The Prokaryotes pp 4030-4049 | Cite as

Fastidious Bacteria of Plant Vascular Tissues and Their Invertebrate Vectors

  • Michael J. Davis

Abstract

Prokaryotes have been recognized as plant pathogens since the pioneering research of Burrill (1881). However, the concept that these pathogens include noncultivable or extremely fastidious prokaryotes developed recently, following the discovery by Doi et al. (1967) and Ishie et al. (1967) that mycoplasma-like organisms are consistently present in the phloem of plants afflicted with various diseases of the yellows type (See Chapter 229). This discovery inspired renewed investigations into the etiology of numerous infectious plant diseases, many of which had been assumed to be of viral etiology. Subsequently, not only were additional mycoplasma-like organisms found associated with plant disease, but several new groups of fastidious prokaryotes were discovered. These organisms include both spiroplasmas (See Chapter 89) and bacteria that are confined to the vascular system of their plant hosts.

Keywords

Insect Vector Tracheary Element Disease Bacterium Fastidious Bacterium Mycoplasmalike Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, P. C., B. V. Brodbeck, and F. Mizell, III. 1989. Metabolism of amino acids, organic acids and sugars extracted from the xylem fluid of four host plants by adult Homalodisca coagulata. Entomol. Exp. Appl. 50: 149–159.Google Scholar
  2. Auger, J., S. M. Mircetich, and G. Nyland. 1974. Interrelation between bacteria causing Pierce’s disease of grapevine and almond leaf scorch. Proc. American Phytopathol. Soc. 1: 90.Google Scholar
  3. Behncken, G. M., and D. H. Gowanlock. 1976. Association of a bacterium-like organism with rugose leaf curl disease of clover. Austral. J. Biol. Sci. 29: 137–146.Google Scholar
  4. Benhamou, N. 1978. Recherches sur les rickettsoides phytopathogenes et leurs association dans le cadre de maladies complexes. Thesis. Academie de Montpellier, Universite des Sciences et Techniques du Languedoc, France.Google Scholar
  5. Benhamou, N., J. Giannotti, and C. Louis. 1978. Transmission de germes de type rickettsoide par la plante parasite: Cuscuta subinclusa Dun. and Hilg. Acta Phytopathol. Acad. Sci. Hungaricae 13: 107–119.Google Scholar
  6. Benhamou, N., C. Louis, and J. Giannotti. 1979. Etude par cytochimie ultrastructurale des rickettsoides et des cellules phloemiques de trefles disperissants. Ann. Phytopathol. 11: 1–16.Google Scholar
  7. Bennett, C. P. A., P. Jones, and P. Hunt. 1987. Isolation, culture and ultrastructure of a xylem-limited bacterium associated with Sumatra disease of cloves. Plant Patholol. 36: 45–52.Google Scholar
  8. Black, L. M. 1944. Some viruses transmitted by agallian leafhoppers. Proc. American Phytopathol. Soc. 88: 132–144.Google Scholar
  9. Black, L. M. 1948. Transmission of clover club-leaf virus through the egg of its insect vector. Phytopathol. 32: 2.Google Scholar
  10. Black, L. M. 1950. A pant virus that multiplies in its insect vector. Nature 166: 852–853.PubMedGoogle Scholar
  11. Bollard, E. G. 1960. Transport in the xylem. Ann. Rev. Plant Physiol. 11: 141–166.Google Scholar
  12. Brlansky, R. H., L. W. Timmer, W. J. French, and R. E. McCoy. 1983. Colonization of sharpshooter vectors, Oncometopia nigricans and Homalodisca coagulata by xylem-limited bacteria. Phytopathol. 73: 530–535.Google Scholar
  13. Brooker, B. E., and R. Fuller. 1975. Adhesion of lactobacilli to the chicken crop epithelium. J. Ultrstruc. Res. 52: 21–31.Google Scholar
  14. Burill, T. J. 1881. Bacteria as a cause of disease in plants. American Naturalist 15: 527–531.Google Scholar
  15. Capoor, S. P., D. G. Rao, and S. M. Viswanath. 1974. Greening disease of citrus in the Deccan Trap Country and its relationship with the vector Diaphorina citri Kuwayama, p. 43–49. In: L. G. Weathers, and M. Cohen (ed.), Proc. Sixth Conf. Int. Organ. Citrus Virologists. University of California Press, Berkeley.Google Scholar
  16. Catling, H. D., and P. R. Atkinson. 1974. Spread of greening by Trioza erytreae (Del Guercio) in Swaziland, p. 3339. In: L. G. Weathers, and M. Cohen (ed.), Proc. Sixth Conf. Int. Organ. Citrus Virologists. University of California Press, Berkeley.Google Scholar
  17. Chang, C. J. 1988. Metabolism of Xylella fastidiosa associated with Pierce’s disease of grapevines. Phytopathol. 78: 1602.Google Scholar
  18. Chang, C. J., and N. W. Schaad. 1982. Electrophoretic protein profiles of total cell envelopes of xylem-limited plant pathogenic rickettsia-like bacteria (RLB). Phytopathol. 72: 935–936.Google Scholar
  19. Chang, C. J., and J. T. Walker. 1988. Bacterial leaf scorch of northern red oak: Isolation, cultivation, and pathogenicity of xylem-limited bacterium. Plant Disease 72: 730–733.Google Scholar
  20. Chen, T. A., J. M. Wells, and C. H. Liao. 1982. Cultivation in vitro: Spiroplasmas, plant mycoplasmas, and other fastidious, walled prokaryotes. p. 417–446. In: M. S. Mount, and G. H. Lacy (ed.), Phytopathogenic Prokaryotes, vol. 2. Academic Press, New York.Google Scholar
  21. Costerton, J. W., G. G. Geesey, and K. -J. Cheng. 1978. How bacteria stick. Scientific American 238: 86–95.PubMedGoogle Scholar
  22. Costerton, J. W., J. M. Ingram, and K. -J. Cheng. 1974. Structure and function of the cell envelope of Gram-negative bacteria. Bacteriolog. Rev. 38: 87–110.Google Scholar
  23. Davis, M. J. 1978. Pierce’s disease and almond leaf scorch disease: Isolation and pathogenicity of the causal bacterium. Ph. D. thesis. University of California, Berkeley.Google Scholar
  24. Davis, M. J. 1983. Nutrition of xylem-inhabiting bacteria, Phytopath. 73: 776.Google Scholar
  25. Davis, M. J. 1989. Host colonization and pathogenesis in plant diseases caused by fastidious xylem-inhabiting bacteria, p. 33–50. In: E. C. Tjamos and C. H. Beckman (ed.), Vascular wilt diseases of plants. Springer-Verlag, Berlin.Google Scholar
  26. Davis, M. J., and B. J. Augustin. 1984. Occurrence in Florida of the bacterium that causes Bermudagrass stunting disease. Plant Disease 68: 1095–1097.Google Scholar
  27. Davis, M. J., and J. L. Dean. 1984. Comparison of diagnostic techniques for determining incidence of ratoon stunting disease of sugarcane in Florida. Plant Disease 68: 896–899.Google Scholar
  28. Davis, M. J., W. J. French, and N. W. Schaad. 1981. Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. Current Microbiology 5: 311–316.Google Scholar
  29. Davis, M. J., A. G. Gillaspie, Jr., R. W. Harris, and R. H. Lawson. 1980a. Ratoon stunting disease of sugarcane: Isolation of the causal bacterium. Science 210: 1365–1367.PubMedGoogle Scholar
  30. Davis, M. J., A. G. Gillaspie, Jr., A. K. Vidaver, and R. W. Harris. 1984. Clavibacter: A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov. and subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and Bermudagrass stunting disease. Int. J. Syst. Bact. 34: 107–117.Google Scholar
