Advertisement

Factoring Polynomials over Finite Fields

  • Ian F. Blake
  • XuHong Gao
  • Ronald C. Mullin
  • Scott A. Vanstone
  • Tomik Yaghoobian
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 199)

Abstract

A polynomial of degree n over a finite field F q is an expression in an indeterminate x having the form
$$f(x) = \sum\limits_{i = 0}^n {{a_i}{x^1}} $$
where n is a non-negative integer, a i F q , 0 ≤ in and a n ≠ 0. To be more precise, f (x) is called a univariate polynomial to distinguish the more general situation where more indeterminates are involved. Most of this chapter will deal with univariate polynomials but the multivariate case will be briefly mentioned at the end.

Keywords

Finite Field Irreducible Polynomial Riemann Hypothesis Quadratic Residue Irreducible Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ben-Or, “Probabilistic algorithms in finite fields”, 22nd Annual Symposium on Foundations of Computer Science (1981), 394–398.Google Scholar
  2. [2]
    E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.zbMATHGoogle Scholar
  3. [3]
    E.R. Berlekamp, “Factoring polynomials over large finite fields”, Math. Comp., 24 (1970), 713–735.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E.R. Berlekamp, H. Rumsey and G. Solomon, “On the solution of algebraic equations over finite fields”, Information and Control, 10 (1967), 553–564.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    P. Camion, “A deterministic algorithm for factoring polynomials of F q [x]” , Annals of Discrete Math., 17 (1983), 149–157.Google Scholar
  6. [6]
    P. Camion, “Improving an algorithm for factoring polynomials over a finite field and constructing large irreducible polynomials”, IEEE Trans. Info. Th., 29 (1983), 378–385.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    D. Cantor and H. Zassenhaus, “A new algorithm for factoring polynomials over finite fields” , Math. Comp., 36 (1981), 587–592.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    B. Chor and R. Rivest, “A knapsack-type public key cryptosystem based on arithmetic in finite fields”, IEEE Trans. Info. Th., 34 (1988), 901–909.MathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Von Zur Gathen, “Irreducibility of multivariate polynomials”, J. Comput. System Sci., 31 (1985), 225–264.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J. Von Zur Gathen, “Factoring polynomials and primitive elements for special primes”, Theoretical Computer Science, 52 (1987), 77–89.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J. Von Zur Gathen and E. Kaltofen, “Factoring sparse multivariate polynomials”, J. Comput. System Sci., 31 (1985), 265–287.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J. Von Zur Gathen and E. Kaltofen, “Factorization of multivariate polynomials over finite fields” , Math. Comp., 45 (1985), 251–261.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. Huang, “Riemann hypothesis and finding roots over finite fields”, Proceedings of the 17th Annual Acm Symposium on Theory of Computing (1985), 121–130.Google Scholar
  14. [14]
    A. Lenstra, “Factoring multivariate polynomials over finite fields”, J. Comput. System Sci., 30 (1985), 235–248.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    A. Lenstra, H.W. Lenstra and L. Lovasz, “Factoring polynomials with rational coefficients”, Math. Ann., 261 (1982), 515–534.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    H.W. Lenstra, “On the Chor-Rivest knapsack cryptosystem”, J. of Cryptology, 3 (1991), 149–155.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    F.J. Macwilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-HollAnd, Amsterdam, 1977 .zbMATHGoogle Scholar
  18. [18]
    A. Menezes, P. Van Oorschot and S. Vanstone, “Some computational aspects of root finding in GF(g m ) n ”, in Symbolic and Algebraic Computation, Lecture Notes in Computer Science, 358 (1989), 259–270.CrossRefGoogle Scholar
  19. [19]
    M. Rabin, “Probabilistic algorithms in finite fields”, SIAM J. Comput., 9 (1980), 273–280.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    L. Rónyai, “Factoring polynomials over finite fields”, J. of Algorithms, 9 (1988), 391–400.zbMATHCrossRefGoogle Scholar
  21. [21]
    L. Rónyai, “Factoring polynomials modulo special primes”, Combinatorica, 9 (1989), 199–206.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    V. Shoup, “On the deterministic complexity of factoring polynomials over finite fields”, Information Processing Letters, 33 (1990), 261–267.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    V. Shoup, “Smoothness and factoring polynomials over finite fields”, Information Processing Letters, 38 (1991), 39–42.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    I.E. Shparlinski, Computational Problems in Finite Fields, Kluwer Academic Publishers, 1992.zbMATHCrossRefGoogle Scholar
  25. [25]
    P. Van Oorschot and S. Vanstone, “A geometric approach to root finding in GF(g m ) n ”, IEEE Trans. Info. Th., 35 (1989), 444–453.zbMATHCrossRefGoogle Scholar
  26. [26]
    D. Wan, “Factoring multivariate polynomials over large finite fields”, Math. Comp., 54 (1990), 755–770.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    H. Zassenhaus, “On Hensel factorization I”, J. Number Theory, 1 (1969), 291–311.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ian F. Blake
    • 1
  • XuHong Gao
    • 1
  • Ronald C. Mullin
    • 1
  • Scott A. Vanstone
    • 1
  • Tomik Yaghoobian
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations