Biomechanics pp 466-499 | Cite as

Smooth Muscles

  • Yuan-Cheng Fung


Muscles in which striations cannot be seen are called smooth muscles. Smooth muscles of the blood vessels are called vascular smooth muscles. That of the intestine is intestinal smooth muscle. Different organs have different smooth muscles: there are sufficient differences among these muscles anatomically, functionally, mechanically, and in their responses to drugs to justify studying them one by one. But there are also common features. All muscles contain actin and myosin. All rely on ATP for energy. Changes in the cell membrane induce Na+ and K+ ion fluxes and action potentials. The Ca++ flux furnishes the excitation-contraction coupling. These properties are similar in all muscles.


Smooth Muscle Muscle Length Active Tension Thick Filament Contractile Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaberg, A. K. G. and Axelsson, J. (1965) Some mechanical aspects of intestinal smooth muscle. Acta Physiol. Scand. 64, 15–27.CrossRefGoogle Scholar
  2. Aidley, C. J. (1971) The Physiology of Excitable Cells. Cambridge University Press, Cambridge, U. K.Google Scholar
  3. Ashton, F. T., Somlyon, A. V., and Somlyo, A. P. (1975) The contractile apparatus of vascular smooth muscle: Intermediate high-voltage sterco electron microscopy. J. Mol. Biol. 98, 17–29.Google Scholar
  4. Bayliss, W. M. and Starling, E. H. (1899) The movements and innervation of the small intestine. J. Physiol. (London) 24, 99–143.Google Scholar
  5. Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr. (1980) Handbook of Physiology, Sec. 2, Cardiovascular System, Vol. 2., Vascular Smooth Muscle. American Physiological Society, Bethesda, MD.Google Scholar
  6. Bülbring, E. and Kuriyama, H. (1963) Effects of changes in the external sodium and calcium concentration on spontaneous electrical activity in smooth muscle of guinea pig taenia coli. Also, adrenaline in relation to the degree of stretch. J. Physiol. (London) 166, 29–58; 169, 198–212.Google Scholar
  7. Bülbring, E., Brading, A. F., Jones, A. W., and Tornita, T. (eds.) (1970) Smooth Muscle. Arnold, London.Google Scholar
  8. Burnstock, G. and Prosser, C. L. (1960) Responses of smooth muscles to quick stretch; relation of stretch to conduction. Am. J. Physiol. 198, 921–925.PubMedGoogle Scholar
  9. Burnstock, G. (1970) Structure of smooth muscle and its innervation. In Smooth Muscle, Bülbring, E. et al. (eds.) Arnold, London, Chap. 1, pp. 1–69.Google Scholar
  10. Cox, R. H. (1975–1978) Arterial wall mechanics and composition and the effects of smooth muscle activation. Am. J. Physiol. 229, 807–812 (1975); 230, 462–470 (1976); 231, 420–425 (1976); 233, H248—H255 (1977); 234, H280 — H288 (1978).Google Scholar
  11. Dobrin, P. B. (1973) Influence of initial length on length-tension relationship of vascular smooth muscle. Am. J. Physiol. 225 664–670.Google Scholar
  12. Ekstrom, J. and Uvelius, B. (1981) Length-tension relations of smooth muscle from normal and denervated rat urinary bladders. Acta Physiol. Scand. 112, 443–447.PubMedCrossRefGoogle Scholar
  13. Engelmann, T. W. (1869) Pflügers Arch. 2, 664–670.Google Scholar
  14. Fung, Y. C. (1971a) Muscle controlled flow. In Developments in Mechanics, Proc. 12th Midwest Mechanics Conference, pp. 33–62. University of Notre Dame Press, South Bend, IN.Google Scholar
  15. Fung, Y. C. (1971b) Peristaltic pumping: A bioengineering model. In Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis, S. Boyarsky, C. W. Gottschalk, E. A. Tanago, and P. D. Zimsking (eds.), pp. 177–198. Academic Press, New York.Google Scholar
  16. Golenhofen, K. (1964) “Resonance” in the tension response of smooth muscle of guinea-pig’s taenia coli to rhythmic stretch. J. Physiol. (London) 173, 13–15.Google Scholar
  17. Golenhofen, K. (1970) Slow rhythms in smooth muscle (minute-rhythm). In Smooth Muscle (ed. by Bülbring, E. et al.). Arnold, London. pp. 316–342.Google Scholar
  18. Gordon, A. R. and Siegman, M. H. (1971) Mechanical properties of smooth muscle. I. Length-tension and force-velocity relations. Am. J. Physiol. 221, 1243–1254.PubMedGoogle Scholar
  19. Guyton, A. C. (1976) Textbook of Medical Physiology. W. B. Saunders, Philadelphia.Google Scholar
  20. Hellstrand, P. and Johansson, B. (1975) The force-velocity relation in phasic contractions of venous smooth muscle. Acta Physiol. Scand. 93, 157–166.PubMedCrossRefGoogle Scholar
  21. Hill, A. V. (1938). Proc. Roy. Soc. London, Ser. B 126, 136–195.Google Scholar
  22. Huddart, H. (1975) The Comparative Structure and Function of Muscle. Pergamon, New York.Google Scholar
  23. Huddart, H. and Hunt, S. (1975). Visceral Muscle. Its Structure and Function. Blackie, Glasgow.Google Scholar
  24. Jaffrin, M. Y. and Shapiro, A. H. (1971) Peristaltic pumping. Annual Rev. Fluid Mech. 3, 13–36.CrossRefGoogle Scholar
  25. Johnson, P. C. (ed.) (1978) Peripheral Circulation. Wiley, New York.Google Scholar
  26. Kurihara, S., Huriyama, H. and Magaribuchi, T. (1974) Effect of rapid cooling on the electric properties of the smooth muscle of the guinea-pig urinary bladder. J. Physiol. (London) 238 413–426.Google Scholar
  27. Lowy, J. and Mulvaney, M. J. (1973) Mechanical properties of guinea pig taenia coli muscles. Acta Physiol. Scand. 88, 123–136.PubMedCrossRefGoogle Scholar
  28. Mastrigt, R. van (1979) Contractility of the urinary bladder. Urol. Int. 34, 410–420.PubMedCrossRefGoogle Scholar
  29. Mastrigt, R. van (1985) Passive properties of the smooth muscle of the pig ureter. In Urodynamics, W. Lutzeyer and J. Hannappel (eds.), pp. 1–12. Springer-Verlag, Berlin.Google Scholar
  30. Mastrigt, R. van. (1985) The propagation velocity of contractions of the pig ureter in vitro. In Urodynamics, W. Lutzeyer and J. Hannappel (eds.), pp. 126–128. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  31. Merrillees, N. C. R., Burnstock, G., and Holman, M. E. (1963) Correlation of fine structure and physiology of the innervation of smooth muscle in the guinea pig vas deferens. J. Cell Biol. 19, 529–550.Google Scholar
  32. Mulvaney, M. J. (1979) The active length-tension curve of vascular smooth muscle related to its cellular components. J. Gen. Physiol. 74, 85–104.CrossRefGoogle Scholar
  33. Murphy, R. A., Herlihy, J. T., and Megerman, J. (1974) Force generating capacity of arterial smooth muscle. J. Gen. Physiol. 64, 691–705.PubMedCrossRefGoogle Scholar
  34. Peiper, U., Laven, R., and Ehl, M. (1975) Force-velocity relationships in vascular smooth muscle. The influence of temperature. Pflügers Arch. Eur. 356, 33–45.CrossRefGoogle Scholar
  35. Price, J. M., Patilucci, P., and Fung, Y. C. (1977) Mechanical properties of taenia coli smooth muscle in spontaneous contraction. Am. J. Physiol. 233, C47–055.PubMedGoogle Scholar
  36. Price, J. M., Patitucci, P., and Fung, Y. C. (1979) Mechanical properties of resting taenia coli smooth muscle. Am. J. Physiol. 236, C211 — C220.Google Scholar
  37. Price, J. M. and Davis, D. L. (1981) Contractility and the length-tension relation of the dog anterior tibial artery. Blood Vessels 18, 75–88.PubMedGoogle Scholar
  38. Siegman, M. J., Butler, T. M., Moores, S. U., and Davies, R. E. (1976) Am. J. Physiol. 231, 1501–1508.PubMedGoogle Scholar
  39. Tanaka, T. T. and Fung, Y. C. (1974) Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7, 357–370.PubMedCrossRefGoogle Scholar
  40. Uvelius, B. (1979) Shortening velocity, active force, and homogeneity of contraction during electrically evoked twitches in smooth muscles from rabbit urinary bladders. Acta Physiol. Scand. 106, 481–486.PubMedCrossRefGoogle Scholar
  41. Weiss, R., Basset, A., and Hoffman, B. F. (1972) Dynamic length-tension curves of cat ureter. Am. J. Physiol. 222, 388–393.PubMedGoogle Scholar
  42. Wolf, S. and Werthessen, N. T. (1973) The Smooth Muscle of the Artery. Plenum, New York.Google Scholar
  43. Yin, F. C. P. and Fung, Y. C. (1971) Mechanical properties of isolated mammalian ureteral segments. Am. J. Physiol. 221, 1484–1493.PubMedGoogle Scholar
  44. Zupkas, P. F. and Fung, Y. C. (1985) Active contractions of ureteral segments. J. Biomech. Eng. 107, 62–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Yuan-Cheng Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations