• K. K. Chawla


Laminated fibrous composites are made by bonding together two or more laminae. The individual unidirectional laminae or plies are oriented in such a manner that the resulting structural component has the desired mechanical and/or physical characteristics in different directions. In this way, the inherent anisotropy of fibrous composites can be exploited to design a composite material having a desired set of characteristics such as elastic constants and thermal expansion coefficients. This has been employed quite extensively in polymer matrix composites to design PMCs having highly tailored elastic, thermoelastic and strength characteristics, not so much in metal matrix and ceramic matrix composites. Techniques such as tape-casting and hot pressing of laminae can be used to produce laminated CMCs [1–6]. In this chapter, we provide the reader with the very basic mathematical tools to analyze such laminated composites. For greater details on the mechanics of laminated composites, the references listed under Suggested reading should be consulted.


Laminate Composite Free Edge Laminate Plate Ceramic Matrix Composite Laminate Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prewo, K.M. and Brennan, J.J. (1982) J. Mater. Sci., 17, 1202.Google Scholar
  2. 2.
    Bhatt, R.T. (1991) in Proc. Int. Conf on Composite Mater./8 (ICCM/8), Hawaii, 1991,p. 23-A-1.Google Scholar
  3. 3.
    Bhatt, R.T. and Phillips, R.E. (1990) J. Composites Tech. & Res., 12, 13.CrossRefGoogle Scholar
  4. 4.
    Amateau, M.F. and Messing, G.L. (1990) Center for Adv. Mater. Newsletter, 4, 75.Google Scholar
  5. 5.
    Velamakanni, B.V. and Lange, F.F. (1991) J. Am. Ceram. Soc., 74, 166.CrossRefGoogle Scholar
  6. 6.
    Ham-Su, R. and Wilkinson, D.S. (1992) paper presented at the Cocoa Beach meeting of the Am. Ceram. Soc., Jan. 1902.Google Scholar
  7. 7.
    Pryce, A.W. and Smith, P.A. (1991) in Proc. Int. Conf. On Composite Mater (ICCM/8),Hawaii, 1991, p. 24-A-1.Google Scholar
  8. 8.
    Sbaizero, O., Charalambides, P.G. and Evans, A.G. (1990) J. Am. Ceram. Soc., 73, 1936.CrossRefGoogle Scholar
  9. 9.
    Prewo, K.M. (1986) J. Mater. Sci., 21, 3590.CrossRefGoogle Scholar
  10. 10.
    Pagano, N.J. and Pipes, R.B. (1971) J. Composite Mater., 5, 50.CrossRefGoogle Scholar
  11. 11.
    Pipes, R.B. and Pagano, N.J. (1974) J. Appl. Mech., 41, 668.CrossRefGoogle Scholar
  12. 12.
    Pipes, R.B., Kaminski, B.E. and Pagano, N.J. (1973) in Analysis of the Test Methods for High Modulus Fibers and Composites, ASTM STP 521, ASTM, Philadelphia, p. 218.Google Scholar
  13. 13.
    Oplinger, D.W., Parker, B.S. and Chiang, F.P. (1974) Expt. Mech., 14, 347.CrossRefGoogle Scholar
  14. 14.
    Herakovich, C.T. (1976) Int. J. Mech. Sci., 18, 129.CrossRefGoogle Scholar
  15. 15.
    Garg, A.C. (1988) Eng. Fract. Mech., 29, 557.CrossRefGoogle Scholar
  16. 16.
    Virkar, A., Huang, J.L. and Cutler, R.A. (1987) J. Am. Ceram. Soc., 70, 164.CrossRefGoogle Scholar
  17. Virkar, A., Jue, J., Hansen, J. and Cutler, R.A. (1988) J. Am. Ceram. Soc., 71, C148.Google Scholar
  18. 18.
    Amateau, M.F. (1990) in 37th Sagamore Army Materials Research Conference on Structural Ceramics, Oct. 1990, Plymouth, MA (ed D.T. Viechnicki), p. 127.Google Scholar
  19. 19.
    Charalambides, P.G. (1991) J. Am. Ceram. Soc., 74, 3066.CrossRefGoogle Scholar
  20. 20.
    Clegg, W.J., Kendall, K., Alford, N.M. et al? (1990) Nature, 347, 455.CrossRefGoogle Scholar
  21. 21.
    Phillips, A.J., Clegg, W.J. and Clyne, T.W. (1992) in Proc. Fatigue and Fracture of Inorganic Composites, Cambridge, March 31—April 2, 1992.Google Scholar
  22. 22.
    Clegg, W.J. and Seddon, L.R. (1992) in 2nd European Conference on Advanced Materials, Euromat ‘81, Cambridge,Institute of Materials, p. 226.Google Scholar
  23. 23.
    Phillips, A.J., Clegg, W.J. and Clyne, T.W. (1992) Acta Met. et Mater., 41, 805.CrossRefGoogle Scholar
  24. 24.
    Phillips, A.J., Clegg, W.J. and Clyne, T.W. (1992) Acta Met. et Mater., 41, 819.CrossRefGoogle Scholar
  25. 25.
    Harmer, M.P., Chan, H.M. and Miller, G.A. (1992) J. Am. Ceram. Soc., 75, 1715.CrossRefGoogle Scholar

Suggested Reading

  1. 1.
    Calcote, L.R. (1969) Analysis of Laminated Composite Structures, Van Nostrand Reinhold, New York.Google Scholar
  2. 2.
    Christensen, R.M. (1979) Mechanics of Composite Materials, John Wiley, New York.Google Scholar
  3. 3.
    Jones, R.M. (1975) Mechanics of Composite Materials, Scripta Book Co., Washington, DC.Google Scholar
  4. 4.
    Tsai, S.W. and Hahn, H.T. (1980) Introduction to Composite Materials, Technomic, Westport, CT.Google Scholar

Copyright information

© K. K. Chawla 1993

Authors and Affiliations

  • K. K. Chawla
    • 1
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations