Skip to main content

Estimation of Drug Affinities for Calcium Channel Conformational States

  • Chapter
Methods in Pharmacology

Abstract

It was suggested about 20 years ago that drugs can bind with different strengths to resting (R), open (0), and inactivated (I) conformational states of ionic channels (Strichartz, 1973; Courtney, 1975; Khodorov et al., 1976; Hille, 1977; Hondeghem and Katzung, 1977). In the 1980s this concept was applied to the mechanism of action of calcium channel ligands on L-type calcium channels in heart (Bean, 1984; Sanguinetti and Kass, 1984; McDonald et al., 1984) and smooth muscle cells (Bean et al., 1986; Klöckner and Isenberg, 1986; Hering et al., 1988). Patch-clamp studies in single cells enabled an accurate description of drug-induced changes in whole-cell current kinetics and single-channel behavior and subsequently the interpretation of electrophysiological data in terms of channel state models. Comparative studies of the action of 1,4dihydropyridine (1,4-DHP), phenylalkylamine (PAA), and benzothiazepine (BTA) in single cardiomyocytes revealed remarkable differences with respect to the dependence of drug action on the frequency of depolarization and membrane potential (Lee and Tsien, 1983; Uehra and Hume, 1985). In analogy to the effect of local anesthetics on sodium channels (Khodorov, 1981), the action of antagonist 1,4-DHPs has been interpreted as a high-affinity drug binding to inactivated calcium channels (Bean, 1984; Sanguinetti and Kass, 1984). The action of 1,4-DHPs, however, can be distinguished from “lidocain-like” drugs, as the 1,4-DHP effect on calcium channels is not significantly enhanced by repetitive membrane depolarization (Lee and Tsien, 1983; Uhera and Hume, 1985; Hering et al., 1988). A strong dependence on the “use of calcium channels,” i.e. activation of channels by test pulses, is evident for PAA antagonists. Their action seems to be closely related to the open conformational state (McDonald et al., 1984; Oyama et al., 1987; Hering et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bean, B. P. 1984. Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated state. Proc. Natl. Acad. Sci. USA, 81: 6388–6392.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P., Cohen, C. J., and Tsien, R. W. 1983. Lidocaine block of cardiac sodium channels. J. Gen. Physiol., 81: 613–642.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P., Sturek, M., Puga, A., and Hermsmeyer, K. 1986. Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ. Res., 59: 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Bechem, M., and Schramm M. 1987. Calcium-agonists. J. Mol. Cell. Cardiol., 19 (Suppl. II): 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Bechem, M., Hebisch, S., and Schramm, M. 1988. Ca’ agonists: New, sensitive probes for Ca’ channels. Trends Pharmacol. Sci., 9: 257–261.

    Article  CAS  Google Scholar 

  • Benham, C. D., and Bolton, T. B. 1986. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J. Phvsiol., 381: 385–406.

    CAS  Google Scholar 

  • Boll, W., and Lux, H. D. 1985. Action of organic antagonists on neuronal calcium currents. Neurosci. Lett., 56: 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., Kunze, D. L., and Yatani, A. 1986. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J. Physiol., 379: 495–514.

    PubMed  CAS  Google Scholar 

  • Cavaliè, A., Pelzer, D., and Trautwein, W. 1986. Fast and slow gating behavior of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflügers Arch., 406: 241–258.

    Article  PubMed  Google Scholar 

  • Courtney, K. R. 1975. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocain derivative GEA 968. J. Pharmacol. Exp. Ther., 195: 225–236.

    PubMed  CAS  Google Scholar 

  • Droogmans, G., and Callewaert, G. 1988. Ca’-channel current and its modification by the dihydropyridine agonist BAY K 8644 in isolated smooth muscle cells. Pflügers Arch., 406: 259–265.

    Article  Google Scholar 

  • Ehara, T., and Kaufmann, R. 1978. The voltage-and time-dependent effects of (-)-verapamil on the slow inward current in isolated cat ventricular myocardium. J. Pharmacol. Exp. Ther., 207: 49–55.

    PubMed  CAS  Google Scholar 

  • Fabiato, A. 1985. Rapid ionic modification during the aquorin-detected calcium transient in a skinned canine Purkinje cell. J. Gen. Physiol., 85: 189–246.

    Article  PubMed  CAS  Google Scholar 

  • Fenwick, E. M., Marty, A., and Neher, E. 1982. Sodium and calcium channels in bovine chromaffin cells. J. Phvsiol., 331: 599–635.

    CAS  Google Scholar 

  • Franke, C., Hatt, H., and Dudel, J. 1987. Liquid filament switch for ultra-fast exchange of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci. Leu., 77: 199–204.

    Article  CAS  Google Scholar 

  • Ganitkevich, V. Ya., and Isenberg, G. 1990. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J. Physiol., 426: 19–42.

    PubMed  Google Scholar 

  • Glossmann, H., and Striessnig, J. 1988. Calcium channels. Vitam. Horm., 44: 155–328.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., Ferry, D. R., Goll, A., Striessnig, J., and Zernig, G. 1985. Calcium channels and calcium channel drugs: Recent biochemical and biophysical findings. Drug Res., 35:1917–1935.

    CAS  Google Scholar 

  • Gurney, A. M., Nerbonne, J. M., and Lester, H. A. 1985. Photoinduced removal of nifedipine reveals mechanisms of calcium antagonist action on single heart cells. J. Gen. Physiol., 86: 353–379.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Ohmori, H. 1983. Studies of single calcium channel currents in rat clonal pituitary cells. J. Physiol., 336: 649–661.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakman, B., and Sigworth, F. J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell free membrane patches. Pflügers Arch., 391: 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hirth, C., Borchard, U., and Hafner, D. 1983. Effect of the calcium antagonist diltiazem on action potentials, slow response and force of contraction in different cardiac tissues. J. Mol. Cell. Cardiol., 15: 799–809.

    Article  PubMed  CAS  Google Scholar 

  • Hering, S., Beech, D. J., and Bolton, T. B. 1987. A simple method of fast extracellular solution exchange for the study of whole cell or single channel currents using patch-clamp technique. Pflügers Arch., 410: 335–337.

    Article  PubMed  CAS  Google Scholar 

  • Hering, S., Beech, D. J., Bolton, T. B., and Lim, S. P. 1988. Action of nifedipine or BAY K 8644 is dependent on calcium channel state in single smooth muscle cells from rabbit ear artery. Pflügers Arch., 411: 590592.

    Google Scholar 

  • Hering, S., Bolton, T. B., Beech, D. J., and Lim, S. P. 1989a. On the mechanism of calcium channel block by D600 in single smooth muscle cells from rabbit ear artery. Circ. Res., 64: 928–936.

    Article  PubMed  CAS  Google Scholar 

  • Hering, S., Kleppisch, T., Timin, E. N., and Bodewei, R. 1989b. Characterization of the calcium channel state transitions induced by the enantiomers of the 1,4-dihydropyridine SANDOZ 202 791 in neonatal rat heart cells: A nonmodulated receptor model. Pflügers Arch., 414: 690–700.

    Article  PubMed  CAS  Google Scholar 

  • Hering, S., Hughs, A. D., Timin, E. N., and Bolton, T. B. 1993. Modulation of calcium channels in arterial smooth muscle cells by dihydropyridine inantiomers. J. Gen. Physiol., 101: 393–410.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., Lansman, J. B., and Tsien, R. W. 1984. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature, 311: 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., Lansman, J. B., and Tsien, R. W. 1985. Mechanism of calcium channel modulation by dihydropyridine agonists and antagonists. In: Bayer-Symposium IX, Cardiovascular Effects of DihydroprridineType Calcium Antagonists and Agonists, pp. 34–55. Ed. by Fleckenstein, A., van Breemen, C., Gross, R., and Hoffmeister, F. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Hille, B. 1977. Local anaesthetics: Hydrophilic and hydrophobic pathways for drug-receptor reaction. J. Gen. Physiol., 69: 497–515.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117: 500–544.

    PubMed  CAS  Google Scholar 

  • Hof, P. R., Ruegg, U. T., Hof, A., and Vogel, A. 1985. Stereoselectivity at the calcium channel: Opposite action of enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol., 7: 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem, L. M., and Katzung, B. G. 1977. Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta, 472: 373–398.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. D., Hering, S., and Bolton, T. B. 1990. Evidence that agonist and antagonist enantiomers of the dihydropyridine PN 202–791 act at different sites on the voltage-dependent calcium channel of vascular smooth muscle. Br. J. Pharmacol., 101: 3–5.

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, Y., Muraki, K., Takeda, M., and Watanabe, M. 1989. Measurement and simulation of noninactivating Ca current in smooth muscle cells. Am. J. Physiol., 256: C880 – C885.

    PubMed  CAS  Google Scholar 

  • Janis, R. A., and Triggle, D. J. 1984. 1,4-Dihydropyridine Cat+ channel antagonists and activators: A comparison of binding characteristics with pharmacology. Drug Dev. Res., 4: 257–274.

    Google Scholar 

  • Kakei, M., and Ashcroft, F. M. 1987. A microflow superfusion system for use with excised membrane patches. Pflügers Arch., 409: 337–341.

    PubMed  CAS  Google Scholar 

  • Kass, R. S., and Krafte, D. S. 1987. Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J. Gen. Physiol., 89: 629–644.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I. 1981. Sodium inactivation and drug-induced immobilisation of gating charge in nerve membrane. Prog. Biophys. Mol. Biol., 37: 49.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. L., Shishkova, L., Peganov, E., and Revenko, S. 1976. Inhibition of sodium current in frog Ranvier node treated with local anesthetics. Role of slow sodium inactivation. Biochim. Biophys. Acta, 433: 409–435.

    Article  CAS  Google Scholar 

  • Klöckner, U., and Isenberg, G. 1985. Calcium currents of cesium loaded isolated smooth muscle cells (urinary bladder of guinea pig). Pflügers Arch., 405: 340–348.

    Article  PubMed  Google Scholar 

  • Klöckner, U., and Isenberg, G. 1986. Tiapamil reduces the calcium inward current of isolated smooth muscle cells. Dependence on holding potential and pulse frequency. Eur. J. Pharmacol., 127: 165–171.

    Article  PubMed  Google Scholar 

  • Kohlhardt, M., and Haap, K. 1981. The blockade of V ax of the atrioventricular action potential produced by the slow channel inhibitors verapamil and nifedipine. Naunyn-Schmiedeberg’s Arch. Pharmacol., 316: 178–185.

    Article  PubMed  CAS  Google Scholar 

  • Kokubun, S., Prod’hum, B., Becker, C., Porzig, H., and Reuter, H. 1986. Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol. Pharmacol., 30: 571–584.

    PubMed  CAS  Google Scholar 

  • Krishtal, O. A., and Pidoplichko, V. I. 1980. Receptor for protons in the nerve cell membrane. Neuroscience, 5: 2325–2327.

    Article  PubMed  CAS  Google Scholar 

  • Krishtal, O. A., Marchenko, S. M., and Pidoplichko, V. I. 1983. Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci. Lett., 35: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Kuga, T., Sadoshima, J., Tomoike, H., Kanaide, H., Akaike, N., and Nakamura, M. 1990. Action of calcium antagonists on two types of calcium channels in rat aorta smooth muscle cells in primary culture. Cire. Res., 67: 469–480.

    Article  CAS  Google Scholar 

  • Lacerda, A. E., and Brown, A. M. 1989. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen. Physiol., 93: 1243–1273.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., and Tsien, R. W. 1983. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature, 302: 790–794.

    Article  PubMed  CAS  Google Scholar 

  • MacCarthy, R. T., and Cohen, C. J. 1989. Nimodipine block of calcium channels in rat vascular smooth muscle cell lines. J. Gen. Physiol., 94: 669–692.

    Article  Google Scholar 

  • Maconochie, D. J., and Knight, D. E. 1989. A method for making solution changes in the sub-millisecond range at the tip of a patch pipette. Pflügers Arch., 414: 589–596.

    Article  PubMed  CAS  Google Scholar 

  • Markwardt, F., and Nilius, B. 1988. Modulation of calcium channel currents in guinea-pig single ventricular heart cells by the dihydropyridine BAY K 8644. J. Physiol., 339: 559–575.

    Google Scholar 

  • Marquardt, P. W. 1963. An algorithm for least-square estimation of non-linear parameters. J. Soc. Ind. Appl. Math., 11: 431–44.

    Article  Google Scholar 

  • McDonald, T. F., Pelzer, D., and Trautwein, W. 1984. Cat ventricular muscle treated with D600: Characteristics of calcium channel block and unblock. J. Physiol., 352: 217–241.

    PubMed  CAS  Google Scholar 

  • Nakazawa, K., Saito, H., and Matsuki, N. 1988. Fast and slowly inactivating components of Ca-channel current and their sensitivities to nicardipine in isolated smooth muscle cells from rat vas deferens. Pflügers Arch., 411: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley, J. F. 1988. Noradrenalin contracts arteries by activating voltage-dependent calcium channels. Nature, 336: 382–385.

    Article  PubMed  CAS  Google Scholar 

  • Oyama, Y., Hori, N., Tokutomi, N., and Akaike, N. 1987. D-600 blocks open calcium channels more profoundly than closed ones. Brain Res., 417: 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., and Kass, R. S. 1984. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Cire. Res., 55: 336–348.

    Article  CAS  Google Scholar 

  • Sanguinetti, M. S., Krafte, D. S., and Kass, R. S. 1986. Voltage-dependent modulation of Ca channel current by BAY K 8644. J. Gen. Physiol., 88: 369–392.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer, K. W., and Bridge, J. H. B. 1989. A simple device for rapidly exchanging solution surrounding a single cardiac cell. Am. J. Physiol., 256:C44 I -C447.

    Google Scholar 

  • Starmer, C. F., and Grant, A. O. 1985. Phasic ion channel blockade: A kinetic model and method for parameter estimation. Mol. Pharmacol., 28: 348–356.

    PubMed  CAS  Google Scholar 

  • Strichartz, G. R. 1973. The inhibition of sodium currents by in myelined nerve by quarternary derivatives of lidocaine. J. Gen. Physiol., 62: 37–57.

    Article  PubMed  CAS  Google Scholar 

  • Terada, K., Kitamura, K., and Kuriyama, H. 1987. Blocking action of calcium antagonists on the calcium channels in the smooth muscle cell membrane of rabbit small intestine. Pflügers Arch., 408: 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Terada, K., Nakao, K., Okabe, K., Kitamura, K., and Kuriyama, H. 1987. Action of the 1,4-dihydropyridine derivative, KW-3049 on the smooth muscle membrane of the rabbit mesenteric artery. Br. J Pharmacol., 92: 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Tiaho, F., Richard, S., Lory, P., Nerbonne, J. M., and Nargot, J. 1990. Cyclic-AMP-dependent phosphorylation modulates the stereospecific activation of cardiac Ca channels by Bay K 8644. Pflügers Arch., 417: 5866.

    Article  Google Scholar 

  • Timin, E. N., and Hering, S. 1992. A method for estimation of drug affinity constants to the open conformational state of calcium channels. Biophys. J., 63: 808–814.

    Article  PubMed  CAS  Google Scholar 

  • Triggle, D. J., Skattebol, A., Rampe, D., Joslyn, A., and Gengo, P. 1986. Chemical pharmacology of Ca’ channel ligands. In: New Insights into Cell and Membrane Transport Processes, pp. 125–143. Ed. by Poste, G., and Crooke, S. T. Plenum Press, New York.

    Chapter  Google Scholar 

  • Uehra, A., and Hume, J. R. 1985. Interaction of organic calcium channel antagonists with calcium channels in single frog atrial cells. J. Gen. Physiol., 85: 621–647.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hering, S., Timin, E.N. (1993). Estimation of Drug Affinities for Calcium Channel Conformational States. In: Glossmann, H., Striessnig, J. (eds) Methods in Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2239-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2239-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3232-7

  • Online ISBN: 978-1-4757-2239-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics