Influence of GABA on Potassium Channels in Hippocampal Neurons

  • Peter W. Gage
  • Louis S. Premkumar
  • Shin-ho Chung


A wide range of neurotransmitters, such as gamma-aminobutyric acid (GABA), serotonin (5-hydroxytryptamine, 5HT), acetylcholine, noradrenaline, dopamine, and adenosine, have been found to activate potassium channels in central neurons. It is possible that many of these transmitters activate the same potassium channels (Nicoll et al., 1990). An increase in potassium conductance would make cells less excitable and would clearly influence neuronal behavior. In this chapter, we will focus our attention on the characteristics of potassium channels activated and modulated by GABA in the mammalian hippocampus. Emphasis will be placed on “subconductance” states of these channels and their relationship to normal channel behavior. It may turn out that the other transmitters activate and modulate channels in a similar way.


Arachidonic Acid Hide Markov Model Potassium Channel Hippocampal Neuron Pertussis Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B. E. 1984. Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro. J. Neurophysiol., 52: 892–910.Google Scholar
  2. Andrade, R., Malenka, R. C., and Nicoll, R. A. 1986. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science, 234: 1261–1265.PubMedCrossRefGoogle Scholar
  3. Atkins, P. T., Surmeier, D. J., and Kitai, S. T. 1990. Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons. Nature, 344: 240–242.CrossRefGoogle Scholar
  4. Axelrod, J. A., Burch, R. M., and Jelsema, C. L. 1988. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers. Trends Neurosci., 11: 117–123.PubMedCrossRefGoogle Scholar
  5. Baum, L. E. 1972. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov process. Inequalities, 3: 1–8.Google Scholar
  6. Baum, L. E., and Petrie, T. 1966. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist., 37: 1554–1563.CrossRefGoogle Scholar
  7. Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique occurring in the statistical probabilisticy analysis of robabilistic functions of Markov chains. Ann. Math. Statist. 41: 164–171.CrossRefGoogle Scholar
  8. Billingsley, P. 1961. Statistical Inference for Markov Processes. University of Chicago Press, Chicago. Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci., 11: 11 2116.Google Scholar
  9. Bowery, N. 1989. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci., 10: 401–407.PubMedCrossRefGoogle Scholar
  10. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. 1980. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283: 92–94.Google Scholar
  11. Bowery, N. G., Doble, A., Hill, D. R., Hudson, A. L., Shaw, J. S., Turnbull, M. J., and Warrington, R. 1981. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol., 71: 53–70.PubMedCrossRefGoogle Scholar
  12. Brown, A. M., and Birnbaumer, L. 1988. Direct G protein gating of ion channels. Am. J. Physiol., 23: H401 - H410.Google Scholar
  13. Chung, S. H., and Kennedy, R. A. 1991. Forward-backward nonlinear filtering technique for extracting small biological signals from noise. J. Neurosci. Meth., 40: 71–86.CrossRefGoogle Scholar
  14. Chung, S.-H., Moore, J. B., Xia, L., Premkumar, L. S., and Gage, P. W. 1990. Characterization of single channel currents using digital signal processing techniques based on hidden Markov models. Phil. Trans. R. Soc. Lond. B, 329: 265–285.CrossRefGoogle Scholar
  15. Colmers, W. F., and Williams, J. T. 1988. Pertussis toxin treatment discriminates between pre-and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci. Lett., 93: 300–306.CrossRefGoogle Scholar
  16. Colquhoun, D., and Hawkes, A. G. 1977. Relaxation and fluctuation of membrane currents that flow through drug-operated channels. Proc. R. Soc. B, Lond. B, 199: 231–262.CrossRefGoogle Scholar
  17. Colquhoun, D., and Hawkes, A. G. 1981. On the stochastic properties of single ion channels. Proc. R. Soc. Lond. B, 211: 205–235.PubMedCrossRefGoogle Scholar
  18. Colquhoun, D., and Hawkes, A. G. 1982. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Phil. Trans. R. Soc. Lond. B, 300: 1–59.CrossRefGoogle Scholar
  19. Davies, C. H., Davies, S. N., and Collingridge, G. L. 1990. Paired-pulse depression of monosynaptic GABA- mediated inhibitory postsynaptic responses in rat hippocampus. J. Physiol. 424: 513–531.PubMedGoogle Scholar
  20. Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingridge, G. L. 1991. GABA autoreceptors regulate the induction of LTP. Nature, 349: 609–611.PubMedCrossRefGoogle Scholar
  21. Deisz, R. A., and Lux, H. D. 1985. r-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci. Lett., 56: 205–210.Google Scholar
  22. Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood estimation from incomplete data via the EM algorithm. J. R. Statist. Soc. B, 39: 1–38.Google Scholar
  23. Dolphin, A. C. 1990. G protein modulation of calcium currents in neurons. Annu. Rev. Physiol., 52: 243255.Google Scholar
  24. Dolphin, A. C., and Scott, R. H. 1987. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: Modulation by guanine nucleotides. J. Physiol., 386: 1–17.PubMedGoogle Scholar
  25. Dolphin, A. C., McGuirk, S. M., and Scott, R. H. 1989. An investigation into the mechanisms of inhibition of calcium channel currents in cultured sensory neurons of the rat by guanine nucleotide analogues and (-)-baclofen. Br. J. Pharmacol., 97: 263–273.PubMedCrossRefGoogle Scholar
  26. Dunlap, K., and Fischbach, G. D. 1981. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic sensory neurons. J. Physiol., 317: 519–535.PubMedGoogle Scholar
  27. Dunlap, K., Holz, G. G., and Rane, S. G. 1987. G proteins as regulators of ion channel function. Trends Neurosci., 10: 241–244.PubMedCrossRefGoogle Scholar
  28. Dutar, P., and Nicoll, R. A. 1988a. Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron, 1: 585–591.PubMedCrossRefGoogle Scholar
  29. Dutar, P., and Nicoll, R. A. 1988b. A physiological role for GABAB receptors in the CNS. Nature, 332: 156158.Google Scholar
  30. Enna, S. J., and Karbon, E. W. 1987. Receptor regulation: Evidence for a relationship between phospholipid metabolism and neurotransmitter receptor-mediated cAMP formation in brain. Trends Pharmacol. Sci., 8: 21–24.CrossRefGoogle Scholar
  31. Gahwiler, B. H., and Brown, D. A. 1985. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. USA, 82: 1558–1562.PubMedCrossRefGoogle Scholar
  32. Glossmann, H., and Striessnig, J. 1988. Structure and pharmacology of voltage-dependent calcium channels. ISI Atlas Sci.: Pharmacol., 2: 202–210.Google Scholar
  33. Hablitz, J. J., and Thalmann, R. H. 1987. Conductance changes underlying a late synaptic hyperpolarization in hippocampal CA3 neurons. J. Neurophysiol, 58: 160–179.PubMedGoogle Scholar
  34. Harrison, N. L. 1990. On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol., 422: 433–446.PubMedGoogle Scholar
  35. Holz, G. G., Rane, S. G., and Dunlap, K. 1986. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature, 319: 670–672.PubMedCrossRefGoogle Scholar
  36. Hunter, M., and Giebisch, G. 1987. Multi-barrelled K channels in renal tubules. Nature, 327: 522–524.PubMedCrossRefGoogle Scholar
  37. Huston, E., Scott, R. H., and Dolphin, A. C. 1990. A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists on transmitter release and somatic calcium channel currents in cultured neurons. Neuroscience, 38: 721–729.PubMedCrossRefGoogle Scholar
  38. Hymel, L., Striessnig, J., Glossmann, H., and Schindler, H. 1988. Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc. Natl. Acad. Sci. USA, 85: 4290–4294.PubMedCrossRefGoogle Scholar
  39. Innis, R. B., Nestler, E. J., and Aghajanian, G. K. 1988. Evidence for G-protein mediation of serotonin and GABAB induced hyperpolarization of dorsal root raphe neurons. Brain Res., 459: 27–36.PubMedCrossRefGoogle Scholar
  40. Inoue, M., Matsuo, T., and Ogata, N. 1985. Baclofen activates voltage-dependent and 4-aminopyridine sensitive K’ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br. J. Pharmacol., 84: 833–841.CrossRefGoogle Scholar
  41. Kerr, D. I. B., Ong, J., Prager, R. H., Gynther, B. D., and Curtis, D. R. 1987. Phaclofen; a peripheral and central baclofen antagonist. Brain Res., 405: 150–154.PubMedCrossRefGoogle Scholar
  42. Kerr, D. I. B., Ong, J., Johnston, G. A. R., Abbenante, J., and Prager, R. H. 1988. 2-Hydroxy-saclofen: An improved antagonist at central and peripheral GABAB receptors. Neurosci. Lett., 92: 92–96.Google Scholar
  43. Krishnamurthy, V., Moore, J. B., and Chung, S. H. 1991. On hidden fractal model signal processing. Signal Processing, 24: 177–192.CrossRefGoogle Scholar
  44. Krouse, M. E., Schneider, G. T., and Gage, P. W. 1986. A large anion-selective channel has seven conductance levels. Nature, 319: 58–60.PubMedCrossRefGoogle Scholar
  45. Lambert, N. A., Harrison, N. L., Kerr, D. I. B., Ong, J., Prager, R. H., and Teyler, T. J. 1989. Blockade of the late IPSP in rat CAI hippocampal neurons by 2-hydroxy-saclofen. Neurosci. Lett., 107: 125–128.PubMedCrossRefGoogle Scholar
  46. Liebovitch, L. S., and Sullivan, J. M. 1987. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J., 52: 979–988.PubMedCrossRefGoogle Scholar
  47. Liebovitch, L. S., Fischbarg, J., and Koniarek, J. P. 1987. Ion channel kinetics: A model based on fractal scaling rather than multistate Markov processes. Math. Biosci., 84: 37–68.CrossRefGoogle Scholar
  48. Login, I. S., Pancrazio, J. J., and Kim, Y. I. 1990. Dopamine enhances a voltage-dependent transient K` current in the MMQ cell, a clonal pituitary line expressing functional D2 dopamine receptors. Brain Res., 506: 331–334.PubMedCrossRefGoogle Scholar
  49. Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Phil. Trans. R. Soc. Lond. B, 299: 401–411.CrossRefGoogle Scholar
  50. Newberry, N. R., and Nicoll, R. A. 1984. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature, 308: 450–452.PubMedCrossRefGoogle Scholar
  51. Newberry, N. R., and Nicoll, R. A. 1985. Comparison of the action of baclofen with T-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol., 360: 161–185.Google Scholar
  52. Nicoll, R. A., Malenka, R. C., and Kauer, J. A. 1990. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev., 70: 513–551.PubMedGoogle Scholar
  53. Olpe, H.-R., Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Reissan, H., Fagg, G., Hall, R. G., Froestl, W., and Bittiger, H. 1990. CGP 35348: A centrally active blocker of GABAB receptors. Eur. J. Pharmacol., 187: 27–38.PubMedCrossRefGoogle Scholar
  54. Padjen, A. L., and Mitsoglou, G. M. 1990. Some characteristics of baclofen-evoked responses of primary afferents in frog spinal cord. Brain Res., 516: 201–207.PubMedCrossRefGoogle Scholar
  55. Piomelli, D., and Greengard, P. 1990. Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol. Sci., 11: 367–373.PubMedCrossRefGoogle Scholar
  56. Premkumar, L. S., Chung, S.-H., and Gage, P. W. I990a. GABA-induced potassium channels in cultured neurons. Proc. R. Soc. Lond. Biol., 241: 153–158.Google Scholar
  57. Premkumar, L. S., Gage, P. W., and Chung, S.-H. 1990b. Coupled potassium channels induced by arachidonic acid in cultured neurons. Proc. R. Soc. Lond. Biol., 242: 17–22.CrossRefGoogle Scholar
  58. Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77: 257–285.CrossRefGoogle Scholar
  59. Rabiner, L. R., and Juang, B. H. 1986. An introduction to hidden Markov models. IEEE ASSP Mag., 3: 4–16.CrossRefGoogle Scholar
  60. Rudy, B. 1988. Diversity and ubiquity of K channels. Neuroscience, 25: 729–749.PubMedCrossRefGoogle Scholar
  61. Saint, D. A., Thomas, T., and Gage, P. W. 1990. GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neurosci. Leu., 118: 9–13.CrossRefGoogle Scholar
  62. Seabrook, G. R., Howson, W., and Lacey, M. G. 1990. Electrophysiological characterization of potent agonists and antagonists at pre-and postsynaptic GABAB receptors on neurones in rat brain slices. Br. J. Pharmacol., 101: 949–957.PubMedCrossRefGoogle Scholar
  63. Sivilotti, L., and Nistri, A. 1990. GABA receptor mechanisms in the central nervous system. Prog. Neurobiol., 36: 35–92.CrossRefGoogle Scholar
  64. Stratton, K. R., Cole, A. J., Pritchett, J., Eccles, C. V., Worley, P. F., and Baraban, J. M. 1989. Intrahippocampal injection of pertussis toxin blocks adenosine suppression of synaptic responses. Brain Res., 494: 359–364.PubMedCrossRefGoogle Scholar
  65. Thalmann, R. H. 1987. Pertussis toxin blocks a late inhibitory postsynaptic potential in hippocampal CA3 neurons. Neurosci. Lett., 82: 41–46.PubMedCrossRefGoogle Scholar
  66. Thalmann, R. H. 1988. Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: Effect of pertussis toxin and GTPTS on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci., 8: 4589–4602.PubMedGoogle Scholar
  67. Titterington, D. M., Smith, A. F. M., and Makov, V. E. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley, New York.Google Scholar
  68. Wang, M. Y., and Dun, N. J. 1990. Phaclofen-insensitive presynaptic inhibitory action of (±)-baclofen in neonatal rat motorneurones in vitro. Br. J. Pharmacol., 99: 413–421.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Peter W. Gage
    • 1
  • Louis S. Premkumar
    • 1
  • Shin-ho Chung
    • 1
  1. 1.John Curtin School of Medical Research and Department of ChemistryAustralian National UniversityCanberra ACTAustralia

Personalised recommendations