Skip to main content

Reconstitution of Muscle Calcium Channel Function in Bilayer Membranes

From the First Steps to Results

  • Chapter
Book cover Methods in Pharmacology

Abstract

Ion channels are membrane proteins that are used by the cell as signal transducers and as a pathway for the rapid entry of some regulatory compounds such as calcium ions. The behavior of a single channel can be monitored because, when open, the channel passes ~106 ions/sec. This is enough current to measure electrically using patch-clamp techniques (Hamill et al., 1981; Sakmann and Neher, 1984). With standard voltage-clamp techniques (Hille, 1984), it was essentially impossible to measure the small currents generated by the opening of single channels because the signal is too small in comparison to the noise generated by the rest of the system. Patch-clamp recordings are made from very small membrane areas; this improves the signal-to-noise ratio and therefore makes it possible to measure the small single-channel currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, B. A., Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. 1990. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature, 346: 569572.

    Google Scholar 

  • Adamson, A. W. 1976. Physical Chemistry of Surfaces. Wiley, New York.

    Google Scholar 

  • Affolter, H., and Coronado, R. 1985. Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. Biophys. J., 48: 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Affolter, H., and Coronado, R. 1986. Sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D600 and D890 blockade. Biophys. J., 49: 767–771.

    Article  PubMed  CAS  Google Scholar 

  • Akabas, M. H., Cohen, F. S., and Finkelstein, A. 1984. Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J. Cell Biol., 98: 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  • Almers, W., and McCleskey, E. W. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J. Physiol., 353: 585–608.

    PubMed  CAS  Google Scholar 

  • Almers, W., Fink, R., and Palade, P. T. 1981. Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol., 312: 177–207.

    PubMed  CAS  Google Scholar 

  • Alvarez, O. 1986. How to set up a bilayer system. In: Ion Channel Reconstitution, pp. 115–130. Ed. by Miller, C. Plenum Press, New York.

    Google Scholar 

  • Armstrong, C. L., and Bezanilla, F. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol., 70: 567–590.

    Article  PubMed  CAS  Google Scholar 

  • Arreola, J., Calvo, J., Garcia, M. C., and Sanchez, J. A. 1987. Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J. Physiol., 393: 307–330.

    PubMed  CAS  Google Scholar 

  • Ashley, R. H., Montgomery, R. A. P., and Williams, A. J. 1986. Incorporation of several calcium channels from sheep and rabbit heart into planar lipid bilayers. J. Physiol., 381: 115 P.

    Google Scholar 

  • Bangham, A. D., Standish, M. M., and Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 13: 238–252.

    Article  PubMed  CAS  Google Scholar 

  • Barhanin, J., Coppola, T., Schmid, A., Borsotto, M., and Lazdunski, M. 1987. The calcium channel antagonists receptor from rabbit skeletal muscle. Reconstitution after purification and subunit characterization. Eur. J. Biochem., 164: 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, J. N., Magleby, K. L., and Pallotta, B. S. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol., 331: 211–230.

    PubMed  CAS  Google Scholar 

  • Beam, K. G., and Knudson, C. M. 1988. Calcium currents in embryonic and neonatal mammalian skeletal muscle. J. Gen. Physiol., 91: 781–798.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P. 1989. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol., 51: 367–384.

    Article  PubMed  CAS  Google Scholar 

  • Benham, C. D., Hess, P., and Tsien, R. W. 1987. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ. Res., 61(Suppl.I):1–10-I-16.

    Google Scholar 

  • Beyer, T., Gjörstrupp, P. and Ravens, U. 1985. Comparing the cardiac effects of the dihydropyridinederivative H 160/51 with those of the “Ca-agonist” Bay K8644. Naunyn-Schmiedeberg’s Arch. Pharmacol. 330, Suppl.: R34.

    Google Scholar 

  • Biel, M., Ruth, P., Bosse, E., Hullin, R., Stühmer, W., Flockerzi, V., and Hofmann, F. 1990. Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett., 269: 409–412.

    Article  PubMed  CAS  Google Scholar 

  • Boheim, G., Hanke, W., Methfessel, C., Eibl, H., Kaupp, U. B., Maelicke, A., and Schultz, J. E. 1982. Membrane reconstitution below lipid phase transition temperature. In: Transport in Biomembranes: Model Systems and Reconstitution, pp. 87–98. Ed. by Antolini, R., Gliozzi, A., and Gorio, A. Raven Press, New York.

    Google Scholar 

  • Borsotto, M., Barhanin, J., Norman, R. I., and Lazdunski, M. 1984. Purification of the dihydropyridine receptor of the voltage-dependent Ca’ channel from skeletal muscle transverse tubules using (+) [3H] PN 200–110. Biochem. Biophys. Res. Commun., 122: 1357–1366.

    Article  PubMed  CAS  Google Scholar 

  • Bosse, E., Regulla, S., Biel, M., Ruth, P., Meyer, H. E., Flockerzi, V., and Hofmann, F. 1990. The cDNA and deduced amino acid sequence of the gamma subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lea., 267: 153–156.

    Article  CAS  Google Scholar 

  • Bossu, J. L., Fagni, L., and Feltz, A. 1989. Voltage-activated calcium channels in rat Purkinje cells maintained in culture. Pflügers Arch., 414: 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M. Kunze, D. L., and Yatani, A. 1984. The agonist effect of dihydropyridines on Ca channels. Nature. 311: 570–572.

    CAS  Google Scholar 

  • Brown, A. M., Kunze, D. L., and Lux, H. D. 1986a. Single calcium channels and their inactivation. Membr. Biochem., 6: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., Kunze, D. L., and Yatani, A. 1986b. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J. Physiol., 379: 495–514.

    PubMed  CAS  Google Scholar 

  • Brum, G., Flockerzi, V., Hofmann, F., Osterrieder, W., and Trautwein, W. 1983. Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes. Pflügers Arch., 398: 147154.

    Google Scholar 

  • Campbell, K. P., Leung, A. T., and Sharp, A. H. 1988a. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci., 11: 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K. P., Leung, A. T., Sharp, A. H., Imagawa, T., and Kahl, S. D. 1988b. Ca’ channel antibodies: Subunit-specific antibodies as probes for structure and function. In: The Calcium Channel: Structure, Function and Implications, pp. 586–600. Ed. by Morad, M., Nayler, W., Kazda, S., and Schramm, M. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Catterall, W. A. 1988. Structure and function of voltage-sensitive ion channels. Science, 242: 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Cavalié, A., Ochi, R., Pelzer, D., and Trautwein, W. 1983. Elementary currents through Ca’ channels in guinea pig myocytes. Pfliigers Arch., 398: 284–297.

    Article  Google Scholar 

  • Cavalié, A., Pelzer, D., and Trautwein, W. 1986. Fast and slow gating behaviour of single calcium channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflügers Arch., 406: 241–258.

    Article  PubMed  Google Scholar 

  • Cavalié, A., Flockerzi, V., Hofmann, F., Pelzer, D., and Trautwein, W. 1987. Two types of calcium channels from rabbit fast skeletal muscle transverse tubules in lipid bilayers: differences in conductance gating behavior and chemical modulation. J. Physiol. 390: 82.

    Google Scholar 

  • Chad, J. E., and Eckert, R. 1986. An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J. Physiol., 378: 31–51.

    PubMed  CAS  Google Scholar 

  • Chad, J., Eckert, R., and Ewald, D. 1984. Kinetics of calcium-dependent inactivation of calcium current in voltage-clamped neurones of Aplysia californica. J. Physiol., 347: 279–300.

    CAS  Google Scholar 

  • Chang, F. C., and Hosey, M. M. 1988. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J. Biol. Chem., 263: 18929–18937.

    PubMed  CAS  Google Scholar 

  • Cognard, C., Lazdunski, M., and Romey, G. 1986. Different types of Cat’ channels in mammalian skeletal muscle cells in culture. Proc. Natl. Acad. Sci. USA, 83: 517–521.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S. 1986. Fusion of liposomes to planar bilayers. In: Ion Channel Reconstitution, pp. 131–138. Ed. by Miller, C. Plenum Press, New York.

    Google Scholar 

  • Cohen, F. S., Zimmerberg, J., and Finkelstein, A. 1980. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. J. Gen. Physiol., 75: 251–270.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S., Akabas, M. H., and Finkelstein, A. 1982. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science, 217: 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, F. S., Akabas, M. H., Zimmerberg, J., and Finkelstein, A. 1984. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes. J. Cell Biol., 98: 1054–1062.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, C. L., Vandaele, S., Barhanin, J., Fosset, M., Lazdunski, M., and Hosey, M. M. 1987. Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. J. Biol. Chem., 262: 509–512.

    PubMed  CAS  Google Scholar 

  • Coronado, R. 1985. Effect of divalent cations on the assembly of neutral and charged phospholipid bilayers in patch-recording pipettes. Biophys. J., 47: 851–857.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R. 1987. Planar bilayer reconstitution of calcium channels: Lipid effects on single-channel kinetics. Circ. Res., 61(Suppl. I):I-46-I-52.

    Google Scholar 

  • Coronado, R., and Affolter, H. 1986. Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid. J. Gen. Physiol., 87: 933–953.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., and Latorre, R. 1983. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys. J., 43: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Coronado, R., and Smith, J. S. 1987. Monovalent ion current through single calcium channels of skeletal muscle transverse tubules. Biophys. J., 51: 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Cota, G., and Stefani, E. 1989. Voltage-dependent inactivation of slow calcium channels in intact twitch muscle fibers of the frog. J. Gen. Physiol., 94: 937–951.

    Article  PubMed  CAS  Google Scholar 

  • Cota, G., Siri, L. N., and Stefani, E. 1984. Calcium channel inactivation in frog (Rana pipiens and Rana moctezuma) skeletal muscle fibres. J. Physiol., 354: 99–108.

    PubMed  CAS  Google Scholar 

  • Curtis, B. M., and Catterall, W. A. 1983. Solubilization of the calcium antagonist receptor from rat brain. J. Biol. Chem., 258: 7280–7283.

    PubMed  CAS  Google Scholar 

  • Curtis, B. M., and Catterall, W. A. 1984. Purification of the calcium antagonist receptor of the voltage- sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry, 23: 2113–2118.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B. M., and Cattrall, W. A. 1985. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA, 82: 2528–2532.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B. M., and Catterall, W. A. 1986. Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry, 25: 3077–3083.

    Article  PubMed  CAS  Google Scholar 

  • DeJongh, K. S., Merrick, D. K., and Catterall, W. A. 1989. Subunits of purified calcium channels: A 212kDa form of a i and partial amino acid sequence of a phosphorylation site of an independent,3 subunit. Proc. Natl. Acad. Sci. USA, 86: 8585–8589.

    Article  CAS  Google Scholar 

  • De Jongh, K. S., Warner, C., and Catterall, W. A. 1990. Subunits of purified calcium channels. o2 and 5 are encoded by the same gene. J. Biol. Chem., 265: 14738–14741.

    PubMed  Google Scholar 

  • Eckert, R., and Chad, J. E. 1984. Inactivation of Ca channels. Prog. Biophys. Mol. Biol. 44: 215–267.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, B. E. 1992. Incorporation of ion channels in planar lipid bilayers: How to make bilayers work for you. In: The Heart and Cardiovascular System, Scientific Foundations, 2nd ed., pp. 551–560. Ed. by Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M., and Morgan, H. E. Raven Press, New York.

    Google Scholar 

  • Ehrlich, B. E., Schen, C. R., Garcia, M. L., and Kaczorowski, G. J. 1986. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 83: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P., McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M. 1988. Sequence and expression of mRNAs encoding the a, and 02 subunits of a DHP-sensitive calcium channel. Science, 241: 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  • Eytan, G. 1982. Use of liposomes for reconstitution of biological functions. Biochim. Biophys. Acta, 694: 185–202.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, D. R., Rombusch, M., Goll, A., and Glossmann, H. 1984. Photoaffinity labelling of Ca’ channels with [3H]azidopine. FEBS Leu., 169: 112–118.

    Article  CAS  Google Scholar 

  • Ferry, D. R., Goll, A., and Glossmann, H. 1987. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]Azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridineisothiocyanate being a calcium-channel-specific affinity ligand. Biochem. J., 243: 127–135.

    PubMed  CAS  Google Scholar 

  • Finkelstein, A., and Andersen, O. S. 1981. The gramicidin A channel: A review of its permeability char- acteristics with special reference to the single-file aspect of transport. J. Membr. Biol., 59: 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, L. A., and Chin, H. 1988. Inhibition of parathyroid hormone secretion by calcium: The role of calcium channels. In: The Calcium Channel: Structure, Function and Implications, pp. 418–430. Ed. by Morad, M., Nayler, W., Kazda, S., and Schramm, M. Springer-Verlag, Berlin.

    Google Scholar 

  • Fitzpatrick, L. A., Chin, H., Nirenberg, M., and Aurbach, G. D. 1988. Antibodies to an a subunit of skeletal muscle calcium channels regulate parathyroid cell secretion. Proc. Natl. Acad. Sci. USA, 85: 2115–2119.

    Article  PubMed  CAS  Google Scholar 

  • Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalié, A., and Trautwein, W. 1986a. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature, 323: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Flockerzi, V., Oeken, H.-J., and Hofmann, F. 1986b. Purification of a functional receptor for calcium-channel blockers from rabbit skeletal-muscle microsomes. Fur. J. Biochem., 161: 217–224.

    CAS  Google Scholar 

  • Francini, F., and Stefani, E. 1989. Decay of the slow calcium current in twitch muscle fibers of the frog is influenced by intracellular EGTA. J. Gen. Physiol., 94: 953–969.

    Article  PubMed  CAS  Google Scholar 

  • Galizzi, J.-P., Borsotto, M., Barhanin, J., Fosset, M., and Lazdunski, M. 1986. Characterization and photoaffinity labeling of receptor sites for the Ca’ channel inhibitors d-cis-diltiazem, (±)-bepridil, desmethoxyverapamil, and (+)-PN 200–110 in skeletal muscle transverse tubule membranes. J. Biol. Chem., 261: 1393–1397.

    PubMed  CAS  Google Scholar 

  • Gamboa-Aldeco, R., Garcia, J., and Stefani, E. 1989. Effect of GTP-gamma-S on charge movement and calcium current from frog and rat skeletal muscle. Biophys. J., 55:9la.

    Google Scholar 

  • Garcia, J., Gamboa-Aldeco, R., and Stefani, E. 1990. Charge movement and calcium currents in skeletal muscle fibers are enhanced by GTPgammaS. Pflügers Arch., 417: 114–116.

    Article  PubMed  CAS  Google Scholar 

  • Gjörstrupp, P., Harding, H., Isaksson, R., and Westerlund, C. 1986. The enantiomers of the dihydropyridine derivative H160/51 show opposite effects of stimulation and inhibition. Eur. J. Pharmacol. 122: 357–361.

    Article  Google Scholar 

  • Glossmann, H., and Ferry, D. R. 1983. Solubilization and partial purification of putative calcium channels labelled with [3H]-nimodipine. Naunyn-Schmiedeberg’s Arch. Pharmacol., 323: 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., and Striessnig, J. 1988. Calcium channels. Vitam. Horm. 44: 155–328.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., and Striessnig, J. 1990. Molecular properties of calcium channels. Rev. Physiol. Biochem. Pharmacol., 114: 1–105.

    Article  PubMed  CAS  Google Scholar 

  • Grove, A., Tomich, J. M., and Montal, M. 1991. A molecular blueprint for the pore-forming structure of voltage-gated calcium channels. Proc. Natl. Acad. Sci. USA, 88: 6418–6422.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfliigers Arch., 391: 85–100.

    Article  CAS  Google Scholar 

  • Hamilton, S. L., Yatani, A., Brush, K., Schwartz, A., and Brown, A. M. 1987. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol. Pharmacol., 31: 221–231.

    PubMed  CAS  Google Scholar 

  • Hamilton, S. L., Codina, J., Hawkes, M. J., Yatani, A., Sawada, T., Strickland, F. M., Froehner, S. C., Spiegel, A. M., Toro, L., Stefani, E., Birnbaumer, L., and Brown, A. M. 1991. Evidence for direct interaction of Gsa with the Ca’ channel of skeletal muscle. J. Biol. Chem., 266: 19528–19535.

    PubMed  CAS  Google Scholar 

  • Hanke, W. 1986. Incorporation of ion channels by fusion. In: Ion Channel Reconstitution, pp. 141–153, Ed. by Miller, C. Plenum Press, New York.

    Google Scholar 

  • Hanke, W., Eibl, H., and Boheim, G. 1981. A new method for membrane reconstitution: Fusion of protein containing vesicles with planar lipid bilayers below lipid phase transition temperature. Biophvs. Struct. Mech., 7: 131–137.

    Article  CAS  Google Scholar 

  • Hanke, W., Methfessel, C., Wilmsen, H. U., and Boheim, G. 1984. Ion channel reconstitution into planar lipid bilayers on glass pipettes. Biochem. Bioeng. J., 12: 329–339.

    Article  CAS  Google Scholar 

  • Hartzell, H. C., Méry, P-F., Fischmeister, R., and Szabo, G. 1991. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature, 351: 573–576.

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., Pelzer, D., Trube, G., and Trautwein, W. 1982. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflügers Arch., 393: 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., and Tsien, R. W. 1984. Mechanism of ion permeation through calcium channels. Nature, 309: 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., Lansman, J. B., and Tsien, R. W. 1984. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature, 311: 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., Lansman, J. B., and Tsien, R. W. 1986. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J. Gen. Physiol., 88: 293–319.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Hoch, D. H., Romero-Mira, M., Ehrlich, B. E., Finkelstein, A., DasGupta, B. R., and Simpson, L. L. 1985. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: Relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA, 82: 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  • Hof, R. P., Ruegg, U. T., Hof, A., and Vogel, A. 1985. Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J. Cardiovasc. Pharmacol. 7: 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, F., Flockerzi, V., Nastainczyk, W., Ruth, P., and Schneider, T. 1990. The molecular structure and regulation of muscular calcium channels. Curr. Top. Cell. Regtd., 31: 223–239.

    CAS  Google Scholar 

  • Home, W. A., Weiland, G. A., and Oswald, R. E. 1986. Solubilization and hydrodynamic characterization of the dihydropyridine receptor from rat ventricular muscle. J. Biol. Chem., 261: 3588–3594.

    Google Scholar 

  • Home, W. A., Abdel-Ghany, M., Racker, E., Weiland, G. A., Oswald, R. E., and Cerione, R. A. 1988. Functional reconstitution of skeletal muscle Cap’ channels: Separation of regulatory and channel components. Proc. Natl. Acad. Sci. USA, 85: 3718–3722.

    Article  Google Scholar 

  • Hosey, M. M., Borsotto, M., and Lazdunski, M. 1986. Phosphorylation and dephosphorylation of dihydropyridine-sensitive voltage-dependent Ca’ channel in skeletal muscle membranes by cAMPand Ca’-dependent processes. Proc. Natl. Acad. Sci. USA, 83: 3733–3737.

    Article  PubMed  CAS  Google Scholar 

  • Hosey, M. M., Barhanin, J., Schmid, A., Vandaele, S., Ptasienski, J., O’Callahan, C., Cooper, C., and Lazdunski, M. 1987. Photoaffinity labelling and phosphorylation of a 165 kilodalton peptide associated with dihydropyridine and phenylalkylamine-sensitive calcium channels. Biochem. Biophys. Res. Commun., 147: 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, T., Zagotta, W. N., and Aldrich, R. W. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, 250: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. H. 1969. Studies on phosphatidylcholine vesicles: Formation and physical characteristics. Biochemistry, 8: 341–352.

    Article  Google Scholar 

  • Huganir, R. L., Schell, M. A., and Racker, E. 1979. Reconstitution of purified acetylcholine receptor from Torpedo californica. FEBS Lett., 108: 155–160.

    Article  CAS  Google Scholar 

  • Hymel, L., SYriessnig, J., Glossmann, ll-, and Schindler, H. 1988. Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc. Natl. Acad. Sci. USA, 85: 4290–4294.

    Google Scholar 

  • Imagawa, T., Leung, A. T., and Campbell, K. P. 1987. Phosphorylation of the 1,4-dihydropyridine receptor of the voltage-dependent Ca’ channel by an intrinsic protein kinase in isolated triads from rabbit skeletal muscle. J. Biol. Chem., 262: 8333–8339.

    PubMed  CAS  Google Scholar 

  • Imoto, Y., Yatani, A., Reeves, J. P., Codina, J., Birnbaumer, L., and Brown, A. M. 1988. a-Subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am. J. Physiol., 255 (Heart Circ. Physiol. 24 ): H722 - H728.

    Google Scholar 

  • Inoue, Y., Xiong, Z., Kitamura, K., and Kuriyama, H. 1989. Modulation produced by nifedipine of the unitary Ba current of dispersed smooth muscle cells of the rabbit ileum. Pflügers Arch., 414: 534–542.

    Article  PubMed  CAS  Google Scholar 

  • Isenberg, G., and Klöckner, U. 1982. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pflügers Arch., 395: 30–41.

    Article  PubMed  CAS  Google Scholar 

  • Isenberg, G., and Klöckner, U. 1985. Elementary currents through single Ca channels in smooth muscle cells isolated from bovine coronary arteries. Effects of nifedipine and Bay K 8644. Pflügers Arch., 403: R23.

    Google Scholar 

  • Jahn, H., Nastainczyk, W., Röhrkasten, A., Schneider, T., and Hofmann, F. 1988. Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur. J. Biochem., 178: 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Josephson, I. R., Sanchez-Chapula, J., and Brown, A. M. 1984. A comparison of calcium currents in rat and guinea pig single ventricular cells. Cire. Res., 54: 144–156.

    Article  CAS  Google Scholar 

  • Kagawa, Y., and Racker, E. 1971. Partial resolution of the enzyme catalyzing oxidative phosphorylation. J. Biol. Chem., 216: 5477–5487.

    Google Scholar 

  • Kameyama, A., and Nakayama, T. 1988. Calcium efflux through cardiac calcium channels reconstituted into liposomes-Flux measurement with fura-2. Biochem. Biophys. Res. Commun., 154: 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  • Kameyama, M., Hofmann, F., and Trautwein, W. 1985. On the mechanism of /3-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch., 405: 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, T. J., Sanguinetti, M. C., and Miller, R. J. 1984. Voltage-and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202–791. Circ. Res. 64: 338–351.

    Article  Google Scholar 

  • Kamp, T. J., Miller, R. J.. and Sanguinetti, M. C. 1985. Stimulation rate modulates effects of the dihydropyridine GGP 28 392 on cardiac calcium-dependent action potentials. Br. J. Pharmacol. 85: 523–528.

    Article  PubMed  CAS  Google Scholar 

  • Kass, R. S., and Arena, J. P. 1989. Influence of pHo on calcium channel block by amlodipine, a charged dihydropyridine compound. Implications for location of the dihydropyridine receptor. J. Gen. Physiol., 93: 1109–1127.

    Article  PubMed  CAS  Google Scholar 

  • Kass, R. S., Arena, J. P., and Chin, S. 1991. Block of L-type calcium channels by charged dihydropyridines: Sensitivity to side of application and calcium. J. Gen. Physiol., 98: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Kawashima, Y., and Ochi, R. 1988. Voltage-dependent decrease in the availability of single calcium channels by nitrendipine in guinea-pig ventricular cells. J. Physiol., 402: 219–235.

    PubMed  CAS  Google Scholar 

  • Keller, B. U., Hedrich, R., Vaz, W. L. C., and Criado, M. 1988. Single channel recordings of reconstituted ion channel proteins: An improved technique. Pflügers Arch., 411: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. S., Wei, X., Ruth, P., Perez-Reyes, E., F1otkerzi, V., Hofmann, F., and Birnbaumer, L. 1990. Studies on the structural requirements for the activity of the skeletal muscle dihydropyridine receptor/ slow Cat’ channel. Allosteric regulation of dihydropyridine binding in the absence of 02 and ß components of the purified protein complex. J. Biol. Chem., 265: 11858–11863.

    PubMed  CAS  Google Scholar 

  • Kokubun, S., and Reuter, H. 1984. Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc. Natl. Acad. Sci. USA, 81: 4824–4827.

    Article  PubMed  CAS  Google Scholar 

  • Korenbrot, J. I., and Hwang, S. B. 1980. Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films. J. Gen. Physiol., 76: 649–682.

    Article  PubMed  CAS  Google Scholar 

  • Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L., and Brown, A. M. 1991. Normalization of current kinetics by interaction between the a, and ß subunits of the skeletal muscle dihydropyridine-sensitive Cap’ channel. Nature, 352: 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Lai, Y., Seagar, M. J., Takahashi, M., and Catterall, W. A. 1990. Cyclic AMP-dependent phosphorylation of two size forms of a, subunits of L-type calcium channels in rat skeletal muscle cells. J. Biol. Chem., 265: 20839–20848.

    PubMed  CAS  Google Scholar 

  • Lansman, J. B., Hess, P., and Tsien, R. W. 1986. Blockade of current through single calcium channels by Cd’, Mg’, and Ca’. Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol., 88: 321–347.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc, N., and Hume, J. R. 1989. D 600 block of L-type Ca’ channel in vascular smooth muscle cells: Comparison with permanently charged derivative, D 890. Am. J. Physiol., 257 (Cell Physiol. 26 ): C689 - C695.

    Google Scholar 

  • Lee, K. S., and Tsien, R. W. 1982. Reversal of current through calcium channels in dialysed single heart cells. Nature, 297: 498–501.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., and Tsien, R. W. 1984. High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J. Physiol., 354: 253–272.

    PubMed  CAS  Google Scholar 

  • Leung, A. T., Imagawa, T., and Campbell, K. P. 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca’ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J. Biol. Chem., 262: 7943–7946.

    PubMed  CAS  Google Scholar 

  • Leung, A. T., Imagawa, T., Block, B., Franzini-Armstrong, C., and Campbell, K. P. 1988. Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. Evidence for a 52,000-Da subunit. J. Biol. Chem., 263: 994–1001.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montai, M. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles, study of agonist-induced cation channel regulation. J. Biol. Chem., 255: 8340–8350.

    PubMed  CAS  Google Scholar 

  • Llinâs, R., Sugimori, M., Lin, J.-W., and Cherksey, B. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA, 86: 1689–1693.

    Article  PubMed  Google Scholar 

  • Lotan, I., Goelet, P., Gigi, A., and Dascal, N. 1989. Specific block of calcium channel expression by a fragment of dihydropyridine receptor cDNA. Science, 243: 666–669.

    Article  PubMed  CAS  Google Scholar 

  • Loutzenhiser, R., Ruegg, U. T., Hof, A., and Hof, R. P. 1984. Studies on the mechanism of action of the vasoconstrictive dihydropyridine, CGP 28392. Eur. J. Pharmacol. 105: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., and Coronado, R. 1988. Heterogeneity of conductance states in calcium channels of skeletal muscle. Biophys. J., 53: 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Mundina-Weilenmann, C., Hosey, M. M., and Rios, E. 1991. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating. Biophvs. J., 60: 890–901.

    Article  CAS  Google Scholar 

  • Malouf, N. N., Coronado, R., McMahon, D., Meissner, G., and Gillespie, G. Y. 1987. Monoclonal antibody specific for the transverse tubular membrane of skeletal muscle activates the dihydropyridine-sensitive Ca’ channel. Proc. Natl. Acad. Sci. USA, 84: 5019–5023.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R. P., Gonye, G. E., Chester, D. W., and Herbette, L. G. 1989. Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes. Biophvs. J., 55: 769–778.

    Article  CAS  Google Scholar 

  • McCleskey, E. W., and Almers, W. 1985. The Ca channel in skeletal muscle is a large pore. Proc. Natl. Acad. Sci. USA, 82: 7149–7153.

    Article  PubMed  CAS  Google Scholar 

  • McCleskey, E. W., Hess, P., and Tsien, R. W. 1985. Interaction of organic cations with the cardiac Ca channel. J. Gen. Physiol., 86: 22a.

    Google Scholar 

  • McDonald, T. F., Pelzer, D., and Trautwein, W. 1989. Dual action (stimulation, inhibition) of D600 on contractility and calcium channels in guinea-pig and cat heart cells. J. Physiol., 414: 569–586.

    PubMed  CAS  Google Scholar 

  • McDonald, T. F., Pelzer, S., Trautwein, W., and Pelzer, D. 1993. The regulation and modulation of calcium channels in cardiac, skeletal and smooth muscle cells. Physiol. Rev. in press.

    Google Scholar 

  • Mejia-Alvarez, R., Fill, M., and Stefani, E. 1991. Voltage-dependent inactivation of T-tubular skeletal calcium channels in planar lipid bilayers. J. Gen. Physiol., 97: 393–412.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, 340: 230–233.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. 1978. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J. Membr. Biol., 40: 1–23.

    PubMed  CAS  Google Scholar 

  • Miller, C. 1983a. Integral membrane channels: Studies in model membranes. Physiol. Rev., 63: 1209–1242.

    PubMed  CAS  Google Scholar 

  • Miller, C. 1983b. First steps in the reconstitution of ionic channel functions in model membranes. In: Current Methods in Cellular Neurobiology, Vol. 3, pp. 1–37. Ed. by Baker, J. L. Wiley, New York. Miller, C. 1984. Ion channels in liposomes. Annu. Rev. Physiol., 46: 549–558.

    Google Scholar 

  • Miller, C. 1986. Ion Channel Reconstitution. Plenum Press, New York.

    Google Scholar 

  • Miller, C., and Racker, E. 1976. Calcium-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol., 30: 283–300.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C., and Racker, E. 1979. Reconstitution of membrane transport functions. In: The Receptors: A Comprehensive Treatise, Vol. 1, pp. 1–31. Ed. by O’Brien, R. D. Plenum Press, New York.

    Google Scholar 

  • Miller, C., Aryan, P., Telford, J. N., and Racker, E. 1976. Calcium-induced fusion of proteoliposomes: Effect of transmembrane osmotic gradient. J. Membr. Biol., 30: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Montai, M., and Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA, 69: 3561–3566.

    Article  Google Scholar 

  • Montal, M., Anholt, R., and Labarca, P. 1986. The reconstituted acetylcholine receptor. In: Ion Channel Reconstitution, pp. 157–196. Ed. by Miller, C. Plenum Press, New York.

    Google Scholar 

  • Morton, M. E., and Froehner, S. C. 1987. Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J. Biol. Chem., 262: 11904–11907.

    PubMed  CAS  Google Scholar 

  • Morton, M. E., Caffrey, J. M., Brown, A. M., and Froehner, S. C. 1988. Monoclonal antibody to the a i -subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H I myocytes. J. Biol. Chem., 263: 613–616.

    PubMed  CAS  Google Scholar 

  • Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 194: 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. 1963. Methods for the incorporation of single bimolecular lipid membranes in aqueous solutions. J. Phys. Chem., 67: 534–535.

    Google Scholar 

  • Mundina-Weilenmann, C., Ma, J., Rios, E., and Hosey, M. M. 1991a. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2: Effects of phosphorylation by cAMP-dependent protein kinase. Biophys. J., 60: 902–909.

    Google Scholar 

  • Mundina-Weilenmann, C., Chang, C. F., Gutierrez, L. M., and Hosey, M. M. 1991b. Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. J. Biol. Chem., 266: 4067–4073.

    PubMed  CAS  Google Scholar 

  • Nakajima, T., Wu, S., Irisawa, H., and Giles, W. 1990. Mechanism of acetylcholine-induced inhibition of Ca current in bullfrog atrial myocytes. J. Gen. Physiol., 96: 865–885.

    Google Scholar 

  • Nastainczyk, W., Röhrkasten, A., Sieber, M., Rudolph, C., Schächtele, C., Marmé, D., and Hofmann, F. 1987. Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem., 169: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Nastainczyk, W., Ludwig, A., and Hofmann, F. 1990. The dihydropyridine-sensitive calcium channel of the skeletal muscle: Biochemistry and structure. Gen. Physiol. Biophys., 9: 321–329.

    PubMed  CAS  Google Scholar 

  • Nelson, N., Anholt, R., Lindstrom, J., and Montal, M. 1980. Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 77: 3057–3061.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley Ill, J. F. 1988. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature, 336: 382–385.

    Google Scholar 

  • Niles, W. D., Levis, R. A., and Cohen, F. S. 1988. Planar bilayer membranes made from phospholipid monolayers formed by a thinning process. Biophys. J., 53: 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Norman, R. I., Burgess, A. J., Allen, E., and Harrison, T. M. 1987. Monoclonal antibodies against the 1,4dihydropyridine receptor associated with voltage-sensitive Ca’ channels detect similar polypeptides from a variety of tissues and species. FEBS Leu., 212: 127–132.

    Google Scholar 

  • Nunoki, K., Florio, V., and Catterall, W. A. 1989. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sci. USA, 86: 6816–6820.

    Article  PubMed  CAS  Google Scholar 

  • Ochi, R., Hino, N., and Niimi, Y. 1984. Prolongation of calcium channel open time by the dihydropyridine derivative BAY K 8644 in cardiac myocytes. Proc. Jpn. Acad. 60: 153–156.

    Google Scholar 

  • Oike, M., Inoue, Y., Kitamura, K., and Kuriyama, H. 1990. Dual effects of FRC 8653, a novel dihydropyridine derivative, on the Ba’ current recorded from the rabbit basilai artery. Cire. Res., 67: 993–1006.

    Article  CAS  Google Scholar 

  • Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., and Hofmann, F. 1982. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Cat+ current. Nature, 298: 576–578.

    Article  PubMed  CAS  Google Scholar 

  • Palade, P. T., and Almers, W. 1985. Slow calcium and potassium currents in frog skeletal muscle: Their relationship and pharmacologic properties. Pflügers Arch., 405: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, T. D., Lagrutta, A., White, R. E., and Hartzell, H. C. 1991. Regulation of Ca’ current in frog ventricular cardiomyocytes by 5’-guanylylimidodiphosphate and acetylcholine. J. Physiol., 432: 593–620.

    Google Scholar 

  • Pattus, F., Desnuelle, P., and Verger, R. 1978. Spreading of liposomes at the air/water interface. Biochim. Biophvs. Acta, 507: 62–70.

    Article  CAS  Google Scholar 

  • Pelzer, D., Cavalié, A., and Trautwein, W. 1985. Guinea-pig ventricular myocytes treated with D600: Mechanism of calcium-channel blockade at the level of single channels. In: Recent Aspects in Calcium Antagonism, pp. 3–26. Ed. by Lichtlen, P. R. Schattauer, Stuttgart.

    Google Scholar 

  • Pelzer, D., Cavalié, A., McDonald, T. F., and Trautwein, W. 1986. Macroscopic and elementary currents through cardiac calcium channels. Frog. Zool., 33: 83–98.

    Google Scholar 

  • Pelzer, D., Grant, A. O., Cavalié, A., Pelzer, S., Sieber, M., Hofmann, F., and Trautwein, W. 1989. Calcium channels reconstituted from the skeletal muscle dihydropyridine receptor protein complex and its a, peptide subunit in lipid bilayers. Ann. N. Y. Acad. Sci., 560: 138–154.

    Article  PubMed  CAS  Google Scholar 

  • Pelzer, D., Pelzer, S., and McDonald, T. F. 1990. Properties and regulation of calcium channels in muscle cells. Rev. Phvsiol. Biochem. Pharmacol., 114: 107–207.

    Article  CAS  Google Scholar 

  • Pelzer, S., Barhanin, J., Pauron, D., Trautwein, W., Lazdunski, M., and Pelzer, D. 1989. Diversity and novel pharmacological properties of Ca’ channels in Drosophila brain membranes, EMBO J., 8: 2365–2371.

    PubMed  CAS  Google Scholar 

  • Pelzer, S., Shuba, Y. M., Asai, T., Codina, J., Birnbaumer, L., McDonald. T. F., and Pelzer, D. 1990. Membrane-delimited stimulation of heart cell calcium current by ß-adrenergic signal-transducing Gs protein. Am. J. Physiol., 259 (Heart Circ. Physiol. 28 ): H264 - H267.

    Google Scholar 

  • Pelzer, S., McDonald, T. F., and Pelzer, D. 1991. Channel control. Nature, 354: 363.

    Article  Google Scholar 

  • Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Home, W., Wei, X., Rampe, D., Campbell, K. P., Brown, A. M., and Birnbaumer, L. 1989. Induction of calcium currents by the expression of the a,-subunit of the dihydropyridine receptor from skeletal muscle. Nature, 340: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes, E., Castellano, A., Kim, H. S., Bertrand, P., Baggstrom, E., Lacerda, A. E., Wei, X., and Birnbaumer, L. 1992. Cloning and expression of a cardiac/brain ß subunit of the L-type calcium channel. J. Biol. Chem., 267: 1792–1797.

    PubMed  CAS  Google Scholar 

  • Pietrobon, D., Prod’hom, B., and Hess, P. 1988. Conformational changes associated with ion permeation in L-type calcium channels. Nature, 333: 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Porzig, H. 1990. Pharmacological modulation of voltage-dependent calcium channels in intact cells. Rev. Phvsiol. Biochem. Pharmacol., 114: 209–262.

    Article  CAS  Google Scholar 

  • Ravindren, A., Kwiecinski, H., Alvarez, O., Eisenman, G., and Moczwdiowski, E. 1992. Modeling ion permeation through batrachotoxin-modified Na’ channels from rat skeletal muscle with a multi-ion pore. Biophvs. J., 61: 494–508.

    Article  Google Scholar 

  • Regan, L. J. 1991. Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis. J. Neurosci., 11: 2259–2269.

    PubMed  CAS  Google Scholar 

  • Regan, L. J. Sah, D. W. Y., and Bean, B. P. 1991. Ca’ channels in rat central and peripheral neurons: High-threshold current resistant to dihydropyridine blockers and omega-conotoxin. Neuron, 6: 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, H., Stevens, C. F., Tsien, R. W., and Yellen, G. 1982. Properties of single calcium channels in cardiac cell culture. Nature. 297: 501–504.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, H., Porzig, H., Kokubun, S., and Prod’hom, B. 1985. 1,4-Dihydropyridines as tools in the study of Ca’ channels. Trends Neurosci., 8: 396–400.

    Google Scholar 

  • Rhodes, D. G., Sarmiento, J. G.. and Herbette, L. G. 1985. Kinetics of binding of membrane-active drugs to receptor sites. Diffusion-limited rates for a membrane bilayer approach of 1,4-dihydropyridine calcium channel antagonists to their active site. Mol. Pharmacol., 27: 612–623.

    PubMed  CAS  Google Scholar 

  • Rosenberg, R. L., Hess, P., Reeves, J. P.. Smilowitz, H., and Tsien, R. W. 1986. Calcium channels in planar lipid bilayers: Insights into mechanisms of ion permeation and gating. Science, 231: 1564–1566.

    CAS  Google Scholar 

  • Rosenberg, R. L., Hess, P., and Tsien, R. W. 1988. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. J. Gen. Phvsiol., 92: 27–54.

    Article  CAS  Google Scholar 

  • Ruth, P., Röhrkasten, A., Biel, M., Bosse, E., Regulla, S., Meyer, H. E., Flockerzi, V., and Hofmann, F. 1989. Primary structure of the ß subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 245: 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Sakmann, B., and Neher, E. 1984. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Phvsiol., 46: 455–472.

    Article  CAS  Google Scholar 

  • Sanchez, J. A., and Stefani, E. 1983. Kinetic properties of calcium channels of twitch muscle fibers of the frog. J. Phvsiol., 337: 1–17.

    CAS  Google Scholar 

  • Schindler, H. 1979. Autocatalytic transport of the peptide antibiotics suzukacillin and alamethicin across lipid membranes. FEBS Lett., 104: 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, H. 1980. Formation of planar bilayers from artificial or native membrane vesicles. FEBS Leu., 122: 77–79.

    Article  CAS  Google Scholar 

  • Schindler, H., and Rosenbusch, J. P. 1978. Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. Natl. Acad. Sci. USA, 75: 3751–3755.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, A., Barhanin, J., Coppola, T., Borsotto, M., and Lazdunski, M. 1986. Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage-dependent Ca’ channels in skeletal, cardiac, and smooth muscles. Biochemistry, 25: 3492–3495.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, T., and Hofmann, F. 1988. The bovine cardiac receptor for calcium channel blockers is a 195kDa protein. Eur. J. Biochem., 174: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Schramm, M., Thomas, G., Towart, R., and Franckowiak, G. 1983a. Activation of calcium channels by novel 1,4-dihydropyridine. A new mechanism for positive inotropics or smooth muscle stimulants. Arzneim. Forsch., 33: 1268–1272.

    CAS  Google Scholar 

  • Schramm, M., Thomas, G., Towart, R., and Franckowiak, G. 1983b. Novel dihydropyridines with positive inotropic action through activation of Ca’ channels. Nature., 303: 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Schuerholz, T., and Schindler, H. 1983. Formation of lipid-protein bilayers by micropipette guided contact of two monolayers. FEBS Lett., 152: 187–190.

    Article  CAS  Google Scholar 

  • Schwartz, L. M., McCleskey, E. M., and Almers, W. 1985. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature., 314: 747–750.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. H., and Dolphin, A. C. 1987. Activation of a G protein promotes agonist responses to calcium channel ligands. Nature, 330: 760–762.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A. H., and Campbell, K. P. 1989. Characterization of the 1,4-dihydropyridine receptor using subunit- specific polyclonal antibodies. Evidence for 32,000-Da subunit. J. Biot. Chem., 264: 2816–2825.

    CAS  Google Scholar 

  • Sharp, A. H., Imagawa, T., Leung, A. T., and Campbell, K. P. 1987. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J. Biot. Chem., 262: 12309–12315.

    CAS  Google Scholar 

  • Shuba, Y. M., Hesslinger, B., Trautwein, W., McDonald, T. F., and Pelzer, D. 1990a. A dual-pipette technique that permits rapid internal dialysis and membrane potential measurement in voltage-clamped cardiomyocytes. Pflügers Arch., 415: 767–773.

    Article  PubMed  CAS  Google Scholar 

  • Shuba, Y. M., Hesslinger, B., Trautwein, W., McDonald, T. F., and Pelzer, D. 1990b. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J. Phvsiol., 424: 205–228.

    CAS  Google Scholar 

  • Sieber, M., Nastainczyk, W., Zubor, V., Wernet, W., and Hofmann, F. 1987. The 165-KDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur. J. Biochem., 167: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Simard, J. M. 1991. Calcium channel currents in isolated smooth muscle cells from basilar artery of the guinea pig. Pftügers Arch., 417: 528–536.

    Article  CAS  Google Scholar 

  • Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., and Dascal, N. 1991. The roles of the subunits in the function of the calcium channel. Science, 253: 1553–1557.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. S., McKenna, E. J., Ma, J., Vilven, J., Vaghy, P. L., Schwartz, A., and Coronado, R. 1987. Calcium channel activity in a purified dihydropyridine-receptor preparation of a skeletal muscle. Biochemistry, 26: 7182–7188.

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram, B., Tregear, R. T., and Trentham, D. R. 1991. GTP gammaS causes contraction of skinned frog skeletal muscle via the DHP-sensitive Ca“ channels of sealed T-tubules. Pflügers Arch., 418: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Standen, N. B., and Stanfield, P. R. 1982. A binding-site model for calcium channel inactivation that depends on calcium entry. Proc. R. Soc. Lond. B Biol. Sci., 217: 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Stefani, E., Toro, L., and Garcia, J. 1987. Alpha-and beta-adrenergic stimulation of fast and slow Ca“ channels in frog skeletal muscle. Biophys. J., 51: 425a.

    Article  Google Scholar 

  • Striessnig, J., Knaus, H.-G., Grabner, M., Moosburger, K., Seitz, W., Lietz, H., and Glossmann, H. 1987. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett., 212: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Isla, B. A., Wan, K., Lindstrom, J., and Montai, M. 1983. Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry, 22: 2319–2323.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., and Catterall, W. A. 1987. Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: Studies with antibodies against the a subunits. Biochemistry, 26: 5518–5526.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA, 84: 54785482.

    Google Scholar 

  • Takenaka, T., and Maeno, H. 1982. A new vasoconstrictor 1,4-dihydropyridine, YC-170. Jpn. J. Pharmacol., 32: 139 P.

    Article  Google Scholar 

  • Takenaka, T., Inagaki, O., Terai, M., Asano, M., and Kubo, K., 1988. New 1,4-dihydropyridine with va-soconstrictor action through activation of Ca++ channels. J. Pharmacol. Exp. Ther., 244: 699–708.

    PubMed  CAS  Google Scholar 

  • Talvenheimo, J. A., Worley Ill, J. F., and Nelson, M. T. 1987. Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. Biophys. J., 52: 891–899.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Beam, K. G., Powell, J. A., and Numa, S. 1988. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature, 336: 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. 1990. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature, 344: 45 1453.

    Google Scholar 

  • Tanabe, T., Adams, B. A., Numa, S., and Beam, K. G. 1991. Repeat I of the dihydropyridine receptor is critical in determining calcium channel activation kinetics. Nature, 352: 800–803.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, J. C., Eccleston, J. F., and Barchi, R. L. 1983. Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. J. Biol. Chem., 258: 7519–7526.

    PubMed  CAS  Google Scholar 

  • Tank, D. W., and Miller, C. 1983. Patch-clamped liposomes: Recording reconstituted ion channels. In: Single-Channel Recording, pp. 91–105. Ed. by Sakmann, B., and Neher, E. Plenum Press, New York.

    Chapter  Google Scholar 

  • Tank, D. W., Miller, C., and Webb, W. W. 1982. Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sei. USA, 79: 7749–7753.

    Article  CAS  Google Scholar 

  • Toutant, M., Gabrion, J., Vandaele, S., Peraldi-Roux, S., Barhanin, J., Bockaert, J., and Rouot, B. 1990. Cellular distribution and biochemical characterization of G proteins in skeletal muscle: Comparative location with voltage-dependent calcium channels. EMBO J., 9: 363–369.

    PubMed  CAS  Google Scholar 

  • Trautwein, W., and Pelzer, D. 1985. Voltage-dependent gating of single calcium channels in the cardiac cell membrane and its modulation by drugs. In: Calcium and Cell Physiology, pp. 53–93, Ed. by Marmé, D. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Triggle, D. J., and Swamy, V. C. 1983. Calcium antagonists. Some chemical-pharmacologic aspects. Circ. Res., 52(Suppl. I):I-17-I-28.

    Google Scholar 

  • Truog, A. 1983. Annu. Meeting Fed. Amer. Soc. Exp. Biol., Chicago.

    Google Scholar 

  • Uehara, A., and Hume, J. R. 1985. Interactions of organic calcium channel antagonists with calcium channel in single frog atrial cells. J. Gen. Physiol., 85: 621–647.

    Article  PubMed  CAS  Google Scholar 

  • Uyeda, N., Takenaka, T., Aoyama, K., Matsumoto, M., and Fujiyoshi, Y. 1987. Holes in a stearic acid monolayer observed by dark-field electron microscopy. Nature, 327: 319–321.

    Article  CAS  Google Scholar 

  • Vaghy, P. L., Williams, J. S., and Schwartz, A. 1987a. Receptor pharmacology of calcium entry blocking agents. Am. J. Cardiol., 59: 9A - 17A.

    Article  PubMed  CAS  Google Scholar 

  • Vaghy, P. L., Striessnig, J., Miwa, K., Knaus, H.-G., Itagaki, K., McKenna, E., Glossmann, H., and Schwartz, A. 1987b. Identification of a novel 1,4-dihydropyridine-and phenylalkylamine-binding polypeptide in calcium channel preparations. J. Biol. Chem., 262: 14337–14342.

    PubMed  CAS  Google Scholar 

  • Valdivia, H. H., and Coronado, R. 1990. Internal and external effects of dihydropyridines in the calcium of skeletal muscle. J. Gen. Physiol., 95: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Varadi, G., Lory, P., Schultz, D., Varadi, M., and Schwartz, A. 1991. Acceleration of activation and inactivation by the ß subunit of the skeletal muscle calcium channel. Nature, 352: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Vilven, J., and Coronado, R. 1988. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature, 336: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Vilven, J., Leung, A. T., Imagawa, T., Sharp, A. H., Campbell, K. P., and Coronado, R. 1988. Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. Biophys. J., 53: 556a.

    Google Scholar 

  • Waldbillig, R. C., and Szabo, G. 1979. Planar bilayer membranes from pure lipids. Biochim. Biophys. Acta, 557: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, K. B., Begenisich, T. B., and Kass, R. S. 1989. 3-Adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents. J Gen. Phv. iol. 93:841–854.

    Google Scholar 

  • White, S. H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J., 23: 337–347.

    Article  PubMed  CAS  Google Scholar 

  • White, S. H. 1986. The physical nature of planar lipid bilayer membranes. In: Ion Channel Reconstitution, pp. 3–35. Ed. by Miller, C. Plenum Press, New York.

    Google Scholar 

  • Williams, J. S., Grupp, I. L., Grupp, G., Vaghy, P. L., Dumont, L., and Schwartz, A. 1985. Profile of the oppositely acting enantiomers of the dihydropyridine 202–791 in cardiac preparations: receptor-binding electrophysiological, and pharmacological studies. Biochem. Biophys. Res. Commun. 131: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Wonderlin, W. F., Finkel, A., and French, R. J. 1990. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys. J., 58: 289–297.

    Google Scholar 

  • Worley III, J. F., and Kotlikoff, M. I. 1990. Dihydropyridine-sensitive single calcium channel in airway smooth muscle cells. Am. J. Physiol., 259 (Lung Cell. Mol. Physiol. 3 ): L468 - L480.

    Google Scholar 

  • Worley III, J. F., Deitmer, J. W., and Nelson, M. T. 1986. Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery. Proc. Natl. Acad. Sci. USA, 83: 5746–5750.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W. C. S., Moore, H. P. H., and Raftery, M. A. 1981. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad Sci. USA, 78: 775–779.

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., and Brown, A. M. 1989. Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science, 245: 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., and Brown, A. M. 1991. Channel control. Nature, 354: 363–364.

    Article  Google Scholar 

  • Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L., and Brown, A. M. 1987. A G protein directly regulates mammalian cardiac calcium channels. Science, 238: 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  • Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M., and Birnbaumer, L. 1988. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Cat+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J. Biot. Chem., 263: 9887–9895.

    CAS  Google Scholar 

  • Yoshino, M., and Yabu, H. 1985. Single Ca channel currents in mammalian visceral smooth muscle cells. P/liigers Arch., 404: 285–286.

    Article  CAS  Google Scholar 

  • Zagotta, W. N., Hoshi, T., and Aldrich, R. W. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 250: 568–571.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pelzer, D.J., McDonald, T.F., Pelzer, S. (1993). Reconstitution of Muscle Calcium Channel Function in Bilayer Membranes. In: Glossmann, H., Striessnig, J. (eds) Methods in Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2239-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2239-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3232-7

  • Online ISBN: 978-1-4757-2239-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics