Estimation of Drug Affinities for Calcium Channel Conformational States

  • Steffen Hering
  • Eugen Nikolaevich Timin


It was suggested about 20 years ago that drugs can bind with different strengths to resting (R), open (0), and inactivated (I) conformational states of ionic channels (Strichartz, 1973; Courtney, 1975; Khodorov et al., 1976; Hille, 1977; Hondeghem and Katzung, 1977). In the 1980s this concept was applied to the mechanism of action of calcium channel ligands on L-type calcium channels in heart (Bean, 1984; Sanguinetti and Kass, 1984; McDonald et al., 1984) and smooth muscle cells (Bean et al., 1986; Klöckner and Isenberg, 1986; Hering et al., 1988). Patch-clamp studies in single cells enabled an accurate description of drug-induced changes in whole-cell current kinetics and single-channel behavior and subsequently the interpretation of electrophysiological data in terms of channel state models. Comparative studies of the action of 1,4dihydropyridine (1,4-DHP), phenylalkylamine (PAA), and benzothiazepine (BTA) in single cardiomyocytes revealed remarkable differences with respect to the dependence of drug action on the frequency of depolarization and membrane potential (Lee and Tsien, 1983; Uehra and Hume, 1985). In analogy to the effect of local anesthetics on sodium channels (Khodorov, 1981), the action of antagonist 1,4-DHPs has been interpreted as a high-affinity drug binding to inactivated calcium channels (Bean, 1984; Sanguinetti and Kass, 1984). The action of 1,4-DHPs, however, can be distinguished from “lidocain-like” drugs, as the 1,4-DHP effect on calcium channels is not significantly enhanced by repetitive membrane depolarization (Lee and Tsien, 1983; Uhera and Hume, 1985; Hering et al., 1988). A strong dependence on the “use of calcium channels,” i.e. activation of channels by test pulses, is evident for PAA antagonists. Their action seems to be closely related to the open conformational state (McDonald et al., 1984; Oyama et al., 1987; Hering et al., 1989).


Calcium Channel Pulse Train Drug Binding Test Pulse Physiological Salt Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bean, B. P. 1984. Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated state. Proc. Natl. Acad. Sci. USA, 81: 6388–6392.PubMedCrossRefGoogle Scholar
  2. Bean, B. P., Cohen, C. J., and Tsien, R. W. 1983. Lidocaine block of cardiac sodium channels. J. Gen. Physiol., 81: 613–642.PubMedCrossRefGoogle Scholar
  3. Bean, B. P., Sturek, M., Puga, A., and Hermsmeyer, K. 1986. Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ. Res., 59: 229–235.PubMedCrossRefGoogle Scholar
  4. Bechem, M., and Schramm M. 1987. Calcium-agonists. J. Mol. Cell. Cardiol., 19 (Suppl. II): 63–75.PubMedCrossRefGoogle Scholar
  5. Bechem, M., Hebisch, S., and Schramm, M. 1988. Ca’ agonists: New, sensitive probes for Ca’ channels. Trends Pharmacol. Sci., 9: 257–261.CrossRefGoogle Scholar
  6. Benham, C. D., and Bolton, T. B. 1986. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J. Phvsiol., 381: 385–406.Google Scholar
  7. Boll, W., and Lux, H. D. 1985. Action of organic antagonists on neuronal calcium currents. Neurosci. Lett., 56: 335–339.PubMedCrossRefGoogle Scholar
  8. Brown, A. M., Kunze, D. L., and Yatani, A. 1986. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J. Physiol., 379: 495–514.PubMedGoogle Scholar
  9. Cavaliè, A., Pelzer, D., and Trautwein, W. 1986. Fast and slow gating behavior of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflügers Arch., 406: 241–258.PubMedCrossRefGoogle Scholar
  10. Courtney, K. R. 1975. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocain derivative GEA 968. J. Pharmacol. Exp. Ther., 195: 225–236.PubMedGoogle Scholar
  11. Droogmans, G., and Callewaert, G. 1988. Ca’-channel current and its modification by the dihydropyridine agonist BAY K 8644 in isolated smooth muscle cells. Pflügers Arch., 406: 259–265.CrossRefGoogle Scholar
  12. Ehara, T., and Kaufmann, R. 1978. The voltage-and time-dependent effects of (-)-verapamil on the slow inward current in isolated cat ventricular myocardium. J. Pharmacol. Exp. Ther., 207: 49–55.PubMedGoogle Scholar
  13. Fabiato, A. 1985. Rapid ionic modification during the aquorin-detected calcium transient in a skinned canine Purkinje cell. J. Gen. Physiol., 85: 189–246.PubMedCrossRefGoogle Scholar
  14. Fenwick, E. M., Marty, A., and Neher, E. 1982. Sodium and calcium channels in bovine chromaffin cells. J. Phvsiol., 331: 599–635.Google Scholar
  15. Franke, C., Hatt, H., and Dudel, J. 1987. Liquid filament switch for ultra-fast exchange of solutions at excised patches of synaptic membrane of crayfish muscle. Neurosci. Leu., 77: 199–204.CrossRefGoogle Scholar
  16. Ganitkevich, V. Ya., and Isenberg, G. 1990. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J. Physiol., 426: 19–42.PubMedGoogle Scholar
  17. Glossmann, H., and Striessnig, J. 1988. Calcium channels. Vitam. Horm., 44: 155–328.PubMedCrossRefGoogle Scholar
  18. Glossmann, H., Ferry, D. R., Goll, A., Striessnig, J., and Zernig, G. 1985. Calcium channels and calcium channel drugs: Recent biochemical and biophysical findings. Drug Res., 35:1917–1935.Google Scholar
  19. Gurney, A. M., Nerbonne, J. M., and Lester, H. A. 1985. Photoinduced removal of nifedipine reveals mechanisms of calcium antagonist action on single heart cells. J. Gen. Physiol., 86: 353–379.PubMedCrossRefGoogle Scholar
  20. Hagiwara, S., and Ohmori, H. 1983. Studies of single calcium channel currents in rat clonal pituitary cells. J. Physiol., 336: 649–661.PubMedGoogle Scholar
  21. Hamill, O. P., Marty, A., Neher, E., Sakman, B., and Sigworth, F. J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell free membrane patches. Pflügers Arch., 391: 85–100.PubMedCrossRefGoogle Scholar
  22. Hirth, C., Borchard, U., and Hafner, D. 1983. Effect of the calcium antagonist diltiazem on action potentials, slow response and force of contraction in different cardiac tissues. J. Mol. Cell. Cardiol., 15: 799–809.PubMedCrossRefGoogle Scholar
  23. Hering, S., Beech, D. J., and Bolton, T. B. 1987. A simple method of fast extracellular solution exchange for the study of whole cell or single channel currents using patch-clamp technique. Pflügers Arch., 410: 335–337.PubMedCrossRefGoogle Scholar
  24. Hering, S., Beech, D. J., Bolton, T. B., and Lim, S. P. 1988. Action of nifedipine or BAY K 8644 is dependent on calcium channel state in single smooth muscle cells from rabbit ear artery. Pflügers Arch., 411: 590592.Google Scholar
  25. Hering, S., Bolton, T. B., Beech, D. J., and Lim, S. P. 1989a. On the mechanism of calcium channel block by D600 in single smooth muscle cells from rabbit ear artery. Circ. Res., 64: 928–936.PubMedCrossRefGoogle Scholar
  26. Hering, S., Kleppisch, T., Timin, E. N., and Bodewei, R. 1989b. Characterization of the calcium channel state transitions induced by the enantiomers of the 1,4-dihydropyridine SANDOZ 202 791 in neonatal rat heart cells: A nonmodulated receptor model. Pflügers Arch., 414: 690–700.PubMedCrossRefGoogle Scholar
  27. Hering, S., Hughs, A. D., Timin, E. N., and Bolton, T. B. 1993. Modulation of calcium channels in arterial smooth muscle cells by dihydropyridine inantiomers. J. Gen. Physiol., 101: 393–410.PubMedCrossRefGoogle Scholar
  28. Hess, P., Lansman, J. B., and Tsien, R. W. 1984. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature, 311: 538–544.PubMedCrossRefGoogle Scholar
  29. Hess, P., Lansman, J. B., and Tsien, R. W. 1985. Mechanism of calcium channel modulation by dihydropyridine agonists and antagonists. In: Bayer-Symposium IX, Cardiovascular Effects of DihydroprridineType Calcium Antagonists and Agonists, pp. 34–55. Ed. by Fleckenstein, A., van Breemen, C., Gross, R., and Hoffmeister, F. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  30. Hille, B. 1977. Local anaesthetics: Hydrophilic and hydrophobic pathways for drug-receptor reaction. J. Gen. Physiol., 69: 497–515.PubMedCrossRefGoogle Scholar
  31. Hodgkin, A. L., and Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117: 500–544.PubMedGoogle Scholar
  32. Hof, P. R., Ruegg, U. T., Hof, A., and Vogel, A. 1985. Stereoselectivity at the calcium channel: Opposite action of enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol., 7: 689–693.PubMedCrossRefGoogle Scholar
  33. Hondeghem, L. M., and Katzung, B. G. 1977. Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta, 472: 373–398.PubMedCrossRefGoogle Scholar
  34. Hughes, A. D., Hering, S., and Bolton, T. B. 1990. Evidence that agonist and antagonist enantiomers of the dihydropyridine PN 202–791 act at different sites on the voltage-dependent calcium channel of vascular smooth muscle. Br. J. Pharmacol., 101: 3–5.PubMedCrossRefGoogle Scholar
  35. Imaizumi, Y., Muraki, K., Takeda, M., and Watanabe, M. 1989. Measurement and simulation of noninactivating Ca current in smooth muscle cells. Am. J. Physiol., 256: C880 – C885.PubMedGoogle Scholar
  36. Janis, R. A., and Triggle, D. J. 1984. 1,4-Dihydropyridine Cat+ channel antagonists and activators: A comparison of binding characteristics with pharmacology. Drug Dev. Res., 4: 257–274.Google Scholar
  37. Kakei, M., and Ashcroft, F. M. 1987. A microflow superfusion system for use with excised membrane patches. Pflügers Arch., 409: 337–341.PubMedGoogle Scholar
  38. Kass, R. S., and Krafte, D. S. 1987. Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J. Gen. Physiol., 89: 629–644.PubMedCrossRefGoogle Scholar
  39. Khodorov, B. I. 1981. Sodium inactivation and drug-induced immobilisation of gating charge in nerve membrane. Prog. Biophys. Mol. Biol., 37: 49.PubMedCrossRefGoogle Scholar
  40. Khodorov, B. L., Shishkova, L., Peganov, E., and Revenko, S. 1976. Inhibition of sodium current in frog Ranvier node treated with local anesthetics. Role of slow sodium inactivation. Biochim. Biophys. Acta, 433: 409–435.CrossRefGoogle Scholar
  41. Klöckner, U., and Isenberg, G. 1985. Calcium currents of cesium loaded isolated smooth muscle cells (urinary bladder of guinea pig). Pflügers Arch., 405: 340–348.PubMedCrossRefGoogle Scholar
  42. Klöckner, U., and Isenberg, G. 1986. Tiapamil reduces the calcium inward current of isolated smooth muscle cells. Dependence on holding potential and pulse frequency. Eur. J. Pharmacol., 127: 165–171.PubMedCrossRefGoogle Scholar
  43. Kohlhardt, M., and Haap, K. 1981. The blockade of V ax of the atrioventricular action potential produced by the slow channel inhibitors verapamil and nifedipine. Naunyn-Schmiedeberg’s Arch. Pharmacol., 316: 178–185.PubMedCrossRefGoogle Scholar
  44. Kokubun, S., Prod’hum, B., Becker, C., Porzig, H., and Reuter, H. 1986. Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol. Pharmacol., 30: 571–584.PubMedGoogle Scholar
  45. Krishtal, O. A., and Pidoplichko, V. I. 1980. Receptor for protons in the nerve cell membrane. Neuroscience, 5: 2325–2327.PubMedCrossRefGoogle Scholar
  46. Krishtal, O. A., Marchenko, S. M., and Pidoplichko, V. I. 1983. Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci. Lett., 35: 41–45.PubMedCrossRefGoogle Scholar
  47. Kuga, T., Sadoshima, J., Tomoike, H., Kanaide, H., Akaike, N., and Nakamura, M. 1990. Action of calcium antagonists on two types of calcium channels in rat aorta smooth muscle cells in primary culture. Cire. Res., 67: 469–480.CrossRefGoogle Scholar
  48. Lacerda, A. E., and Brown, A. M. 1989. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen. Physiol., 93: 1243–1273.PubMedCrossRefGoogle Scholar
  49. Lee, K. S., and Tsien, R. W. 1983. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature, 302: 790–794.PubMedCrossRefGoogle Scholar
  50. MacCarthy, R. T., and Cohen, C. J. 1989. Nimodipine block of calcium channels in rat vascular smooth muscle cell lines. J. Gen. Physiol., 94: 669–692.CrossRefGoogle Scholar
  51. Maconochie, D. J., and Knight, D. E. 1989. A method for making solution changes in the sub-millisecond range at the tip of a patch pipette. Pflügers Arch., 414: 589–596.PubMedCrossRefGoogle Scholar
  52. Markwardt, F., and Nilius, B. 1988. Modulation of calcium channel currents in guinea-pig single ventricular heart cells by the dihydropyridine BAY K 8644. J. Physiol., 339: 559–575.Google Scholar
  53. Marquardt, P. W. 1963. An algorithm for least-square estimation of non-linear parameters. J. Soc. Ind. Appl. Math., 11: 431–44.CrossRefGoogle Scholar
  54. McDonald, T. F., Pelzer, D., and Trautwein, W. 1984. Cat ventricular muscle treated with D600: Characteristics of calcium channel block and unblock. J. Physiol., 352: 217–241.PubMedGoogle Scholar
  55. Nakazawa, K., Saito, H., and Matsuki, N. 1988. Fast and slowly inactivating components of Ca-channel current and their sensitivities to nicardipine in isolated smooth muscle cells from rat vas deferens. Pflügers Arch., 411: 289–295.PubMedCrossRefGoogle Scholar
  56. Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley, J. F. 1988. Noradrenalin contracts arteries by activating voltage-dependent calcium channels. Nature, 336: 382–385.PubMedCrossRefGoogle Scholar
  57. Oyama, Y., Hori, N., Tokutomi, N., and Akaike, N. 1987. D-600 blocks open calcium channels more profoundly than closed ones. Brain Res., 417: 143–147.PubMedCrossRefGoogle Scholar
  58. Sanguinetti, M. C., and Kass, R. S. 1984. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Cire. Res., 55: 336–348.CrossRefGoogle Scholar
  59. Sanguinetti, M. S., Krafte, D. S., and Kass, R. S. 1986. Voltage-dependent modulation of Ca channel current by BAY K 8644. J. Gen. Physiol., 88: 369–392.PubMedCrossRefGoogle Scholar
  60. Spitzer, K. W., and Bridge, J. H. B. 1989. A simple device for rapidly exchanging solution surrounding a single cardiac cell. Am. J. Physiol., 256:C44 I -C447.Google Scholar
  61. Starmer, C. F., and Grant, A. O. 1985. Phasic ion channel blockade: A kinetic model and method for parameter estimation. Mol. Pharmacol., 28: 348–356.PubMedGoogle Scholar
  62. Strichartz, G. R. 1973. The inhibition of sodium currents by in myelined nerve by quarternary derivatives of lidocaine. J. Gen. Physiol., 62: 37–57.PubMedCrossRefGoogle Scholar
  63. Terada, K., Kitamura, K., and Kuriyama, H. 1987. Blocking action of calcium antagonists on the calcium channels in the smooth muscle cell membrane of rabbit small intestine. Pflügers Arch., 408: 552–557.PubMedCrossRefGoogle Scholar
  64. Terada, K., Nakao, K., Okabe, K., Kitamura, K., and Kuriyama, H. 1987. Action of the 1,4-dihydropyridine derivative, KW-3049 on the smooth muscle membrane of the rabbit mesenteric artery. Br. J Pharmacol., 92: 615–625.PubMedCrossRefGoogle Scholar
  65. Tiaho, F., Richard, S., Lory, P., Nerbonne, J. M., and Nargot, J. 1990. Cyclic-AMP-dependent phosphorylation modulates the stereospecific activation of cardiac Ca channels by Bay K 8644. Pflügers Arch., 417: 5866.CrossRefGoogle Scholar
  66. Timin, E. N., and Hering, S. 1992. A method for estimation of drug affinity constants to the open conformational state of calcium channels. Biophys. J., 63: 808–814.PubMedCrossRefGoogle Scholar
  67. Triggle, D. J., Skattebol, A., Rampe, D., Joslyn, A., and Gengo, P. 1986. Chemical pharmacology of Ca’ channel ligands. In: New Insights into Cell and Membrane Transport Processes, pp. 125–143. Ed. by Poste, G., and Crooke, S. T. Plenum Press, New York.CrossRefGoogle Scholar
  68. Uehra, A., and Hume, J. R. 1985. Interaction of organic calcium channel antagonists with calcium channels in single frog atrial cells. J. Gen. Physiol., 85: 621–647.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Steffen Hering
    • 1
  • Eugen Nikolaevich Timin
    • 2
  1. 1.Institute for Biochemical PharmacologyInnsbruckAustria
  2. 2.A. V. Vishnevsky Institute of SurgeryMoscowRussia

Personalised recommendations