The Prokaryotes pp 4082-4088 | Cite as

The Genus Gallionella

  • Hans H. Hanert

Abstract

The bacteria of the genus Gallionella belong to the so-called “iron bacteria,” which achieved their theoretical importance after Winogradsky (1888, 1922) postulated his conception of chemolithotrophy for these organisms. These bacteria also have practical significance since they clog drains, water pipes, and wells with deposits of iron oxide compounds. In connection with freshwater supply problems and the rapid growth of agriculture, hydrotechnicians and land-reclamation (underground drainage) specialists have become increasingly interested in bacterial iron oxidation as a common source of interference with wells and drainage systems (Ford, 1978; Hanert, 1974b; Khrutskaya, 1970; Martin et al., 1978). Iron bacteria are also interesting for ecological and biogeochemical reasons. Like algae, iron bacteria may develop in their natural habitats in such masses that the idea of their participation in the sedimentary formation of iron ore is plausible, as was recognized in the first description of the iron bacterium Gallionella ferruginea (Ehrenberg, 1836).

Keywords

Mineral Medium Iron Phosphate Sodium Sulfide Iron Bacterium Underground Drainage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baas-Becking, L. G. M., Wood, F. E. J., and Kaplan, J. R. 1956. Biological processes in the estuarine environment. VIII. Iron bacteria as gradient organisms. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 59: 398–407.Google Scholar
  2. Balashova, V. V. 1967a. Enrichment culture of Gallionella filamenta n. sp. [In Russian, with English summary.] Mikrobiologiya 36: 646–650.Google Scholar
  3. Balashova, V. V. 1967b. Structure of “stem” fibers of laboratory Gallionella filamenta culture [In Russian, with English summary.] Mikrobiologiya 36: 1050–1053.Google Scholar
  4. Balashova, V. V. 1968. Taxonomy of the genus Gallionella. Microbiology [English translation of Mikrobiologiya] 37: 590–598.Google Scholar
  5. Balashova, V. V. 1969. The relationship of Gallionella to Mycoplasma. [In Russian.] Doklady Akademii Nauk SSSR 184: 1429–1432.Google Scholar
  6. Balashova, V. V. 1974. Mikoplazmy i zhelezobakterii, p. 165. Akademiia Nauk SSSR, Insitut Mikrobiologii. Moscow: Nauka.Google Scholar
  7. Berger, H., and Bringmann, G. 1953. Bisherige Anschauung über die Morphologie von Gallionella und neuere elektronenmikroskopische Befunde. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten, und Hygiene, Abt. 2 107: 305–318.Google Scholar
  8. Cholodny, N. 1924. Zur Morphologie der Eisenbakterien Gallionella und Spirophyllum. Berichte der Deutschen Botanischen Gesellschaft 42: 35–44.Google Scholar
  9. Ehrenberg, C. G. 1836. Vorläufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre große Verbreitung. Poggendorf’s Annalen der Physik und Chemie 38: 213–227.CrossRefGoogle Scholar
  10. Engel, H., and Hanert, H. H. 1967. Isolierung von Gallionella ferruginea Ehrenberg. Naturwissenschaften 54: 147–148.PubMedCrossRefGoogle Scholar
  11. Ford, H. W. 1978. Fundamental characteristics of slime and ochre clogging in drainage and irrigation systems. Paper No. 78–2538. Chicago: Winter Meeting American Society of Agricultural Engineers.Google Scholar
  12. Garrels, R. M., and Christ, C. L. 1965. Solutions, minerals, and equilibria. New York: Harper Row, Tokyo: John Weatherhill.Google Scholar
  13. Gebauer, A. 1978. Biochemische und physiologische Untersuchungen zur Autotrophie des Eisenbakteriums Gallionella ferruginea Ehrenberg, p. 1–62. Botanisches Institut der Technischen Universität Braunschweig (Federal Republic of Germany).Google Scholar
  14. Hanert, H. H. 1968. Untersuchungen zur Isolierung, Stoffwechselphysiologie, und Morphologie von Gallionella ferruginea Ehrenberg. Archiv für Mikrobiologie 60: 348–376.CrossRefGoogle Scholar
  15. Hanert, H. H. 1970. Struktur und Wachstum von Gallionella ferruginea Ehrenberg am natürlichen Standort in den ersten 6 Std der Entwicklung. Archiv für Mikrobiologie 75: 10–24.CrossRefGoogle Scholar
  16. Hanert, H. H. 1973a. Quantifizierung der Massenentwicklung des Eisenbakteriums Gallionella ferruginea unter natürlichen Bedingungen. Archiv für Mikrobiologie 88: 225–243.CrossRefGoogle Scholar
  17. Hanert, H. H. 1973b. Rezente marine Eisenerze auf Santorin, Griechenland. II. Bakterogenese von Eisenhdroxidsedimenten. Geologische Rundschau 62: 786–812.CrossRefGoogle Scholar
  18. Hanert, H. H. 1974a. Untersuchungen zur individuellen Entwicklungskinetik von Gallionella ferruginea in statischer Mikrokultur. Archiv für Mikrobiologie 96: 59–74.PubMedCrossRefGoogle Scholar
  19. Hanert, H. H. 1974b. In situ-Untersuchungen zur Analyse und Intensität der Eisen(III)-Fällung in Dränagen. Zeitschrift für Kulturtechnik und Flurbereinigung 15: 80–90.Google Scholar
  20. Hanert, H. H. 1975. Entwicklung, Physiologie und Ökologie des Eisenbacteriums Gallionella ferruginea Ehrenberg-Beiträge zu einer Monographie, p. 1–104. Habilitationsschrift, Naturwissenschaftliche Fakultät der Technischen Universität Braunschweig.Google Scholar
  21. Hanert, H. H. 1981a. Bakterielle und chemische Eisen(II)Oxidation auf Palaea Kameni-Stereoscan, Elektronenstrahl-Mikroanalyse (FeKa) und Photometrie von in situ-Experimenten. In: Puchelt, H., Schroll, E. (ed.), Genesis of marine iron sediments from Santorini, Greece. Berlin: Springer-Verlag.Google Scholar
  22. Hanert, H. H. 1981b. The genus Gallionella, p. 509–515. In: Starr, M. P., Stolp, H., Trüper, H. G., Balows, A., and Schlegel, H. G (ed.), The prokaryotes. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  23. Hem, J. D. 1972. Chemical factors that influence the availability of iron and manganese in aqueous systems. Geological Society of America Bulletin 83: 443–450.CrossRefGoogle Scholar
  24. Hirsch, P., and Pankratz, J. T. 1970. Study of bacterial population in natural environments by the use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10: 599–605.CrossRefGoogle Scholar
  25. Khrutskaya, Z. Ta. 1970. Clogging of drains with iron compounds. Moscow: M. “Kolos.”Google Scholar
  26. Kucera. S., Wolfe, R. S. 1957. A selective enrichment method for Gallionella ferruginea. Journal of Bacteriology 74: 344–349.Google Scholar
  27. Lieske, R. 1911. Beiträge zur Kenntnis der Physiologie von Spirophyllum, ferrugineum Ellis, einem typischen Eisenbakterium. Jahrbücher für Wissenschaftliche Botanik 49.91–127.Google Scholar
  28. Martin, J. P., Dumke, D. S., Meek, B., Ervin, J. V., and Grass, L. 1978. Microbiological observations and chemical analyses of tile line drainage waters and deposits in Imperial Valley, California. p. 423–426. In: Loutit, M. W., Miles, J. A. R. (ed.), Microbial ecology. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  29. Naumann, E. 1919. Eine einfache Methode zum Nachweis bzw. Einsammeln der Eisenbakterien. Berichte der Deutschen Botanischen Gesellschaft 37: 76–78.Google Scholar
  30. Nunley, J. W., and Krieg, N. R. 1968. Isolation of Gallionella ferruginea by use of formalin Canadian Journal of Microbiology 14: 385–389.Google Scholar
  31. Poindexter, J. S., and Lewis, R. E 1966. Recommendations for revision of the taxonomic treatment of stalked bacteria. International Journal of Systematic Bacteriology 16: 377–382.CrossRefGoogle Scholar
  32. Pringsheim, E. G. 1949. Iron bacteria. Biological Reviews of the Cambridge Philosophical Society 24: 200–245.CrossRefGoogle Scholar
  33. Sharpley. J. M. 1961. The occurrence of Gallionella in salt water. Applied Microbiology 9: 380–382.PubMedPubMedCentralGoogle Scholar
  34. Suessenguth, K. 1927. Zur Kenntnis der Eisenbakterien der Gallionella-Gruppe. Zentralblatt für Bakteriologie, Parasitenkunde, und Infektionskrankheiten, Abt. 2 69: 327–339.Google Scholar
  35. van Iterson, W. 1958. Gallionella ferruginea Ehrenberg in a different light. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Series 2 52: 1–185.Google Scholar
  36. Volkova. O. J. 1939. The ferrobacteria of the mineral waters of Caucasian mineral waters district and their role in the formation of ferrous sediments. [In Russian.] Mikrobiologiya 8: 863–887.Google Scholar
  37. Vouk, V. 1960. Ein neues Eisenbakterium aus der Gattung Gallionella in den Thermalquellen von Bad Gastein. Archiv für Mikrobiologie 36: 95–97.CrossRefGoogle Scholar
  38. Walsh, E. M., and Mitchell, R. 1969. Acid production by Gallionella ferruginea from coal-associated iron sulfides. Bacteriological Proceedings 69: 25.Google Scholar
  39. Walsh, F. M., and Mitchell, R. 1970. Filterable iron autotroph. Bacteriological Proceedings 70: 31–32.Google Scholar
  40. Winogradsky, S. J. 1888. Über Eisenbakterien. Botanische Zeitung 46: 262–270.Google Scholar
  41. Winogradsky, S. 1922. Eisenbakterien als Anorgoxydanten. Zentralblatt für Bakteriologie, Parasitenkunde, und Infektionskrankheiten, Abt. 2 57: 1–21.Google Scholar
  42. Wolfe, R. S. 1958. Cultivation, morphology, and classification of the iron bacteria. Journal of the American Water Works Association 50: 1241–1249.Google Scholar
  43. Zavarzin, G. A. 1961. Budding bacteria. [In Russian.] Mikrobiologiya 30: 952–975.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Hans H. Hanert

There are no affiliations available

Personalised recommendations