M. L. R., Harkness, R. D., and McDonald, D. A. (1957) The collagen and elastin content of the arterial wall in the dog. Proc. Roy. Soc. London B 1465, 541–551.CrossRefGoogle Scholar
  79. Hayashi, K., Handa, H., Mori, K., and Moritake, K. (1971) Mechanical behavior of vascular walls. J. Soc. Mater. Sci. (Jpn.) 20, 1001–1011.Google Scholar
  80. Hayashi, K., Sato, M., Handa, H., and Moritake, K. (1974) Biomechanical study of the constitutive laws of vascular walls. Exper. Mech. 14, 440–444.CrossRefGoogle Scholar
  81. Hayashi, K., Nagasawa, S., Nario, Y., Okumura, A., Moritake, K., and Handa, H. (1980) Mechanical properties of human cerebral arteries. Biorheology 17, 211–218.PubMedGoogle Scholar
  82. Hayashi, K. and Takamizawa, K. (1989) Stress and strain distributions and residual stresses in arterial walls. In Progress and New Directions of Biomechanics, Y. C. Fung, K. Hayashi, and Y. Seguchi (eds.) MITA Press, Tokyo, Japan, pp. 185–192.Google Scholar
  83. Imholz, B. P. M., Wieling, W., Langewouters, G. J., and van Montfrans, G. A. (1991) Continuous finger arterial pressure: Utility in the cardiovascular Laboratory. Clinical Autonomic Res. 1, 43–53.CrossRefGoogle Scholar
  84. Intaglietta, M. and Plomb, E. P. (1973) Fluid exchange in tunnel and tube capillaries. Microvasc. Res. 7, 153–168.CrossRefGoogle Scholar
  85. Intaglietta, M. and Zweifach, B. W. (1971) Geometrical model of the microvasculature of rabbit omentum from in vivo measurements. Circulation Res. 28, 593–600.Google Scholar
  86. Johnson, P. C. (1968) Autoregulatory responses of cat mesenteric arterioles measured in vivo. Circulation Res. 22, 199–212.CrossRefGoogle Scholar
  87. Johnson, P. C. (1980) The Myogenic Response. In Bohr. (1980) loc. cit., pp. 409–442.Google Scholar
  88. Kasyanov, V. (1974) The anisotropic nonlinear model of human large blood vessels. Mech. Polym. USSR 874–884.Google Scholar
  89. Kasyanov, V. and Knets, I. (1974) Strain-energy function for large human blood vessels Mech. Polym. USSR 122–128.Google Scholar
  90. Kenner, T. (1967) Neue gesichtspunkte and experimente zur beschreibung and messung der arterienelastizitat. Arch. Kreislaufforschung 54, 68–139.CrossRefGoogle Scholar
  91. Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17, 425–435. See also, ibid., 8, 613–620, 1985.Google Scholar
  92. Laszt, L. (1968) Untersuchungen uber die elastischen eigenschaften der blutegasse um ruhe-und im kontraktionszustand. Angiologica 5, 14–27.PubMedGoogle Scholar
  93. Lee, J. S., Frasher, W. G., and Fung, Y. C. (1967) Two-dimensional finite deformation experiments on dog’s arteries and veins. Rept. No. AFOSR 67–00198, Dept. of Applied Mechanics and Engineering Science—Bioengineering, University of California, San Diego, California.Google Scholar
  94. Lee, J. S., Frasher, W. G., and Fung, Y. C. (1968) Comparison of the elasticity of an artery in vivo and in excision. J. Appl. Physiol. 25, 799–801.PubMedGoogle Scholar
  95. Lee, Robert M. K. (ed.) (1989) Blood Vessel Changes in Hypertension: Structure and Function, Vol. 1 (with articles by R. Cox, H. Ho, M. Kay, M. Mulvany, G. Owens, and C. Triggle). 199 pp., Vol. 2 (T. J. F. Lee, G. Osol, A. L. Loeb and M. J. Peach, R. L. Prewitt, H. Hashimoto and D. L. Stacy, J. H. Lombard, M. J. Mackay, D. W. Cheung, W. J. Stekiel). 177 pp., Vol. 2, CRC Press, Boca Raton, FL.Google Scholar
  96. Litwak, P., Ward, R. S., Robinson, A. J., Yilgor, I., and Spatz, C. A. (1988) Development of a small diameter, compliant vascular prosthesis. In Tissue Engineering, R. Skalak and C. F. Fox (eds.) Alan Liss, New York, pp. 25–30.Google Scholar
  97. Liu, S. Q. and Fung, Y. C. (1988) Zero stress states of arteries. J. Biomech. Eng. 110, 82–84.PubMedCrossRefGoogle Scholar
  98. Liu, S. Q. and Fung, Y. C. (1989) Relationship between hypertension, hypertrophy, and opening angle of zero stress state of arteries following aortic constriction. J. Biomech. Eng. 111, 325–335.PubMedCrossRefGoogle Scholar
  99. Liu, S. Q. and Fung, Y. C. (1990) Change of zero stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. Submitted.Google Scholar
  100. Liu, S. Q. and Fung, Y. C. (1992) Influence of STZ-induced diabetes on zero stress states of rat pulmonary and systemic arteries. Diabetes 41, 136–146.PubMedCrossRefGoogle Scholar
  101. Maltzahn, W.-W. von, Besdo, D., and Wiemer, W. (1981) Elastic properties of arteries: A nonlinear two-layer cylindrical model. J. Biomech. 14, 389–397.CrossRefGoogle Scholar
  102. Maltzahn, W. W., Warrinyar, R. G., and Keitzer, W. F. (1984) Experimental measurement soft elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17, 839–848.CrossRefGoogle Scholar
  103. Marquardt, D. W. (1963) An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 2, 431–441.Google Scholar
  104. Mathieu-Costello, O. and Fronek, K. (1985) Morphometry of the amount of smooth muscle cells in the media of various rabbit arteries. J. Ultrastruct. Res. 91, 1–12.PubMedCrossRefGoogle Scholar
  105. Matsuda, M., Fung, Y. C., and Sobin, S. S. (1987) Collagen and elastin fibers in human pulmonary alveolar mouths and ducts. J. Appl. Physiol. 63, 1185–1194.PubMedGoogle Scholar
  106. McDonald, D. A. (1968) Regional pulse-wave velocity in the arterial tree. J. Appl. Physiol. 24, 73–78.PubMedGoogle Scholar
  107. Mercer, R. R. and Crapo, J. D. (1990) Spatial distribution of collagen and elastin fibers in the lung. J. Appl. Physiol. 69, 756–765.PubMedGoogle Scholar
  108. Meyrick, B. and Reid, L. (1980) Hypoxia-induced structural changes in the media and adventitia of the rat hiller pulmonary artery and their regression. Am J. Pathol. 100, 151–178.PubMedGoogle Scholar
  109. Mirsky, I. (1973) Ventricular and arterial wall stresses based on large deformation theories. Biophys. J. 13, 1141–1159.PubMedCrossRefGoogle Scholar
  110. Moritake, K., Handa, H., Hayashi, K., and Sato, M. (1973) Experimental studies of intracranial aneurysms. Some biomechanical considerations of the wall structures of intracranial aneurysms and experimentally produced aneurysms. Jpn. J. Brain Surg. 1, 115–123.Google Scholar
  111. Murphy, R. A. (1980) Mechanics of vascular smooth muscle. In Handbook of Physiology. American Physiological Society, Bethesda, MD, Sec. 2, Vol. 2, pp. 325–351.Google Scholar
  112. Nagasawa, S., Handa, H., Nario, Y., Okumura, A., Moritake, K., and Hayaski, K. (1982) Biomechanical study on aging changes and vasospasm of human cerebral arteries. Biorheology 19, 481–489.PubMedGoogle Scholar
  113. Nerem, R. M. (1988) Endothelial cell responses to shear stress: Implications in the development of endothelialized synthetic vascular grafts. In Tissue Engineering, R. Skalak and C. F. Fox (eds.) Alan Liss, New York, pp. 5–10.Google Scholar
  114. Patel, D. J. and Vaishnav, R. N. (1972) The rheology of large blood vessels. In Cardiovascular Fluid Dynamics, D. H. Bergel (ed.) Academic Press, New York, Vol. 2, Chapter 11, pp. 2–65.Google Scholar
  115. Patel, D. J. and Vaishnav, R. N. (eds.) (1980) Basic Hemodynamics and Its Role in Disease Process. University Park Press, Baltimore, MD.Google Scholar
  116. Rhodin, J. A. G. (1980) Architecture of the vessel wall. In Handbook of Physiology, Sec 2 The Cardiovascular Bystem, Vol. II Vascular Smooth Muscle. American Physiological Society Bethesda, MD, pp. 1–31.Google Scholar
  117. Roach, M. R. and Burton, A. C. (1957) The reason for the shape of the distensibility curve of arteries. Can. J. Biochem. Physiol. 35, 681–690.PubMedCrossRefGoogle Scholar
  118. Roach, M. R. and Buron, A. C. (1959) The effect of age on the elasticity of human iliac arteries. Can. J. Biochem. Physiol. 37, 557–570.PubMedCrossRefGoogle Scholar
  119. Rushmer, R. F. (1970) Cardiovascular Dynamics, 3rd Edition. W. B. Saunders, Philadelphia, p. 196.Google Scholar
  120. Sato, M., Hayashi, K., Niimi, H., Moritake, K., Okumura, A., and Handa, H. (1979) Axial mechanical properties of arterial walls and their anisotropy. Med. & Biol. Eng. & Comput., 17, 170–176.CrossRefGoogle Scholar
  121. Schmid-Schönbein, G. W., Fung, Y. D., and Zweifach, B. W. (1975) Vascular endothelium —leukocyte interaction. Circulation Res. 36, 173–184.CrossRefGoogle Scholar
  122. Sharma, M. G. (1974) Viscoelastic behavior of conduit arteries. Biorheology 11, 279291.Google Scholar
  123. Shepherd, J. T. and Vanhoutte, P. M. (1975) Veins and Their Control. W. B. Saunders, Philadelphia.Google Scholar
  124. Smaje, L. H., Fraser, P. A., and Clough, G. (1980) The distensibility of single capillaries and venules in the cat mesentery. Microvasc. Res. 20, 358–370.PubMedCrossRefGoogle Scholar
  125. Sobin, P. (1977) Mechanical Properties of Human Veins. M. S. Thesis, University of California, San Diego, California.Google Scholar
  126. Sobin, S., Fung, Y. C., Tremer, H. M., and Rosenquist, T. H. (1972) Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circulation Res. 30, 440–450.PubMedCrossRefGoogle Scholar
  127. Sobin, S. S., Lindal, R. G., Fung, Y. C., and Tremer, H. M. (1978) Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvasc. Res. 15, 57–68.PubMedCrossRefGoogle Scholar
  128. Sobin, S. S., Fung, Y. C., and Tremer, H. M. (1988) Collagen and elastin fibers in human pulmonary alveolar walls. J. Appl. Physiol. 64, 1659–1675.PubMedGoogle Scholar
  129. Takamizawa, K. and Hayashi, K. (1987) Strain-energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17.PubMedCrossRefGoogle Scholar
  130. Takamizawa, K. and Hayashi, K. (1988) Uniform strain hypothesis and thin-walled theory in arterial mechanics. Bioreoheology 25, 555–565.Google Scholar
  131. Tanaka, T. T. and Fung, Y. C. (1974) Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7, 357–370.PubMedCrossRefGoogle Scholar
  132. Takamizawa, K. and Matsuda, T. (1990) Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57, 321–329.CrossRefGoogle Scholar
  133. Vaishnav, R. N., Young, J. T., Janicki, J. S., and Patel, D. J. (1972) Nonlinear anisotropic elastic properties of the canine aorta. Biophys. J. 12, 1008–1027.PubMedCrossRefGoogle Scholar
  134. Vaishnav, R. N., Young, J. T., and Patel, D. J. (1973) Distribution of stresses and strain-energy density through the wall thickness in a canine aortic segment. Circulation Res. 32, 557–583.CrossRefGoogle Scholar
  135. Vaishnav, R. N. and Vossoughi, J. (1983) Estimation of residual strains in aortic segments. In Biomedical Engineering, II, Recent Developments, C. W. Hall (ed.) Pergamon Press, New York, pp. 330–333.Google Scholar
  136. Vaishnav, R. N. and Vossoughi, J. (1987) Residual stress ad strain in aortic segments. J. Biomech. 20, 235–239.PubMedCrossRefGoogle Scholar
  137. Vossoughi, J., Weizsäcker, H. W., and Vaishnav, R. M. (1985) Variation of aortic geometry in various animal species. Biomedizinische Tech. 30, 48–54.CrossRefGoogle Scholar
  138. Wesley, R. L. R., Vaishnav, R. N., Fuchs, J. C. A., Patel, D. J., and Greenfield, J. C. Jr. (1975) Circulation Res. 37, 509–520.CrossRefGoogle Scholar
  139. Wetterer, E. and Kenner, T. (1968) Grundlagen der dynamik des arterienpulses. Springer-Verlag, Berlin.Google Scholar
  140. Wetterer, E., Bauer, R. D., and Busse, R. (1978) New ways of determining the propagation coefficient and the viscoelastic behavior of arteries in situ. In The Arterial System, E. D. Bauer and R. Busse (eds.) Springer-Verlag, Berlin, pp. 35–47.CrossRefGoogle Scholar
  141. Wolinsky, H. and Glagov, S. (1964) Structural basis for the static mechanical properties of the aortic media. Circulation Res. 14, 400–413.PubMedCrossRefGoogle Scholar
  142. Wylie, E. R. (1966) Flow through tapered tubes with nonlinear wall properties. In Biomechanics Symposium (Fung. Y. C. ed.), Am. Soc. Mech. Eng., New York, pp. 82–95.Google Scholar
  143. Xie, J. P., Liu, S. Q., Yang, R. F., and Fung. Y. C. (1991) The zero stress state of rat veins and vena cava. J. Biochem. Eng. 113, 36–41.Google Scholar
  144. Xie, J. P., Zhou, J., and Fung, Y. C. (1993) Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitial layers. J. Biomech. Eng. Submitted.Google Scholar
  145. Yen, R. T. and Foppiano, L. (1981) Elasticity of small pulmonary veins in the cat. J. Biomech. Eng. 103, 38–42.PubMedCrossRefGoogle Scholar
  146. Young, J. T., Vaishnav, R. N., and Patel, D. J. (1977) Nonlinear anisotropic viscoelastic properties of canine arterial segments. J. Biomech. 10, 549–559.PubMedCrossRefGoogle Scholar
  147. Young, T. (1809) On the functions of the heart and arteries. Philos. Trans. Roy. Soc. London 99, 1–31.CrossRefGoogle Scholar
  148. Yu, Q., Zhou, J., and Fung, Y. C. (1993) Neutral axis location in bending and the Young’s modulus of different layers of arterial wall. Am. J. Physiol.,in press.Google Scholar
  149. Zeng, Y. J., Yager, D., and Fung, Y. C. (1987) Measurement of the mechanical properties of the human lung tissue J. Biomech. Eng. 109, 169–174.PubMedCrossRefGoogle Scholar
  150. Yager, D., Feldman, H., and Fung, Y. C. (1992) Microscopic vs. macroscopic deformation of the pulmonary alveolar duct. J. Appl. Phyiol. 72, 1348–1354.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yuan-Cheng Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations