Biomechanics pp 66-108 | Cite as

The Flow Properties of Blood

  • Yuan-Cheng Fung
Chapter

Abstract

Blood is a marvelous fluid that nurtures life, contains many enzymes and hormones, and transports oxygen and carbon dioxide between the lungs and the cells of the tissues. We can leave the study of most of these important functions of blood to hematologists, biochemists, and pathological chemists. For biomechanics the most important information we need is the constitutive equation.

Keywords

Shear Rate Flow Property Blood Viscosity Couette Flow Shear Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbee, J. H. and Cokelet, G. R. (1971) The Fahraeus effect. Microvasc. Res. 3, 1–21.CrossRefGoogle Scholar
  2. Biggs, R. and MacFarlane, R. G. (1966) Human Blood Coagulation and Its Disorders, 3rd edition. Blackwell, Oxford.Google Scholar
  3. Blackshear, P. L., Forstrom, R. J., Dorman, F. D., and Voss, G. O. (1971) Effect of flow on cells near walls. Fed. Proc. 30, 1600–1609.PubMedGoogle Scholar
  4. Brooks, D. E., Goodwin, J. W., and Seaman, G. V. F. (1970) Interactions among erythrocytes under shear. J. Appl. Physiol. 28, 172–177.PubMedGoogle Scholar
  5. Bugliarello, G. and Sevilla, J. (1971) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7, 85–107.Google Scholar
  6. Casson, M. (1959) A flow equation for pigment-oil suspensions of the printing ink type. In Rheology of Disperse Systems, C. C. Mills (ed.) Pergamon, Oxford, pp. 84–104.Google Scholar
  7. Charm, S. E. and Kurland, G. S. (1974) Blood Flow and Micro Circulation. Wiley, New York.Google Scholar
  8. Chien, S. (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979.PubMedCrossRefGoogle Scholar
  9. Chien, S. (1972) Present state of blood rheology. In Hemodilution. Theoretical Basis and Clinical Application, K. Messmer and H. Schmid-Schoenbein (eds.) Int. Symp. Rottach-Ergern, 1971, S. Karger, Basel, pp. 1–45.Google Scholar
  10. Chien, S., Usami, S., Taylor, M., Lundberg, J. L., and Gregersen, M. I. (1966) Effects of hematocrit and plasma proteins of human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87Google Scholar
  11. Chien, S., Usami, S., and Dellenbeck, R. J. (1967) Blood viscosity: Influence of erythrocyte deformation. Science 157, 827–831.PubMedCrossRefGoogle Scholar
  12. Chien, S., Usami, S., Dellenbeck, R. J., and Gregersen, M. (1970) Shear dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219, 136–142.PubMedGoogle Scholar
  13. Chien, S., Luse, S. A., and Bryant, C. A. (1971) Hemolysis during filtration through micropores: A scanning electron microscopic and hemorheologic correlation. Microvasc. Res. 3, 183–203.PubMedCrossRefGoogle Scholar
  14. Chien, S., Usami, S., and Skalak, R. (1984) Blood flow in small tubes. In E. M. Renkin, and C. C. Michel (eds.) Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. IV, Part 1. American Physiological Society, Bethesda, MD, pp. 217–249.Google Scholar
  15. Cokelet, G. R. (1972) The rheology of human blood. In Biomechanics: Its Foundation and Objectives, Fung, Perrone, and Antiker (eds.) Prentice-Hall, Englewood Cliffs, NJ, pp. 63–103.Google Scholar
  16. Cokelet, G. R., Merrill, E. W., Gilliland, E. R., Shin, H., Britten, A., and Wells, R. E. (1963) The rheology of human blood measurement near and at zero shear rate. Trans. Soc. Rheol. 7, 303–317.CrossRefGoogle Scholar
  17. Dintenfass, L. (1971) Blood Microrheology. Butterworths, London.Google Scholar
  18. Dintenfass, L. (1976) Rheology of Blood in Diagnostic and Preventive Medicine. Butter-worths, London.Google Scholar
  19. Fung, Y. C. (1965) Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  20. Fung, Y. C. (1993) A First Course in Continuum Mechanics, 3rd edition. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  21. Goldsmith, H. L. (1971) Deformation of human red cells in tube flow. Biorheology 7, 235–242.PubMedGoogle Scholar
  22. Goldsmith, H. L. (1972a) The flow of model particles and blood cells and its relation to thrombogenesis. In Progress in Hemostasis and Thrombosis, Vol. 1, T. H. Spaet (ed.) Grunte & Stratton, New York, pp. 97–139.Google Scholar
  23. Goldsmith, H. L. (1972b) The microrheology of human erythrocyte suspensions. In Theoretical and Applied Mechanics Proc. 13th IUTAM Congress, E. Becker and G. K. Mikhailov (eds.) Springer, New York.Google Scholar
  24. Goldsmith, H. L. and Marlow, J. (1972) Flow behavior of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc. Roy. Soc. London B 182, 351–384.CrossRefGoogle Scholar
  25. Gregersen, M. I., Bryant, C. A., Hammerle, W. E., Usami, S., and Chien, S. (1967) Flow characteristics of human erythrocytes throughy polycarbonate sieves. Science 157, 825–827.PubMedCrossRefGoogle Scholar
  26. Hartert, H. and Schaeder, J. A. (1962) The physical and biological constants of thrombelastography. Biorheology 1, 31–40.Google Scholar
  27. Hartert, H. (1975) Clotting layers in the rheo-simulator. Biorheology 12, 249–252.PubMedGoogle Scholar
  28. Haynes, R. H., (1962) The viscosity of erythrocyte suspensions. Biophys. J. 2, 95–103.PubMedCrossRefGoogle Scholar
  29. Langsjoen, P. H. (1973) The value of reducing blood viscisity in acute myocardial infarction. No. 11. Karger, Basel, pp. 180–184.Google Scholar
  30. Larcan, A. and Stoltz, J. F. (1970) Microcirculation et Hemorheologie. Masson, Paris.Google Scholar
  31. McIntire, L. V. (ed.) (1985) Guidelines for Blood—Material Interactions. Report of a National Heart, Lung, and Blood Institute Working Group. U. S. Dept. of HHS, PHS, and NIH. NIH Publication No. 85–2185.Google Scholar
  32. McMillan, D. E. and Utterback, N. (1980) Maxwell fluid behavior of blood at low shear rate. Biorheology 17, 343–354.PubMedGoogle Scholar
  33. McMillan, D. E., Utterback, N. G., and Stocki, J. (1980) Low shear rate blood viscosity in diabetes. Biorheology 17, 355–362.PubMedGoogle Scholar
  34. Merrill, E. W., Cokelet, G. C., Britten, A., and Wells, R. E. (1963) Non-Newtonian rheology of human blood effect of fibrinogen deduced by “subtraction.” Circulation Res 13, 48–55.PubMedCrossRefGoogle Scholar
  35. Merrill, E. W., Gilliland, E. R., Cokelet, G. R., Shin, H., Britten, A., and Wells, R. E. (1963) Rheology of human blood, near and at zero flow. Biophys. J. 3, 199–213.PubMedCrossRefGoogle Scholar
  36. Merrill, W. E., Margetts, W. G., Cokelet, G. R., and Gilliland, E. W. (1965) The Casson equation and rheology of blood near zero shear. In Symposium on Biorheology, A Copley (ed.) Interscience Publishers, New York, pp. 135–143.Google Scholar
  37. Merrill, E. W., Benis, A. M., Gilliland, E. R. Sherwood, R. K., and Salzman, E. W. (1965) Pressure-flow relations of human blood in hallow fibers at low flow rates. J. Appl. Physiol. 20, 954–967.Google Scholar
  38. Messmer, K. and Schmid-Schoenbein, H. (eds.) (1972) Hemodilation: Theoretical Basis and Clinical Application. Karger, Basel.Google Scholar
  39. Oka, S. (1965) Theoretical considerations on the flow of blood through a capillary. In Symposium on Biorheology, A. L. Copley (ed.) Interscience, New York, pp. 89–102.Google Scholar
  40. Oka, S. (1974) Rheology—Biorheology. Syokabo, Tokyo (in Japanese).Google Scholar
  41. Phibbs, R. H. (1969) Orientation and distribution of erythrocytes in blood flowing through medium-sized arteries. In Hemorheology, A. C. Copley (ed.) Pergamon Press, New York, pp. 617–630.Google Scholar
  42. Rand, R. P. and Burton, A. C. (1964) Mechanical properties of the red cell membrane. Biophys. J. 4, 115–136.PubMedCrossRefGoogle Scholar
  43. Rand, P. W., Barker, N., and Lacombe, E. (1970) Effects of plasma viscosity and aggregation on whole blood viscosity. Am. J. Physiol. 218, 681–688.PubMedGoogle Scholar
  44. Rowlands, S., Groom, A. C., and Thomas, H. W. (1965) The difference in circulation times between erythrocyte and plasma in vivo. In Symposium on Biorheology, A. Copley, (ed.) Interscience Publishers, New York, pp. 371–379.Google Scholar
  45. Scott-Blair, G. W. (1974) An Introduction to Biorheology. Elsevier, New York. Thurston, G. B. (1972) Viscoelasticity of human blood. Biophys. J. 12, 1205–1217.Google Scholar
  46. Thurston, G. B. (1973) Frequency and shear rate dependence of viscoelasticity, of human blood. Biorheology 10, 375–381; (1976) 13, 191–199; (1978) 15, 239–249; (1979) 16, 149–162.Google Scholar
  47. Thurston, G. B. (1976) The viscosity and viscoelasticity of blood in small diameter tubes. Microvasc. Res. 11, 133–146.PubMedCrossRefGoogle Scholar
  48. Vadas, E. B., Goldsmith, H. L., and Mason, S. G. (1973) The microrheology of colloidal dispersions. I. The microtube technique. J. Colloid Interface Sci. 43, 630–648.CrossRefGoogle Scholar
  49. Whitmore, R. L. (1968) Rheology of the Circulation. Pergamon Press, New York.Google Scholar
  50. Yen, R. T. and Fung, Y. C. (1973) Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35, 510–517.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yuan-Cheng Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations