Advertisement

Molecular Characterization of the Charybdotoxin-Sensitive, High-Conductance, Calcium-Activated Potassium Channel

  • Margarita Garcia-Calvo
  • Gregory J. Kaczorowski
  • Maria L. Garcia
Chapter

Abstract

Potassium channels comprise a family of proteins which control electrical excitability as well as the resting membrane potential of many different types of cells. For these reasons this class of ion channels has been the focus of a great deal of attention during the last few years, and various K+ channel pathways have been recognized as potential targets for drug development (Cook, 1988). Although the term “K+ channel” is used to refer to a protein that displays high selectivity for this particular substrate during ion conduction, it is interesting that this family shows great diversity (Latorre, 1991). K+ channels have been traditionally categorized according to their biophysical and pharmacological properties, but can be further classified into two major distinct groups, depending upon whether they are voltage-gated or ligand-gated channels. Unlike the situation with sodium and calcium channels, the pharmacology and biochemistry of K+ channels are rather undeveloped. This is due in part to the paucity of high-affinity, selective probes for these proteins. One of the few K+ channels that has been purified is a ligand-activated channel which is gated by ATP (Bernardi et al., 1988) (see also Chapter 3 by H. Bernardi and M. Lazdunski in this volume). This channel is the target of the sulfonylurea class of antidiabetic drugs, such as glyburide, which bind with high affinity to a receptor site thought to be associated with the channel protein. Despite the fact that this protein has recently been purified, no detailed information is available on its structure.

Keywords

Scorpion Venom Sucrose Density Gradient Centrifugation Toxin Binding Sarcolemmal Membrane Crosslinking Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C. S., MacKinnon, R., Smith, C., and Miller, C. 1988. Charybdotoxin block of single CaZ+activated K+ channels: Effects of channel gating, voltage, and ionic strength. J. Gen. Physiol., 91: 317–333.PubMedCrossRefGoogle Scholar
  2. Bernardi, H., Fosset, M., and Lazdunski, H. 1988. Characterization, purification, and affinity labeling of the brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K’ channel. Proc. Natl. Acad. Sci. USA, 85: 9816–9820.PubMedCrossRefGoogle Scholar
  3. Bontems, F., Roumestand, C., Boyot, P., Gilquin, B., Doljansky, Y., Menez, A., and Toma, F. 1991. Three-dimensional structure of natural charybdotoxin in aqueous solution by ‘H-NMR. Eur. J. Biochem., 196: 19–28.PubMedCrossRefGoogle Scholar
  4. Candia, S., Garcia, M. L., and Latorre, R. 1991. Iberiotoxin blockade of a large conductance CaZ+-activated K+ channel from skeletal muscle. Biophys. J., 59: 213a.Google Scholar
  5. Cecchi, X., Wolff, D., Alvarez, O., and Latorre, R. 1987. Mechanisms of Cs’ blockade in a CaZ+-activated K+ channel from smooth muscle. Biophys. J., 52: 707–716.PubMedCrossRefGoogle Scholar
  6. Cook, N. S. 1988. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol. Sci., 9: 21–28.PubMedCrossRefGoogle Scholar
  7. Deutsch, C., Price, M., Lee, S., King, V. F., and Garcia, M. L. 1991. Characterization of high affinity binding sites for charybdotoxin in human T-lymphocytes. J. Biol. Chem., 266: 3668–3674.PubMedGoogle Scholar
  8. Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G. J., and Garcia, M. L. 1990. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem., 265: 11083–11090.Google Scholar
  9. Garcia, M. L., Sugg, E. E., Reuben, J. P., Patchett, A. A., and Kaczorowski, G. J. 1990. Synthesis and biological properties of the Ca’-activated K+ channel inhibitors: Charybdotoxin, iberiotoxin and chimeric analogs. Biophys. J., 57: 1 18a.Google Scholar
  10. Garcia, M. L., Galvez, A., Garcia-Calvo, M., King, V. F., Vazquez, J., and Kaczorowski, G. J. 1991. Use of toxins to study potassium channels. J. Bioenerg. Biomemhr., 23: 615–646.CrossRefGoogle Scholar
  11. Garcia-Calvo, M., Vazquez, J., Smith, M., Kaczorowski, G. J., and Garcia, M. L. 199la. Characterization of the solubilized charybdotoxin receptor from bovine aortic smooth muscle. Biochemistry. 30: 11157–11164.Google Scholar
  12. Garcia-Calvo, M., Smith, M. M., Kaczorowski, G. J., and Garcia, M. L. 1991b. Purification of the charybdotoxin receptor from bovine aortic smooth muscle. Biophys. J., 59: 78a.Google Scholar
  13. Giangiacomo, K. M., Garcia, M. L., and McManus, O. B. 1991a. Mechanism of iberiotoxin block of the high conductance CaZ+-activated K+ channel from aortic smooth muscle. Biophys. J., 59: 79a.Google Scholar
  14. Giangiacomo, K. M., Garcia-Calvo, M., Garcia, M. L., and McManus, O. B. 1991b. Functional reconstitution of the large-conductance CaZ+-activated K+ channel purified from bovine aortic smooth muscle. Biophys. J., 59: 214a.Google Scholar
  15. Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. 1988. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc. Natl. Acad. Sci. USA, 85: 3329–3333.PubMedCrossRefGoogle Scholar
  16. Jan, L. Y., and Jan, Y. N. 1990. How might the diversity of potassium channels be generated? Trends Neurosci, 13: 415–419.PubMedCrossRefGoogle Scholar
  17. Johnson, B., and Sugg, E. E. 1992. Determination of the three-dimensional structure of iberiotoxin in solution by hydrogen nuclear magnetic resonance spectroscopy. Biochemistry, 31: 8151–8159.PubMedCrossRefGoogle Scholar
  18. Jones, T. R., Charette, L., Garcia, M. L., and Kaczorowski, G. J. 1990. Selective inhibition of relaxation of guinea pig trachea by charybdotoxin, a potent Ca’-activated K+ channel inhibitor. J. Pharmacol. Exp. Ther., 255: 697–706.PubMedGoogle Scholar
  19. Jones, T. R., Charette, M. L., Garcia, M. L., and Kaczorowski, G. J. 1993. Interaction of the Ca’+-activated K+ channel inhibitor iberiotoxin with beta adrenoceptor agonists and sodium nitroprusside on isolated guinea pig trachea. J. Applied Physiol., 74: 1879–1884.CrossRefGoogle Scholar
  20. King, V. F., Kaczorowski, G. J., and Garcia, M. L. 1988. Cross-linking of charybdotoxin to sites in bovine aortic and tracheal smooth muscle sarcolemmal membrane vesicles. J. Cell Biol., 107: 143a.CrossRefGoogle Scholar
  21. Kume, H., Takai, A., Tokuno, H., and Tomita, T. 1989. Regulation of Cat+-dependent K+ channel activity in tracheal myocytes by phosphorylation. Nature, 341: 152–154.PubMedCrossRefGoogle Scholar
  22. Lambert, P., Kuroda, M., Chino, N., Watanabe, T. X., Kimura, T., and Sakakibara, S. 1990. Solution synthesis of charybdotoxin (ChTX), a K+ channel blocker. Biochem. Biophys. Res. Commun., 170: 684–690.PubMedCrossRefGoogle Scholar
  23. Latorre, R. 1991. Metabolic control of K+ channels: An overview. J. Bioenerg. Biomembr., 23:493–497. Latorre, R., Oberhauser, A., Labarca, P., and Alvarez, O. 1989. Varieties of calcium-activated potassium channels. Annu. Rev. Physiol., 51: 385–399.Google Scholar
  24. MacKinnon, R. 1991. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature, 350: 232–235.PubMedCrossRefGoogle Scholar
  25. MacKinnon, R., and Miller, C. 1989. Functional modification of a Ca’-activated K+ channel by trimethyloxonium. Biochemistry, 28: 8087–8092.PubMedCrossRefGoogle Scholar
  26. MacKinnon, R., Reinhart, P. H., and White, M. M. 1988. Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channel share common structural features. Neuron, 1: 997–1001PubMedCrossRefGoogle Scholar
  27. McManus, O. B. 1991. Calcium-activated potassium channels: Regulation by calcium. J. Bioenerg. Biomembr., 23: 537–560.PubMedCrossRefGoogle Scholar
  28. Miller, C. 1987. Trapping single ions inside single ion channels. Biophys. J., 52: 123–126.PubMedCrossRefGoogle Scholar
  29. Miller, C. 1988. Competition for block of a Ca’-activated K+ channel by charybdotoxin and tetraethyl-ammonium. Neuron, 1: 1003–1006.PubMedCrossRefGoogle Scholar
  30. Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M. 1985. Charybdotoxin, a protein inhibitor of single Ca’-activated K+ channels from skeletal muscle. Nature, 313: 316–318.PubMedCrossRefGoogle Scholar
  31. Neyton, J., and Miller, C. 1988a. Potassium blocks barium permeation through a calcium-activated potassium channel. J. Gen. Phvsiol., 92: 549–567.CrossRefGoogle Scholar
  32. Neyton, J., and Miller, C. 1988b. Discrete Bay+ block as a probe of ion occupancy and pore structure in the high-conductance Cas+-activated K+ channel. J. Gen. Physiol., 92: 569–568.PubMedCrossRefGoogle Scholar
  33. Novick, J., Leonard, R. J., King, V. F., Schmalhofer, W., Kaczorowski, G. J., and Garcia, M. L. 1991. Purification and characterization of two novel peptidyl toxins directed against K+ channels from venom of new world scorpions. Biophys. J., 59: 78a.Google Scholar
  34. Oliva, C., Folander, K., and Smith, J. S. 1991. Charybdotoxin is not a high affinity blocker of Shaker K+ channels expressed in Xenopus oocytes. Biophys. J., 59: 450a.Google Scholar
  35. Park, C.-S., and Miller, C. 1991. High-level expression of charybdotoxin in E. coll. Biophys. J., 59: 197a.Google Scholar
  36. Park, C.-S., Hausdorff, S. F., and Miller, C. 1991. Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of K+ channels. Proc. Natl. Acad. Sci. USA, 88: 2046–2050.PubMedCrossRefGoogle Scholar
  37. Pennefather, P. S., Kelley, M. E. M., Goh, J. W., Chicchi, G. G., Cascieri, M. A., Garcia, M. L., and Kaczorowski, G. J. 1989. Effect of charybdotoxin and leiurotoxin I on calcium-activated K+ currents of the bullfrog sympathetic ganglion neurones. In: Canadian Federation of Biological Societies. Proceedings of the 32th Annual Meeting, p. 95.Google Scholar
  38. Petersen, O. H., and Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion. Nature, 307: 693–696.PubMedCrossRefGoogle Scholar
  39. Rehm, H., and Lazdunski, M. 1988. Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I. Proc. Natl. Acad. Sci. USA, 85: 4919–4923.PubMedCrossRefGoogle Scholar
  40. Rehm, M., Pelzer, S., Cochet, C., Chambaz, E., Tempel, B. L., Trautwein, W., Pelzer, D., and Lazdunski, M. 1989. Dendrotoxin-binding brain membrane protein displays a K+ channel activity that is stimulated by both cAMP-dependent and endogenous phosphorylations. Biochemistry, 28: 6455–6460.PubMedCrossRefGoogle Scholar
  41. Sands, S. B., Lewis, R. S., and Cahalan, M. D. 1989. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J. Gen. Physiol., 93: 1061–1074.PubMedCrossRefGoogle Scholar
  42. Schweitz, H., Stansfeld, C. E., Bidard, J. N., Fagni, L., Maes, P., and Lazdunski, M. 1989. Charybdotoxin blocks dendrotoxin-sensitive voltage-activated K+ channels. FEBS Lett., 250: 519–522.PubMedCrossRefGoogle Scholar
  43. Slaughter, R. S., Kaczorowski, G. J., and Garcia, M. L. 1988. Charybdotoxin binds with high affinity to a single class of sites in bovine tracheal smooth muscle sarcolemmal membrane vesicles. J. Cell Biol., 107: 143a.Google Scholar
  44. Slaughter, R. S., Shevell, J. L., Felix, J. P., Garcia, M. L., and Kaczorowski, G. J. 1989. High levels of sodium-calcium exchange in vascular smooth muscle sarcolemmal membrane vesicles. Biochemistry, 28: 3995–4002.PubMedCrossRefGoogle Scholar
  45. Smith, C., Phillips, M., and Miller, C. 1986. Purification of charybdotoxin, a specific inhibitor of the high conductance Ca”-activated K+ channel. J. Biol. Chem., 261: 14607–14613.PubMedGoogle Scholar
  46. Suarez-Kurtz, G., Garcia, M. L., and Kaczorowski, G. J. 1991. Effects of charybdotoxin and iberiotoxin on the spontaneous motility and tonus of different guinea pig smooth muscle tissues. J. Pharmacy!. Exp. Ther., 259: 439–443.Google Scholar
  47. Sugg, E. E., Garcia, M. L., Reuben, J. P., Patchett, A. A., and Kaczorowski, G. J. 1990a. Synthesis and structural characterization of charybdotoxin, a potent peptidyl inhibitor of the high conductance Cat+-activated K+ channel. J. Biol. Chem., 265: 18745–18748.PubMedGoogle Scholar
  48. Sugg, E. E., Garcia, M. L., Johnson, B. A., Kaczorowski, G. J., Patchett, A. A., and Reuben, J. P. 1990b. Synthetic studies on the K+ channel antagonist charybdotoxin. In: Peptides: Chemistry, Structure and Biology, pp. 1069–1070. Ed. by Rivier, J. E., and Marshall, G. R. Escom, Leiden.Google Scholar
  49. Vazquez, J., Feigenbaum, P., Katz, G. M., King, V. F., Reuben, J. P., Roy-Contancin, L., Slaughter, R. S., Kaczorowski, G. J., and Garcia, M. L. 1989. Characterization of high affinity binding sites for charybdotoxin in sarcolemmal membranes from bovine aortic smooth muscle. J. Biol. Chem., 264: 20902–20909.PubMedGoogle Scholar
  50. Vazquez, J., Feigenbaum, P., King, V. F., Kaczorowski, G. J., and Garcia, M. L. 1990. Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. J. Biol. Chem., 265: 15564–15571.PubMedGoogle Scholar
  51. Vergara, C., and Latorre, R. 1983. Kinetics of Ca’-activated K+ channels from rabbit muscle incorporatedGoogle Scholar
  52. into planar bilayers: Evidence for a Ca’ and Ba’ blockade. J. Gen. Phy.siol., 82: 543–568.Google Scholar
  53. Villarroel, A., Alvarez, O., Oberhauser, A., and Latorre, R. 1988. Probing a Cat+-activated K+ channel withGoogle Scholar
  54. quaternary ammonium ions. PflugersArch.,413:118–126.Google Scholar
  55. Williams, D. L., Jr., Katz, G. M., Roy-Contancin, L., and Reuben, J. P. 1988. Guanosine 5’ monophosphate modulates gating of high conductance Ca’-activated K+ channels in vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA, 85: 9360–9364.PubMedCrossRefGoogle Scholar
  56. Winquist, R. J., Heaney, L. A., Wallace, A. A., Baskin, E. P., Stein, R. B., Garcia, M. L., and Kaczorowski, G. J. 1989. Glyburide blocks the relaxation responses to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J. Pharmacy!. Exp. Ther., 248: 149–156.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Margarita Garcia-Calvo
    • 1
  • Gregory J. Kaczorowski
    • 1
  • Maria L. Garcia
    • 1
  1. 1.Department of Membrane Biochemistry and BiophysicsMerck Research LaboratoriesRahwayUSA

Personalised recommendations