Skip to main content

Macromechanics

  • Chapter
  • 289 Accesses

Abstract

Laminated fibrous composites are made by bonding together two or more laminae. The individual unidirectional laminae or plies are oriented in such a manner that the resulting structural component has the desired mechanical and/or physical characteristics in different directions. In this way, the inherent anisotropy of fibrous composites can be exploited to design a composite material having a desired set of characteristics such as elastic constants and thermal expansion coefficients. This has been employed quite extensively in polymer matrix composites to design PMCs having highly tailored elastic, thermoelastic and strength characteristics, not so much in metal matrix and ceramic matrix composites. Techniques such as tape-casting and hot pressing of laminae can be used to produce laminated CMCs [1–6]. In this chapter, we provide the reader with the very basic mathematical tools to analyze such laminated composites. For greater details on the mechanics of laminated composites, the references listed under Suggested reading should be consulted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prewo, K.M. and Brennan, J.J. (1982) J. Mater. Sci., 17, 1202.

    Google Scholar 

  2. Bhatt, R.T. (1991) in Proc. Int. Conf on Composite Mater./8 (ICCM/8), Hawaii, 1991,p. 23-A-1.

    Google Scholar 

  3. Bhatt, R.T. and Phillips, R.E. (1990) J. Composites Tech. & Res., 12, 13.

    Article  CAS  Google Scholar 

  4. Amateau, M.F. and Messing, G.L. (1990) Center for Adv. Mater. Newsletter, 4, 75.

    Google Scholar 

  5. Velamakanni, B.V. and Lange, F.F. (1991) J. Am. Ceram. Soc., 74, 166.

    Article  CAS  Google Scholar 

  6. Ham-Su, R. and Wilkinson, D.S. (1992) paper presented at the Cocoa Beach meeting of the Am. Ceram. Soc., Jan. 1902.

    Google Scholar 

  7. Pryce, A.W. and Smith, P.A. (1991) in Proc. Int. Conf. On Composite Mater (ICCM/8),Hawaii, 1991, p. 24-A-1.

    Google Scholar 

  8. Sbaizero, O., Charalambides, P.G. and Evans, A.G. (1990) J. Am. Ceram. Soc., 73, 1936.

    Article  CAS  Google Scholar 

  9. Prewo, K.M. (1986) J. Mater. Sci., 21, 3590.

    Article  CAS  Google Scholar 

  10. Pagano, N.J. and Pipes, R.B. (1971) J. Composite Mater., 5, 50.

    Article  Google Scholar 

  11. Pipes, R.B. and Pagano, N.J. (1974) J. Appl. Mech., 41, 668.

    Article  Google Scholar 

  12. Pipes, R.B., Kaminski, B.E. and Pagano, N.J. (1973) in Analysis of the Test Methods for High Modulus Fibers and Composites, ASTM STP 521, ASTM, Philadelphia, p. 218.

    Google Scholar 

  13. Oplinger, D.W., Parker, B.S. and Chiang, F.P. (1974) Expt. Mech., 14, 347.

    Article  Google Scholar 

  14. Herakovich, C.T. (1976) Int. J. Mech. Sci., 18, 129.

    Article  Google Scholar 

  15. Garg, A.C. (1988) Eng. Fract. Mech., 29, 557.

    Article  Google Scholar 

  16. Virkar, A., Huang, J.L. and Cutler, R.A. (1987) J. Am. Ceram. Soc., 70, 164.

    Article  CAS  Google Scholar 

  17. Virkar, A., Jue, J., Hansen, J. and Cutler, R.A. (1988) J. Am. Ceram. Soc., 71, C148.

    Google Scholar 

  18. Amateau, M.F. (1990) in 37th Sagamore Army Materials Research Conference on Structural Ceramics, Oct. 1990, Plymouth, MA (ed D.T. Viechnicki), p. 127.

    Google Scholar 

  19. Charalambides, P.G. (1991) J. Am. Ceram. Soc., 74, 3066.

    Article  CAS  Google Scholar 

  20. Clegg, W.J., Kendall, K., Alford, N.M. et al? (1990) Nature, 347, 455.

    Article  CAS  Google Scholar 

  21. Phillips, A.J., Clegg, W.J. and Clyne, T.W. (1992) in Proc. Fatigue and Fracture of Inorganic Composites, Cambridge, March 31—April 2, 1992.

    Google Scholar 

  22. Clegg, W.J. and Seddon, L.R. (1992) in 2nd European Conference on Advanced Materials, Euromat ‘81, Cambridge,Institute of Materials, p. 226.

    Google Scholar 

  23. Phillips, A.J., Clegg, W.J. and Clyne, T.W. (1992) Acta Met. et Mater., 41, 805.

    Article  Google Scholar 

  24. Phillips, A.J., Clegg, W.J. and Clyne, T.W. (1992) Acta Met. et Mater., 41, 819.

    Article  Google Scholar 

  25. Harmer, M.P., Chan, H.M. and Miller, G.A. (1992) J. Am. Ceram. Soc., 75, 1715.

    Article  CAS  Google Scholar 

Suggested Reading

  1. Calcote, L.R. (1969) Analysis of Laminated Composite Structures, Van Nostrand Reinhold, New York.

    Google Scholar 

  2. Christensen, R.M. (1979) Mechanics of Composite Materials, John Wiley, New York.

    Google Scholar 

  3. Jones, R.M. (1975) Mechanics of Composite Materials, Scripta Book Co., Washington, DC.

    Google Scholar 

  4. Tsai, S.W. and Hahn, H.T. (1980) Introduction to Composite Materials, Technomic, Westport, CT.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 K. K. Chawla

About this chapter

Cite this chapter

Chawla, K.K. (1993). Macromechanics. In: Ceramic Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2216-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2216-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2218-5

  • Online ISBN: 978-1-4757-2216-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics