Interface

  • K. K. Chawla

Abstract

The interface region has a great deal of importance in determining the ultimate properties of a given composite. The importance of the interface region in composites stems from two main reasons: (1) the interface occupies a very large area in composites, and (2) in general, the reinforcement and the matrix will form a system that is not in thermodynamic equilibrium. In this chapter, we describe the importance and general features of an interface in a composite and some tests to determine the mechanical characteristics of the interface. For details regarding the microstructure of specific CMC systems, as well as interface engineering to obtain an enhanced toughness, the reader should turn to Chapters 7 and 9.

Keywords

Fiber Volume Fraction Interfacial Shear Stress Ceramic Matrix Composite Interfacial Shear Strength Fiber Pullout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, L. and Arsenault, R.J. (1991) Met. Trans., 22A, 3013.CrossRefGoogle Scholar
  2. 2.
    Cook, J. and Gordon, J.E. (1964) Proc. R. Soc. London, A228, 508.Google Scholar
  3. 3.
    Maheshwari, A., Chawla, K.K. and Michalske, T.A. (1989) Mater. Sci. Eng., A107, 267.Google Scholar
  4. 4.
    Angelini, P., Mader, W. and Becher, P.F. (1987) Proc. Mater. Res. Soc., 78, 241.CrossRefGoogle Scholar
  5. 5.
    Broutman, L.J. (1969) in Interfaces in Composites, ASTM STP 452, 34.Google Scholar
  6. 6.
    Chamis, C.C. (1974) in Composite Materials, Vol. 6, Academic Press, New York, p. 32.Google Scholar
  7. 7.
    Penn, L.S. and Lee, S.M. (1989) J. Comp. Tech. Res., 11, 23.CrossRefGoogle Scholar
  8. 8.
    Kerans, R.J., Hays, R.S., Pagano, N.J. and Parthasarathy, T.A. (1989) Am. Ceram. Soc. Bull., 68, 429.Google Scholar
  9. 9.
    Marshall, D.B., Shaw, M.C. and Morris, W.L. (1992) Acta Met., 40, 443.CrossRefGoogle Scholar
  10. 10.
    Kerans, R.J. and Parthasarathy, T.A. (1991) J. Am. Ceram. Cos., 74, 1585.CrossRefGoogle Scholar
  11. 11.
    Lawrence, P. (1972) J. Mater. Sci., 7, 1.CrossRefGoogle Scholar
  12. 12.
    Deshmukh, U.V. and Coyle, T.W. (1988) Ceram. Eng. Sci. Proc., 9, 627.CrossRefGoogle Scholar
  13. 13.
    Griffin, C.W., Shetty, D.K., Limaye, S.Y. and Richardson, D.W. (1988) Ceram. Eng. Sci. Proc., 9, 671.CrossRefGoogle Scholar
  14. 14.
    Goettler, R.W. and Faber, K.T. (1989) Comp. Sci. Tech., 37, 129.CrossRefGoogle Scholar
  15. 15.
    Grande, D.H., Mandell, J.F. and Hong, K.C.C. (1988) J. Mater. Sci., 23, 311.CrossRefGoogle Scholar
  16. 16.
    Takaku, A. and Arridge, R.G.C. (1973) J. Phys. D: Appl. Phys., 6, 2038.CrossRefGoogle Scholar
  17. 17.
    Gao, Y.C., Mai, Y.W. and Cotterell, B. (1988) SAMPE, 39, 550.CrossRefGoogle Scholar
  18. 18.
    Shetty, D.K. (1988) J. Am. Ceram. Soc.,71, C-107.Google Scholar
  19. 19.
    Bright, J.D., Danchaivijit, S. and Shetty, D.K. (1991) J. Am. Ceram. Soc., 74, 115.CrossRefGoogle Scholar
  20. 20.
    Marshall, D.B. (1984) J. Am. Ceram. Soc., 67, C259.CrossRefGoogle Scholar
  21. 21.
    Mandell, J.F., Hong, K.C.C. and Grande, D.H. (1987) Ceram. Eng. Sci. Proc., 8, 937.CrossRefGoogle Scholar
  22. 22.
    Marshall, D.B. (1984) J. Am. Ceram. Soc., 67, c259.CrossRefGoogle Scholar
  23. 23.
    Marshall, D.B. and Oliver, W.C. (1987) J. Am. Ceram. Soc., 70, 542.CrossRefGoogle Scholar
  24. 24.
    Mandell, J.F., Grande, D.H., Tsiang, T.H. and McGarry, F.J. (1986) in Composite Materials: Testing Design, ASTM STP 327, ASTM, Philadelphia, p. 87.Google Scholar
  25. 25.
    Cranmer, D.C. (1991) in Ceramic and Metal Matrix Composites, Pergamon Press, New York, p. 157.Google Scholar
  26. 26.
    Doerner, M.F. and Nix, W.D. (1986) J. Mater. Res., 1, 601.CrossRefGoogle Scholar
  27. 27.
    Weihs, T.P. and Nix, W.D. (1991) J. Am. Ceram. Soc., 74, 524.CrossRefGoogle Scholar
  28. 28.
    Ferber, M.K., Wereszczak, A.A., Riester, L., Lowden, R.A. and Chawla, K.K. (1993) Ceram. Eng. Sci. Proc.,14.Google Scholar
  29. 29.
    Coyle, T.W., Guyot, M.H. and Jamet, J.F. (1986) Ceram. Eng. Sci. Proc., 7, 947.CrossRefGoogle Scholar
  30. 30.
    Marshall, D.B. and Oliver, W.C. (1987) J. Am. Ceram. Soc., 70, 542.CrossRefGoogle Scholar
  31. 31.
    Laughner, J.W., Shaw, N.J., Bhatt, R.T. and DiCarlo, J.A. (1988) Ceram. Eng. Sci. Proc., 7, 932.CrossRefGoogle Scholar
  32. 32.
    Bright, J.D., Shetty, D.K., Griffin, C.W. and Limaye, S.Y. (1989) J. Am. Ceram. Soc., 72, 1891.CrossRefGoogle Scholar
  33. 33.
    Wang, S.-W., Khan, A., Sands, R. and Vasudevan, A.K. (1992) J. Mater. Sci. Letters, 11, 7739.Google Scholar
  34. 34.
    Shafry, N., Brandon, D.G. and Ferasaki, M. (1989) Euro-Ceramics, 3, 3. 453.Google Scholar
  35. 35.
    Kagawa, Y. and Honda, K. (1991) Ceram. Eng. Sci. Proc., 12, 1127.CrossRefGoogle Scholar
  36. 36.
    Aveston, J., Cooper, G.A. and Kelly, A. (1971) in The Properties of Fiber Composites, IPC Science and Technology Press, Surrey, England, p. 15.Google Scholar
  37. 37.
    Aveston, J. and Kelly, A. (1973) J. Mater. Sci., 8, 129.CrossRefGoogle Scholar
  38. 38.
    Parthasarathy, T.A., Pagano, N.J. and Kerans, R.J. (1989) Ceram. Eng. Sci. Proc., 10, 872.CrossRefGoogle Scholar
  39. 39.
    Gupta, V., Argon, A.S., Cornie, J.A. and Parks, D.M. (1990) Mater. Sci. Eng.,Al26, 105.Google Scholar
  40. 40.
    Gupta, V., Argon, A.S., Cornie, J.A. and Parks, D.M. (1992) J. Mech. Phys. Solids, 4, 141.CrossRefGoogle Scholar

Copyright information

© K. K. Chawla 1993

Authors and Affiliations

  • K. K. Chawla
    • 1
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations