Approaches to Studying the Interaction between G-Proteins and Voltage- Dependent Ca2+ Channels

  • Walter Rosenthal
  • Christiane Kleuss
  • Jürgen Hescheler
  • Burghardt Wittig
  • Günter Schultz


A multitude of extracellular signals regulate and coordinate cellular functions within an organism. Only a few extracellular signals, such as steroids and thyroid hormone, can permeate the plasma membrane and bind to intracellular receptors (Evans, 1988). In most instances extracellular signals do not directly target intracellular proteins, but rather interact with a transmembraneous receptor. The interaction triggers the generation of an intracellular signal. This process, frequently referred to as “signal transduction,” is accomplished by two main principles. (1) A limited number of receptors possess an intrinsic signal-generating activity (“effector”). For example, excitatory multimeric receptors such as the nicotinic cholinoceptor and subtypes of the glutamate/ aspartate receptor form “ligand-gated” cation channels (Hohmann et al., 1989; Changeux, 1990). Inhibitory multimeric receptors of excitable cells, i.e., receptors for yaminobutyric acid (GABA) and glycine, possess a built-in Cl channel which is opened upon binding of the ligand (Schofield et al., 1987; Grenningloh et al., 1987). Other receptors within this category possess an intracellular portion with an enzymatic activity: The insulin receptor and the receptors for growth factors are tyrosine kinases (Yarden and Ullrich, 1988), the receptor for atrial natriuretic peptide is a guanylyl cyclase (Schulz et al., 1991), and receptors for as yet unknown ligands are phosphotyrosine phosphatases (Alexander, 1990). (2) The majority of extracellular signals interact with receptors lacking effector activity (O’Dowd et al., 1989; Findlay and Eliopoulos, 1990). Here signal transduction requires reversible interaction of proteins of the plasma membrane: Upon activation by an extracellular signal, the receptor interacts with a coupling component (transducer), which in turn modulates the activity of an effector controlling the concentration of intracellular signal molecules, such as cyclic nucleotides, inositol phosphates, arachidonic acid, or cytosolic Ca2+.


Adenylyl Cyclase Bath Solution Cholera Toxin Extracellular Signal Guanine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, D. R. 1990. The role of phosphatases in signal transduction. New Biol., 2: 1049–1062.PubMedGoogle Scholar
  2. Birnbaumer, L. 1990. Transduction of receptor signal into modulation of effector activity by G-proteins: The first 20 years or so… FASFB J., 4: 3068–3078.Google Scholar
  3. Birnbaumer, L., Abramowitz, J., and Brown, A. 1990. Receptor-effector coupling by G-proteins. Biochim. Biophys. Acta, 1031: 163–224.PubMedCrossRefGoogle Scholar
  4. Birnbaumer, L., Perez-Reyes, E., Bertrand, P., Gudermann, T., Wei, X.-Y., Kim, H., Castellano, A., and Codina, J. 1991. Molecular diversity and function of G-proteins and calcium channels. Biol. Reprod., 44: 207–224.PubMedCrossRefGoogle Scholar
  5. Blank, J. L., Ross, A. H. and Exton, J. H. 1991. Purification and characterization of two G-proteins that activate the ßl isozyme of phosphoinositide-specific phopholipase C. J. Biol. Chem., 266: 18206–18216.PubMedGoogle Scholar
  6. Blatz, A. L., and Magleby, K. L. 1987. Calcium-activated potassium channels. Trends Neurosci., 10: 463–467.CrossRefGoogle Scholar
  7. Bourne, H. R., Sanders, D. A., and McCormick, F. 1991. The GTPase superfamily: Conserved structure and molecular mechanism. Nature, 349: 117–126.PubMedCrossRefGoogle Scholar
  8. Brown, A. M., and Birnbaumer, L. 1990. Ionic channels and their regulation by G-proteins. Annu. Rev. Physiol., 52: 197–213.PubMedCrossRefGoogle Scholar
  9. Burch, R. M. 1989. G-protein regulation of phospholipase A2. Mol. Neurobiol., 3: 156–171.CrossRefGoogle Scholar
  10. Camps, M., Strohmaier, E., Sidiropoulos, D., Jakobs, K. H., and Gierschik, P. 1991. Isozyme-specific stimulation of phospholipase C by fry-subunits. Naunyn-Schmiedeberg’s Arch. Pharmacol., 344 (Suppl.): R58.Google Scholar
  11. Capecchi, M. A. 1989. Altering the genome by homologous recombination. Science, 244:1288–1292.Google Scholar
  12. Catterall, W. A. 1991. Functional subunit structure of voltage-gated calcium channels. Science, 253: 1499–1500.PubMedCrossRefGoogle Scholar
  13. Changeux, J. P. 1990. The nicotinic acetylcholine receptors: An allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol. Sei., 11: 485–492.CrossRefGoogle Scholar
  14. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K. 1985. Enhancement of calcium current in aplysia neurons by phorbol esters and protein kinase C. Nature, 313: 313–316.CrossRefGoogle Scholar
  15. Deterre, P., Bigay, J., Forquet, F., Robert, M., and Chabre, M. 1988. cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc. Natl. Acad. Sci. USA, 85: 2424–2428.Google Scholar
  16. Dolphin, A. C. 1990. G-protein modulation of calcium channels in neurons. Annu. Rev. Physiol., 52: 243–255.PubMedCrossRefGoogle Scholar
  17. Dunlap, K., and Fischbach, G. D. 1981. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory cells. J. Physiol., 317: 519–535.PubMedGoogle Scholar
  18. Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science, 240: 889–895.PubMedCrossRefGoogle Scholar
  19. Ewald, D. A., Sternweis, P. C., and Miller, R. J. 1988. Guanine nucleotide-binding protein G.-induced coupling of neuropeptide Y receptors to Cat+ channels in sensory neurons. Proc. Natl. Acad. Sei. USA, 85: 3633–3637.CrossRefGoogle Scholar
  20. Farley, J., and Auerbach, S. 1986. Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature, 319: 220–223.PubMedCrossRefGoogle Scholar
  21. Feder, D., Im, M. J., Klein, H. W., Hekman, M., Holzhöfer, A., Dees, C., Levitzki, A., Helmreich, E., and Pfeuffer, T. 1986. Reconstitution of ß1-adrenoceptor-dependent adenylate cyclase from purified components. EMBO J., 5: 1509–1514.Google Scholar
  22. Findlay, J., and Eliopoulos, E., 1990. Three-dimensional modelling of G-protein-linked receptors. Trends Pharmacol. Sci., 11: 492–499.PubMedCrossRefGoogle Scholar
  23. Fishman, P. H. 1990. Mechanism of action of choleratoxin. In: ADP-Ribosylating Toxins and G-Proteins. pp. 45–77. Ed. by Moss, J., and Vaughan, M. American Society for Microbiology, Washington, D.C.Google Scholar
  24. Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalie, A., and Trautwein, W. 1986. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature, 323: 66–68.PubMedCrossRefGoogle Scholar
  25. Forscher, P., Oxford, G. S., and Schulz, D. 1986. Noradrenaline modulates calcium channels in avian dorsal root ganglion cells through tight receptor-channel coupling. J. Physiol., 379: 131–144.PubMedGoogle Scholar
  26. Glossmann, H., and Striessnig, J. 1988. Structure and pharmacology of voltage-dependent calcium channels. ISI Atlas Sci.: Pharmacol., 1988: 202–210.Google Scholar
  27. Gollasch, M., Haller, H., Schultz, G., and Hescheler, J. 1991a. Thyrotropin-releasing hormone induces opposite effects on Ca2+ channel currents in pituitary cells by two pathways. Proc. Natl. Acad. Sei. USA, 88: 10262–10266.CrossRefGoogle Scholar
  28. Gollasch, M., Hescheler, J., Spicher, K., Klinz, F.-J., Schultz, G., and Rosenthal, W. 199lb. Inhibition of Cat+ channels via a2-adrenergic and muscarinic receptors in pheochromocytoma (PC-12) cells. Am. J. Physiol., 260: C1282–1289.Google Scholar
  29. Graziano, M. P., Freissmuth, M., and Gilman, A. G. 1989. Expression of Ga,, in Escherichia colt, J. Biol. Chem., 264: 409–418.Google Scholar
  30. Green, K., and Cottrell, G. 1988. Actions of baclofen on components of the Ca-current in rat and mouse DRG neurones in culture. Br. J. Pharmacol., 94: 235–245.PubMedCrossRefGoogle Scholar
  31. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H. 1987. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature, 328: 215–220.PubMedCrossRefGoogle Scholar
  32. Haeuptle, M.-T., Frank, R., and Dobberstein, B. 1986. Translation arrest by oligodeoxynucleotides complementary to mRNA coding sequences yield polypeptides of predetermined length. Nucleic Acids Res., 14: 1427–1448.PubMedCrossRefGoogle Scholar
  33. Hamill, O. P., Marty, A., Neher, E., and Sakmann, B. 1981. Improved patch-clamp techniques for high- resolution current recording from cells and cell-free membrane patches. Pflügers Arch., 391: 85–100.PubMedCrossRefGoogle Scholar
  34. Hamilton, S., Codina, J., Hawkes, M. J., Yatani, A., Sawada, T., Strickland, F. M., Froehner, S. C., Spiegel, A. M., Toro, L., Stefani, E., Birnbaumer, L., and Brown, A. M. 1991. Evidence for direct interaction of Gsa with the Cat+ channel of skeletal muscle. J. Biol. Chem., 266: 19528–19535.PubMedGoogle Scholar
  35. Hamm, H. E., Deretic, D., Hofmann, K. P., Schleicher, A., and Kohl, B. 1987. Mechanism of action of monoclonal antibodies that block the light-activation of the guanyl nucleotide binding protein, transducin. J. Biol. Chem., 262: 10831–10838.PubMedGoogle Scholar
  36. Hanke, W., and Miller, C. 1983. Single chloride channels from Torpedo electroplax. J. Gen. Physiol., 82: 25–45.PubMedCrossRefGoogle Scholar
  37. Harris-Warrick, R. M., Hammond, C., Paupardin-Tritsch, D., Homburger, V., Rouot, B., Bockaert, J., and Gerschenfeld, H. M. 1988. An a 40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca’ current in snail neurons. Neuron, 1: 27–32.PubMedCrossRefGoogle Scholar
  38. Hartzell, H. C., Méry, P.-F., Fischmeister, R., and Szabo, G. 1991. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature, 351: 573–576.PubMedCrossRefGoogle Scholar
  39. Hasty, P., Ramires-Solis, R., Krumlauf, R., and Bradley, A. 1991. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature, 350: 243–246.PubMedCrossRefGoogle Scholar
  40. Hélène, C., and Toulmé, J.-J. 1990. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim. Biophys. Acta, 1049: 99–125.PubMedCrossRefGoogle Scholar
  41. Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G. 1987. The GTP-binding protein, Go, regulates neuronal calcium channels. Nature, 325: 445–447.PubMedCrossRefGoogle Scholar
  42. Hescheler, J., Rosenthal, W., Wulfern, M., Tang, M., Yajima, M., Trautwein, W., and Schultz, G. 1988. Involvement of the guanine nucleotide-binding protein, No, in the inhibitory modulation of neuronal calcium channels. Adv. Cyclic Nucleotide Phosphorylation Res., 21: 165–174.Google Scholar
  43. Hescheler, J., Klinz, F.-J., Schultz, G., and Wittinghofer, A. 1991. Ras proteins activate calcium channels in neuronal cells. Cell. Signalling, 3: 127–133.PubMedCrossRefGoogle Scholar
  44. Hille, B. 1992. Ion Channels of Excitable Membranes, 2nd ed. Sinauer, Sunderland, Massachusetts. Hofmann, F., Nastainczyk, W., Röhrkasten, A., Schneider, T., and Sieber, M. 1987. Regulation of L-type calcium channel. Trends Pharmacol. Sci., 8: 393–398.Google Scholar
  45. Hohmann, M., O’Shea-Greenfield, A., Rogers, S. W., and Heinemann, S. 1989. Cloning by functional expression of a member of the glutamate receptor family. Nature, 342: 643–648.CrossRefGoogle Scholar
  46. Imoto, Y., Yatani, A., Reeves, J. P., Codina, J., Birnbaumer, L., and Brown, A. M. 1988. a-Subunit of G, directly activates cardiac calcium channels in lipid bilayers. Am. J. Physiol., 255: H722 - H728.Google Scholar
  47. Jakobs, K. H., and Wieland. T. 1989. Evidence for receptor-regulated phosphotransfer reactions involved in activation of adenylate cyclase inhibitory G-protein in human platelet membranes. Eur. J. Biochem., 183: 115–121.PubMedCrossRefGoogle Scholar
  48. Kaczmarek, L. K. 1987. The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci., 10: 30–34.CrossRefGoogle Scholar
  49. Kahn, R. A. 1990. ADP-ribosylation factor of adenylyl cyclase: A 2l-kDa GTP-binding protein, in: G-Proteins, pp. 201–214. Ed. by lyengar, R., and Birnbaumer, L. Academic Press, New York.CrossRefGoogle Scholar
  50. Kaupp, B. 1991. The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci., 14: 150–157.PubMedCrossRefGoogle Scholar
  51. Keahey, H. H., Ill, A. E. B., and Kunze, D. L. 1989. Catecholamine modulation of calcium currents in clonal pancreatic J-cells. Am. J. Physiol., 257: C1171 - C1176.PubMedGoogle Scholar
  52. Kim, D., and Clapham, D. E. 1989. Potassium channels in cardiac cells are activated by arachidonic acid and phospholipids. Science, 244: 1174–1176.PubMedCrossRefGoogle Scholar
  53. Kleppisch, T., Ahnert-Hilger, G., Gollasch, M., Spicher, K., Hescheler, J., Schultz, G., and Rosenthal, W. 1992. Inhibition of voltage-dependent Cat+ channels via a2-adrenergic and opioid receptors in cultured bovine adrenal chromaffin cells. Pfluegers Arch. 421: 131–137.CrossRefGoogle Scholar
  54. Kleuss, C., Hescheler, J., Ewel, C., Rosenthal, W., Schultz, G., and Wittig, B. 1991. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature, 353: 43–48.PubMedCrossRefGoogle Scholar
  55. Kurachi, Y., Nakajima, T., and Sugimoto, T. 1986. Acetylcholine activation of K+ channels in cell-free membrane of atrial cells. Am. J. Physiol., 251: H681 - H684.PubMedGoogle Scholar
  56. Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L., and Brown, A. M. 1991. Normalization of current kinetics by interaction between a, and ß subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature, 352: 527–530.PubMedCrossRefGoogle Scholar
  57. Llinas, R., Sugimori, M., Lin, J.-W., and Cherksey, B. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider toxin. Proc. Natl. Acad. Sci. USA, 86: 1689–1693.PubMedCrossRefGoogle Scholar
  58. Logothetis, D. E., Kim, D., Northup, J. K., Neer, E. J., and Clapham, D. E. 1988. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc. Natl. Acad. Sci. USA, 85: 5814–5818.PubMedCrossRefGoogle Scholar
  59. Mattera, R., Graziano, M. P., Yatani, A., Zhou, Z., Graf, R., Codina, J., Birnbaumer, L., Gilman, A. G., and Brown, A. M. 1989a. Splice variants of the a-subunit of the G protein G, activate both adenylyl cyclase and calcium channels. Science, 243: 804–807.PubMedCrossRefGoogle Scholar
  60. Mattera, R., Yatani, A., Kirsch, G. E., Graf, R., Okabe, K., Olate, J., Codina, J., Brown, A. M., and Birnbaumer, L. 1989b. Recombinant ac 3 subunit of G-protein activates Gk-gated K+ channels. J. Biol. Chem., 264: 465–471.PubMedGoogle Scholar
  61. May, D. C., Ross, E. M., Gilman, A. G., and Smigel, M. D. 1985. Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins. J. Biol. Chem., 260: 15829–15833.PubMedGoogle Scholar
  62. McFazdean, I., Mullaney, I., Brown, D. A., and Milligan, G. 1989. An a40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca2+ current in snail neurons. Neuron, 1: 27–32.Google Scholar
  63. Minshull, J., and Hunt, T. 1986. The use of single-stranded DNA and RNAse H to promote quantitative “hybrid arrest of translation” of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res., 14: 6433–6451.PubMedCrossRefGoogle Scholar
  64. Mori, Y., Friedrich, T., Kim, M.-S., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature, 350: 398–402.PubMedCrossRefGoogle Scholar
  65. Mortensen, R. M., Zubiaur, M., Neer, E. J., and Seidman, J. G. 1991. Embryonic stem cells lacking a functional inhibitory G-protein subunit (a;2) produced by gene targeting of both alleles. Proc. Natl. Acad. Sci. USA, 88: 7036–7040.PubMedCrossRefGoogle Scholar
  66. Mumby, S. M., and Gilman, A. G. 1991. Synthetic peptide antisera with determined specificity for G protein a and ß subunits. Meth. Enzymol., 195: 215–233.PubMedCrossRefGoogle Scholar
  67. O’Dowd, B. F., Lefkowitz, R. J., and Caron, M. G. 1989. Structure of the adrenergic and related receptors. Annu. Rev. Neurosci., 12: 67–83.PubMedCrossRefGoogle Scholar
  68. Offermanns, S., Gollasch, M., Hescheler, J., Spicher, K., Schmidt, A., Schultz, G., and Rosenthal, W. 1991. Inhibition of voltage-dependent Ca’ currents and activation of pertussis toxin-sensitive G-proteins via muscarinic receptors in GH3 cells. Mol. Endocrinol., 5: 995–1002.PubMedCrossRefGoogle Scholar
  69. Okabe, K., Yatani, A., Evans, T., Ho, Y.-K., Codina, J., Birnbaumer, L., and Brown, A. M. 1990. by-Dimers of G proteins inhibit atrial muscarinic K+ channels. J. Biol. Chem., 265: 12854–12858.Google Scholar
  70. Osterrieder, W., Brum, G., Hescheler, J., Flockerzi, V., and Hofmann, F. 1982. Injection of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca’ currents. Nature, 298: 576–578.PubMedCrossRefGoogle Scholar
  71. Otero, A. S., Breitwieser, G. E., and Szabo, G. 1988. Activation of muscarinic potassium currents by ATPyS in atrial cells. Science, 242: 443–445.PubMedCrossRefGoogle Scholar
  72. Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H. M., Nairn, A. C., and Greengard, P. 1986. cGMPdependent protein kinase enhances Ca2+ currents and potentiates the serotonin-induced Ca2+ current increase in snail neurons. Nature, 323: 812–814.Google Scholar
  73. Pelzer, D., Grant, A. O., Cavalie, A., Pelzer, S., Sieber, M., Hofmann, F., and Trautwein, W. 1989. Calcium channels reconstituted from the skeletal muscle dihydropyridine receptor protein complex and its a, peptide subunit in lipid bilayers. Ann. N. Y. Acad. Sci., 560: 138–154.PubMedCrossRefGoogle Scholar
  74. Reuter, H. 1983. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 301: 569–574.PubMedCrossRefGoogle Scholar
  75. Reuter, H., Cachelin, A. B., de Peyer, J. E., and Kokubun, S. 1983. Modulation of calcium channels in cultured cardiac cells by isoproterenol and 8-bromo-cAMP. Cold Spring Harbor Symp. Quant. Biol., 48: 193–200.PubMedCrossRefGoogle Scholar
  76. Rosenberg, R. L., Hess, P., Reeves, J. P., Smilowitz, H., and Tsien, R. W. 1986. Calcium channels in planar lipid bilayers: Insights into mechanisms of ion permeation and gating. Science, 231: 1564–1566.PubMedCrossRefGoogle Scholar
  77. Rosenthal, W. 1990. Signal transduction and ion channel activity. In: Growth Factors, Differentiation Factors and Cytokines, pp. 427–440 Ed. by Habenicht, A. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  78. Rosenthal, W., Hescheler, J., Hinsch, K.-D., Spicher, K., Trautwein, W., and Schultz, G. 1988. Cyclic AMP-independent, dual regulation of voltage-dependent Caz+ currents by LHRH and somatostatin in a pituitary cell line. EMBO J., 7:1627–1633.Google Scholar
  79. Sakmann, B., and Neher, E. 1983. Single-Channel Recording. Plenum Press, New York.Google Scholar
  80. Schmidt, A., Hescheler, J., Offermanns, S., Spicher, K., Hinsch, K.-D., Codina, J., Birnbaumer, L., Gausepohl, H., Frank, R., Schultz, G., and Rosenthal, W. 1991. Involvement of pertussis-toxin-sensitive G-proteins in the hormonal inhibition of dihydropyridine-sensitive Ca2+ currents in an insulin-secreting cell line (RINm5F). J. Biol. Chem., 266: 18025–18034.PubMedGoogle Scholar
  81. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Rachmandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A. 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated super-family. Nature, 328: 221–227.PubMedCrossRefGoogle Scholar
  82. Schultz, G., Rosenthal, W., Trautwein, W., and Hescheler, J. 1990. Role of G-proteins in calcium channel modulation. Annu. Rev. Physiol., 52: 275–292.PubMedCrossRefGoogle Scholar
  83. Schulz, S., Yuen, P. S. T., and Garbers, D. L. 1991. The expanding family of guanylyl cylases. Trends Pharmacol. Sei., 12: 116–120.CrossRefGoogle Scholar
  84. Shuttleworth, J., and Colman, A. 1988. Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs. EMBO J., 7: 427–434.Google Scholar
  85. Simon, M. I., Strathmann, M. P., and Gautam, N. 1991. Diversity of G-proteins in signal transduction. Science, 252: 802–808.PubMedCrossRefGoogle Scholar
  86. Spiegel, A. M. 1990. Antibodies as probes for the structure and function of heterotrimeric G-proteins. In: ADP-Ribosylating Toxins and G-Proteins, pp. 207–224. Ed. by Moss, J., and Vaughan, M. American Society for Microbiology, Washington, D.C.Google Scholar
  87. Toselli, M., Lang, J., Costa, T., and Lux, H. G. 1989. Direct modulation of voltage-dependent calcium channels by muscarinic activation of a pertussis toxin-sensitive G-protein in hippocampal neurons. Pflügers Arch., 415: 255–261.PubMedCrossRefGoogle Scholar
  88. Tsien, R. W., and Tsien, R. Y. 1990. Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol., 6: 715–760.PubMedCrossRefGoogle Scholar
  89. Tsien, R. W., Ellinor, P. T., and Home, W. A. 1991. Molecular diversity of voltage-dependent Ca’ channels. Trends Pharmacol. Sei., 12: 349–354.CrossRefGoogle Scholar
  90. Ui, M. 1990. Pertussis toxin as a valuable probe for G-protein involvement in signal transduction. In: ADPRibosylating Toxins and G-Proteins, pp. 45–77. Ed. by Moss, J., and Vaughan, M. American Society for Microbiology, Washington, D.C.Google Scholar
  91. Wei, X., Perez-Reyes, E., Lacerda, A. E., Schuster, G., Brown, A. M., and Birnbaumer, L. 1991. Heterologous regulation of the cardiac Ca’ channel a, subunit by skeletal muscle (3 and y subunits. J. Biot Chem., 266: 21943–21947.Google Scholar
  92. Wieland, T., Ulibarri, I., Gierschik, P., and Jakobs, K. H. 1991. Activation of signal-transducing guaninenucleotide-binding regulatory proteins by guanosine 5’-[-y-thio]triphosphate. Information transfer by intermediately thiophosphorylated fry-subunits. Eur. J. Biochem., 196: 707–716.PubMedCrossRefGoogle Scholar
  93. Wong, Y. H., Federman, A., Pace, A. M., Zachary, I., Evans, T., Pouysségur, J., and Boume, H. R. 1991. Mutant a subunits of G12 inhibit cyclic AMP accumulation. Nature, 351: 63–65.PubMedCrossRefGoogle Scholar
  94. Yarden, Y., and Ullrich, A. 1988. Molecular analysis of signal transduction by growth factors. Biochemistry, 27: 3113–3119.PubMedCrossRefGoogle Scholar
  95. Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L., and Brown, A. M. 1987. A G protein directly regulates mammalian cardiac calcium channels. Science, 238: 1288–1292.PubMedCrossRefGoogle Scholar
  96. Yatani, A., Hamm, H., Codina, J., Mazzoni, M. R., Birnbaumer, L., and Brown, A. M. 1988a. A monoclonal antibody to the a-subunit of Gk blocks muscarinic activation of atrial K+ channels. Science, 241: 828–831.PubMedCrossRefGoogle Scholar
  97. Yatani, A., (moto, Y., Codina, J., Hamilton, S., Brown, A. M., and Birnbaumer, L. 1988b. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca’ channels. J. Biol. Chem., 263: 9887–9895.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Walter Rosenthal
    • 1
  • Christiane Kleuss
    • 2
  • Jürgen Hescheler
    • 1
  • Burghardt Wittig
    • 2
  • Günter Schultz
    • 1
  1. 1.Institut für PharmakologieUniversität BerlinBerlinGermany
  2. 2.Institut für Molekularbiologie und Biochemie FreieUniversität BerlinBerlinGermany

Personalised recommendations