  31. Davis, M. J., R. H. Lawson, A. G. Gillaspie, Jr., and R. W. Harris. 1983a. Properties and relationships of two xylem-limited bacteria and a mycoplasmalike organism infecting Bermudagrass. Phytopathol. 73: 341–346.Google Scholar
  32. Davis, M. J., A. H. Purcell, and S. V. Thomson. 1978. Pierce’s disease of grapevines: Isolation of the causal bacterium. Science 199: 75–77.PubMedGoogle Scholar
  33. Davis, M. J., A. H. Purcell, and S. V. Thomson. 1980b. Etiological role of the xylem-limited bacterium causing Pierce’s disease in almond leaf scorch. Phytopathol. 70: 408–411.Google Scholar
  34. Davis, M. J., A. H. Purcell, and S. V. Thomson. 1980c. Isolation media for the Pierce’s disease bacterium. Phytopathol. 70: 425–429.Google Scholar
  35. Davis, M. J., B. C. Raju, R. H. Brlansky, R. E. Lee, L. W. Timmer, R. C. Norris, and R. E. McCoy. 1983b. Periwinkle wilt bacterium: Axenic culture, pathogenicity, and relationships to other Gram-negative, xylem-inhabiting bacteria. Phytopathology 73: 1510–1515.Google Scholar
  36. Davis, M. J., D. L. Stassi, W. J. French, and S. V. Thomson. 1979. Antigenic relationship of several rickettsia-like bacteria involved in plant disease, p. 311–315. In: Proceedings of the IVth International Conference on Plant Pathogenic Bacteria. Station de Pathologie Vegetale et Phytobacteriologie. Institut National de la Recherche Agronomique, Angers, France.Google Scholar
  37. Doi, Y., M. Teranaka, K. Yora, and H. Asuyama 1967. Mycoplasma-or PTL group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, and paulownia witches’ broom. [In Japanese with English abstract] Ann. Phytpathol. Soc. Jap. 33: 259–266.Google Scholar
  38. Eden-Green, S. J., R. Balfas, and Jamalius. 1986. Transmission of xylem-limited bacteria causing Sumatra disease of cloves in Indonesia by tube-building cercopids, Hindola spp. (Homoptera: Machaerotidae), p. 101–107. In: M. R. Wilson and L. R. Nault (ed.), Proc. 2nd Int. Workshop on Leafhoppers and Planthoppers of Economic Importance. Comm. Inst. Entomol., London.Google Scholar
  39. Esau, K. 1965. Plant Anatomy. John Wiley and Sons, New York.Google Scholar
  40. Feldman, A. W., R. W. Hanks, G. E. Good, and G. E. Brown. 1977. Occurrence of a bacterium in YTD-affected as well as in some apparently healthy citrus trees. Plant Dis. Reptr. 61: 546–550.Google Scholar
  41. Fife, J. M., C. Price, and D. C. Fife. 1962. Some properties of phloem exudate collected from root of sugar beet. Plant Physiol. 37: 791–792.PubMedPubMedCentralGoogle Scholar
  42. Frazier, N. W. 1966. Xylem viruses and their insect vectors, p. 91–99. In: Proc. Int. Conf. Virus and Vectors on Perennial Hosts, with Special Reference to Vitis. University of California, Davis.Google Scholar
  43. Freitag, J. H. 1951. Host range of the Pierce’s disease virus of grapes as determined by insect transmission. Phytopathology 41: 920–934.Google Scholar
  44. French, W. J., Christie, G. G., and Stassi, D. L. 1977. Recovery of rickettsia-like bacteria by vacuum infiltration of peach tissues affected with phony disease. Phytopathol. 67: 945–948.Google Scholar
  45. French, W. J., and E. W. Kitajima. 1978. Occurrence of plum leaf scald in Brazil and Paraguay. Plant Dis. Reptr. 62: 1035–1038.Google Scholar
  46. French, W. J., Stassi, D. L., and Schaad, N. W. 1978. The use of immunofluorescence for the identification of phony peach bacterium. Phytopathol. 68: 1106–1108.Google Scholar
  47. Fry, S. M., R. D. Milholland, and P. -Y. Huang. 1988. Isolation and growth of the Pierce’s disease bacterium on simple bacteriological media. Phytopathol. 78: 1602.Google Scholar
  48. Garnett, H. M. 1985. Isolation of the greening organism. Citrus and Subtropical Fruit J. 611: 4–6.Google Scholar
  49. Gamier, M., and J. M. Bove. 1977. Structure trimellaire des deux membranes qui entiment les organisms procaryotes associés à la maladie du `greening’ des agrumes. Fruits 32: 749–752.Google Scholar
  50. Gamier, M., N. Danel, and J. M. Bove. 1984a. Etiology of citrus greening disease. Ann. Microbiol. (Paris) 135A: 169–179.Google Scholar
  51. Gamier, M., N. Danel, and J. M. Bove. 1984b. The greening organism is a Gram-negative bacterium, p. 115–124. In: S. M. Garnsey (ed.), Proc. 9th Conf. Int. Organ. Citrus Virologist. International Organization of Citrus Virologists, Riveside.Google Scholar
  52. Gamier, M., G. Martin-Gros, and J. M. Bove. 1987. Monoclonal antibodies against the bacteria-like organism associated with citrus greening disease. Ann. Inst. Pasteur, Paris 138: 639–650.Google Scholar
  53. Giannotti, J., C. Louis, E Leclant, G. Marchoux, and C. Vago. 1974a. Infection à mycoplasmes et à micro-organismes d’allure rickettsienne chez une plante atteinte de proliferation et chez le psylle vecteur de la maladie. C. R. Acad. Sci. Ser. D 278: 469–471.Google Scholar
  54. Giannotti, J., G. Marchoux, G. Devauchelle, and C. Louis. 1974b. Double infection cellulaire à mycoplasmes et a germes rickettsoides chez la plante parasite Cuscuta subinclusa L. C. R. Acad. Sci. Ser. D 278: 751–753.Google Scholar
  55. Goheen, A. C., Nyland, G., and Lowe, S. K. 1973. Association of a rickettsia-like organism with Pierce’s disease of grapevines and alfalfa dwarf and heat therapy of the disease in grapevines. Phytopathology 63: 341–345.Google Scholar
  56. Green, S. K. 1978. Association of rickettsialike organisms with rosette disease of sugar beets. Proc. third Im. Congr. Plant Pathol., Munich 3: 79.Google Scholar
  57. Grylls, N. E. 1954. Rugose leaf curl-a new virus disease transovarially transmitted by the leafhopper Austroagallia torrida. Austral. J. Biolog. Sci. 7: 47–58.Google Scholar
  58. Hearon, S. S., Sherald, J. L. and Kostka, S. J. 1980. Association of xylem-limited bacteria with elm, sycamore, and oak leaf scorch. Can. J. Bot. 58: 1986–1993.Google Scholar
  59. Hewitt, W. B., B. R. Houston, N. W. Frazier, and J. H. Freitag. 1946. Leafhopper transmission of the virus causing Pierce’s disease of grapevine and dwarf of alfalfa. Phytopathol. 36: 117–138.Google Scholar
  60. Hirumi, H., Kimura, M., Maramorosch, K., Bird, J., and Woodbury, R. 1974. Rickettsia-like organisms in the phloem of little leaf-diseased Sida cordifolia. Phytopathology 64: 581–582.Google Scholar
  61. Holmes, E O., H, Hirumi, and K. Maramorosch. 1972. Witches’ broom of willow: Salix yellows. Phytopathol. 62: 826–828.Google Scholar
  62. Hopkins, D. L. 1977. Diseases caused by leafhopper-borne, rickettsia-like bacteria. Ann. Rev. Phytopathol. 15: 27794.Google Scholar
  63. Hopkins, D. L. 1980. Use of the pin-prick inoculation technique to demonstrate variability in virulence of the Pierce’s disease bacterium, p. 177–180. In: Proc. of VII Int. Conf. Viruses of Grapevine (ICVG), 8–12 September 1980, Niagara Falls, Canada.Google Scholar
  64. Hopkins, D. L. 1982. Relation of Pierce’s disease bacterium to a wilt-type disease in citrus in the greenhouse. Phytopathol. 72: 1090–1092.Google Scholar
  65. Hopkins, D. L. 1984. Variability of virulence in grapevine among isolates of the Pierce’s disease bacterium. Phytopathol. 74: 1395–1398Google Scholar
  66. Hopkins, D. L. 1988. Xylella fastidiosa and other fastidious bacteria of uncertain affiliation, p. 95–103. In: N. W. Schaad (ed.), Laboratory guide for identification of plant pathogenic bacteria. APS Press, St. Paul, MN.Google Scholar
  67. Hopkins, D. L. 1989. Xylella fastidiosa: Xylem-limited bacterial pathogens of plants. Ann. Rev. Phytopathol. 27: 271–290.Google Scholar
  68. Hopkins, D. L., and W. C. Adlerz. 1988. Natural hosts of Xylella fast idiosa in Florida. Plant Disease 72: 429–431.Google Scholar
  69. Hopkins, D. L., W. C. Adlerz, and E W. Bristline. 1978. Pierce’s disease bacterium occurs in citrus trees affected with blight (young tree decline). Plant Dis. Reptr. 62: 442–445.Google Scholar
  70. Hopkins, D. L., and H. H. Mollenhauer. 1973. Rickettsia-like bacterium associated with Pierce’s disease of grapes. Science 179: 298–300.PubMedGoogle Scholar
  71. Hopkins, D. L, H. H. Mollenhauer, W. J. French. 1973. Occurence of a rickettsia-like bacterium in the xylem of peach trees with phony disease. Phytopathol. 63: 1422–1423Google Scholar
  72. Hopkins, D. L., and C. M. Thompson. 1983. Seasonal concentration of the Pierce’s disease bacterium in `Carlos’ and `Welder’ muscadine grapes compared with ‘Schuyler’ bunch grapes. Hort Sci 19: 419–420Google Scholar
  73. Huang, P. -Y., R. D. Milholland, and M. E. Daykin. 1986. Structural and morphological changes associated with the Pierce’s disease bacterium in bunch and muscadine grape tissues. Phytopathol. 76: 1232–1238.Google Scholar
  74. Hunt, P., C. P. A. Bennett, H. Syamsu, and E. Nurwenda. 1987. Sumatra disease in cloves induced by a xylem-limited bacterium following mechanical inoculation. Plant Pathol. 36: 154–163.Google Scholar
  75. Hutchins, L. M., L. C. Cochran, W. E Turner, and J. H. Weinberger. 1953. Transmission of phony disease virus from tops of certain affected peach and plum trees. Phytopathol. 43: 691–696.Google Scholar
  76. Ishie, T., Y. Doi, K. Yora, and H. Asuyama. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. (In Japanese with English abstract) Ann. Phytopathol. Soc. Jap. 33: 2367–275.Google Scholar
  77. Jimenez-A., L. G. 1982. Nueva enfermedad de la macadamia (Macadamia integrifolia). In: Revista publicada por la Asociacion Bananera Nacional 6 (17): 20.Google Scholar
  78. Jimenez-A., L. G., and M. J. Davis. 1987. DNA probe for detection of Pierce’s disease bacterium and other xylem-limited bacteria. Phytopathol. 77: 1769.Google Scholar
  79. Kaloostian, G. H., H. N. Pollard, and W. F. Turner. 1962. Leafhopper vectors of Pierce’s disease virus in Georgia. Plant Dis. Reptr. 46: 292.Google Scholar
  80. Kamper, S. M., W. J. French, and S. R. deKloet. 1985. Genetic relationships of some fastidious xylem-limited bacteria. Int. J. Syst. Bacteriol. 35: 185–188.Google Scholar
  81. Kitajima, E. W., M. Bakarcic, and M. V. Fernandez-Valiela. 1975. Association of rickettsialike bacteria with plum leaf scald disease. Phytopathol. 65: 476–479.Google Scholar
  82. Klein, M., S. Dabush, and M. Bar-Joseph. 1979. A preliminary report on the occurrence of bacteria-like organisms in both the phloem and the xylem tissues of stunted Melaleuca armilaris plants. Phytoparasitica 7: 169–175.Google Scholar
  83. Klein, M. S. Zimmerman-Gries, and B. Sneh. 1976. Association of bacterialike organisms with a new potato disease. Phytopathol. 66: 564–569.Google Scholar
  84. Konvicka, O., E Nienhaus, and G. Fischbeck. 1978. Untersuchen der Pollensterilitat bei Allium sativum L. Z. Pflanzenzucht 80: 265–276.Google Scholar
  85. Kostka, S. J., J. L. Sherald, S. S. Hearon, and J. E Rissler. 1981. Cultivation of the elm leaf scorch-associated bacterium (ESB). Phytopathol. 71: 768 (Abstr.).Google Scholar
  86. Kostka, S. J., T. A. Tatter, and J. L. Sherald. 1984. Culture of fastidious, xylem-limited bacteria from declining oaks in the northeastern United States. Phytopathol. 84: 803.Google Scholar
  87. Kostka, S. J., T. A. Tatter, and J. L. Sherald. 1986a. Elm leaf scorch: Abnormal physiology in American elms infected with fastidious, xylem-inhabiting bacteria. Can. J. For. Res. 16: 1088–1091.Google Scholar
  88. Kostka, S. J., T. A. Tatter, J. L. Sherald, and S. S. Hurtt. 1986b. Mulberry leaf schorch, new disease caused by a fastidious, xylem-limited bacterium. Plant Dis. 70: 690–693.Google Scholar
  89. Kostka, S. J., S. E Tomasino, J. T. Turner, and P. W. Reeser. 1988. Field release of a transformed strain of C. xyli subsp. cynodontis (CXC) containing a delta-endotoxin gene from Bacillus thuringiensis subsp. kurstaki (BT). Phytopathol. 78: 15–40.Google Scholar
  90. Kuppers, P., F. Nienhaus, and U. Schinzer. 1975. Rickettsia-like organisms and virus-like structures in a yellows disease of grapevine. Zeitschrift fur Pflanzenkrankheiten and Pflanzenschultz 82: 183–187.Google Scholar
  91. Lafleche, D., and J. M. Bove. 1970. Structeres de type mycoplasme dans les feuilles d’orangers atteints de la maladie du “greening”. C.R. Acad. Sci. Paris 270: 1. 915–1917.Google Scholar
  92. Latham, M. J., B. E. Brooker, G. L. Pettipher, and P. J. Harris. 1978. Ruminococcus hordniae cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35: 156–165.Google Scholar
  93. Lee, R. F., A. W. Feldman, B. C. Raju, G. Nyland, and A. C. Goheen. 1978. Immunofluorescence for detection of rickettsialike bacteria in grape affected by Pierce’s disease, almond affected by almond leaf scorch, and citrus affected by young tree decline. Phytopathol. News 12: 265.Google Scholar
  94. Liu, H. -Y., and L. M. Black. 1974. The clover club leaf organism. Les Colloques de l’Institut National de la Santé de la Rescherche Medicale 33: 97–98.Google Scholar
  95. Lowe, S. K., G. Nyland, and S. M. Mircetich. 1976. The ultrastructure of the almond leaf scorch bacterium with special reference to topography of the cell wall. Phytopathology 66: 147–151.Google Scholar
  96. Maramorosch, K., H. Hirumi, M. Kimura, and J. Bird. 1975. Mollicutes and rickettsia-like plant disease agents (zoophytomicrobes) in insects. Ann. New York Acad. Sci. 266: 276–292.Google Scholar
  97. Markham, P. G., R. Townsend, M. Bar-Joseph, M. J. Daniels, A. Plaskitt, and B. M. Meddins. 1974. Spiroplasmas are the causal agents of citrus little-leaf disease. Ann. Appl. Biol. 78: 49–57.PubMedGoogle Scholar
  98. Markham, P. G., R. Townsend, and K. A. Plaskitt. 1975. A rickettsia-like organism associated with diseased white clover. Ann. Appl. Biol. 81: 91–93.Google Scholar
  99. McClean, A. P. D., and P. C. J. Oberholzer. 1965. Citrus psylla, a vector of the greening disease of sweet orange. So. Afric. J. Agric. Sci. 8: 297–298.Google Scholar
  100. McCowan, R. P., K. -J. Cheng, C. B. M. Bailey, and J. W. Costerton. 1978. Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Appl. Environ. Microbiol. 35: 149–155.PubMedPubMedCentralGoogle Scholar
  101. McCoy, R. E. 1979. Mycoplasmas and yellows diseases, p. 229–264. In: R. E Whitcomb and J. G. Tully (ed.), The Mycoplasmas: III. Plant and Insect Mycoplasmas. Academic Press, New York.Google Scholar
  102. McCoy, R. E., D. L. Thomas, J. H. Tsai, and W. J. French. 1978. Periwinkle wilt, a new disease associated with xylem delimited rickettsialike bacteria transmitted by a sharpshooter. Plant Dis. Rep. 62: 1022–1026.Google Scholar
  103. Mircetich, S. M., S. K. Lowe, W. J. Moller, and G. Nyland. 1976. Etiology of almond leaf scorch disease and transmission of the causal agent. Phytopathol. 66: 17–24.Google Scholar
  104. Moll, J. N., and M. M. Martin. 1973. Electron microscope evidence that citrus psylla (Trioza erytreae) is a vector of greening disease in South Africa. Phytopathol. 66: 17–24.Google Scholar
  105. Moll, J. N., and M. M. Martin. 1974. Comparison of the organism causing greening disease with several plant pathogenic Gram negative bacteria, rickettsia-like organisms and mycoplasma-like organisms. Les Colloques de l’Institut National de la Sante et de la recherche Medicale 33: 89–96.Google Scholar
  106. Mollenhauer, H. H., and D. L. Hopkins. 1974. Ultrastructural study of Pierce’s disease bacterium in grape xylem tissue. J. Bacteriol. 119: 612–618.PubMedPubMedCentralGoogle Scholar
  107. Nelson, P. E., and R. S. Dickey. 1970. Histopathology of plants infected with vascular bacterial pathogens. Ann. Rev. Phytopathol. 8: 259–280.Google Scholar
  108. Nienhaus, E, H. Brussel, and U. Schinzer. 1976. Soil-borne transmission of rickettsia-like organisms found in stunted and witches’ broom diseased larch trees (Laris decidua). Zeitschrift fur Pflanzenkrankheiten and Pflanzenschutz 83: 309–316.Google Scholar
  109. Nienhaus, F., I. Rumbos, and E. Greuel. 1978. First results in the cultivation of Rickettsia-like organisms of yellows diseased grapevines in chick embryos. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 85: 113–117.Google Scholar
  110. Nienhaus, E, and H. Schmutterer. R 1976. Rickettsia-like organisms in latent rosette (witches’ broom) diseased sugar beets (Beta vulgaris) and spinach (Spinacia oleracea) and in the vector Piesma quadratum. Fieb. Zeitschrift fur Pflanzenkrankeiten und Pflanzenschultz 83: 641–646.Google Scholar
  111. Nienhaus, E, and R. A. Sikora. 1979. Mycoplasmas, spiroplasmas, and rickettsia-like organisms as plant pathogens. Ann Rev. Phytopathol. 17: 37–58.Google Scholar
  112. Nome, S F., B. C. Raju, A. C. Goheen, G. Nyland, G., and D. DeCampo. 1980. Enzyme-linked immunosorbent assay for Pierce’s disease bacteria in plant tissue. Phytopathol. 70: 746–749.Google Scholar
  113. Nyland, G., A. C. Goheen, S. K. Lowe, and H. C. Kirkpatrick. 1973. The ultrastructure of a rickettsialike organism from a peach tree affected with phony disease. Phytopathol. 63: 1275–1278.Google Scholar
  114. Ottow, J. C. G. 1975. Ecology, physiology, and genetics of fimbriae and pili. Ann. Rev. Microbiol. 29: 79–108.Google Scholar
  115. Pate, J. S. 1976. Nutrients and metabolites of fluids recovered from xylem and phloem: Significance in relationship to long distance transport in plants, p. 253–281. In: I. F. Wardlaw, and J. B. Passiours (ed.), Transport and transfer processes in plants. Academic Press, New York.Google Scholar
  116. Petzold, H., R. Marwitz, and L. Kupze. 1973. Elektronenmikroskopische Untersuchungen uber intrazellulare rickettsienahnliche Bakterien in triebsuchtkranken Apfeln. Phytopath. Z. 78: 170–181.Google Scholar
  117. Ploaie, R G. 1973. Micoplasma. Si Bolile Proliferative la Plante. Intreprinderea Poligrafica, Ed. `Ceres,’ Bucharest.Google Scholar
  118. Poinar, G. O., Jr., R. T. Hess, and J. A. Tsitsipis. 1975. Ultrastructure of the bacterial symbiotes in the pharyngeal diverticulum of Dacus oleoae (Gmelin) (Trypetidae: Diptera). Acta Zoologica 56: 77–84.Google Scholar
  119. Purcell, A. H. 1977. Cold therapy of Pierce’s disease of grapevines. Plant Dis. Reptr. 61: 514–518.Google Scholar
  120. Purcell, A. H. 1979. Leafhopper vectors of xylem-borne plant pathogens, p. 603–627. In: K. Maramorosch, and K. E Harris (ed.), Leafhopper vectors and plant disease agents. Academic Press, New York.Google Scholar
  121. Purcell, A. H. 1980. Environmental therapy for Pierce’s disease of grapevines. Plant Disease 64: 388–390.Google Scholar
  122. Purcell, A. H. 1982a. Evolution of insect vector relationships, p. 121–156. In: M. S. Mount, and G. H. Lacy (ed.), Phytopathogenic prokaryotes, vol I. Academic Press, New York.Google Scholar
  123. Purcell, A. H. 1982b. Insect vector relationships with procaryotic plant pathogens. Ann. Rev. Phytopathol. 20: 397–417.Google Scholar
  124. Purcell, A. H. 1989. Homopteran transmission of xylem-inhabiting bacteria. p. 243–266. In: K. E Harris (ed.), Advances in Disease vector research, vol. 6. Springer-Verlag, New York.Google Scholar
  125. Purcell, A. H., and A. H. Finlay. 1979. Evidence for non-circulative transmission of Pierc’s disease bacterium by sharpshooter leafhoppers. Phytopathol. 69: 393–395.Google Scholar
  126. Purcell, A. H., A. H. Finlay, and D. L. McLean. 1979. Pierce’s disease bacterium: Mechanism of transmission by leafhopper vectors. Science 206: 839–841.PubMedGoogle Scholar
  127. Raju, B. C., A. C. Goheen, and N. W. Frazier. 1983. Occurrence of Pierce’s disease bacteria in plants and vectors in California. Phytopathol. 73: 1309–1313Google Scholar
  128. Raju, B. C., A. C. Goheen, S. K. Lowe, and G. Nyland. 1978. Pierce’s disease of grapevines in Central America. Phytopathol. News 12: 267.Google Scholar
  129. Raju, B. C., S. E Nome, D. M. Docampo, A. C. Goheen, G. Nyland, and S. K. Lowe. 1980. Alternative hosts of Pierce’s disease of grapevines that occur adjacent to grape growing areas in California. Am. J. Enol. Vitic. 31: 144–148.Google Scholar
  130. Raju, B. C., J. M. Wells, G. Nyland, R. H. Brlansky, and S. K. Lowe. 1982. Plum leaf scald: Isolation, culture and pathogenicity of the causal agent. Phytopathol. 72: 1460–1466.Google Scholar
  131. Roberts, D. L., J. M. Vargas, Jr., R. Detweiler, K. K. Baker, and G. R. Hooper. 1981. Association of a bacterium with a disease of Toronto creeping bentgrass. Plant Disease 65: 1014–1016.Google Scholar
  132. Rumbos, I., R. A. Sikora, and E. Nienhaus. 1977. Rickettsia-like organisms in Xiphinema index Thorne and Allen found associated with yellows disease of grapevines. Zeitschrift fur Pflanzenkrankeiten and Pflanzenschultz 84: 240–243.Google Scholar
  133. Saglio, P., D. Lafleche, M. l’Hospital, G. Dupont, and J. M. Bove. 1972. Isolation and growth of citrus mycoplasmas, p. 187–198. In: Ciba Foundation symposium: Pathogenic mycoplasmas. American Scientific Publishers, New York.Google Scholar
  134. Saglio, P., M. L’Hospital, G. Dupont, J. M. Bove, Tully, J. G., and E. A. Freundt. 1973. Spiroplasma citri gen. and sp. n.: A mycoplasma-like organism associated with stubborn disease of citrus. Int. J. Syst. Bacteriol. 23: 191–204.Google Scholar
  135. Saglio, P. H. M., and R. F. Whitcomb. 1979. Diversity of wall-less prokaryotes in plant vascular tissue, fungi and invertebrate animals, p. 1–36. In: M. F. Barile, S. Razin, J. G. Tully, and R. F. Whitcomb (ed.), The mycoplasmas, vol. 3. Academic Press, New York.Google Scholar
  136. Schwarz, R. E., J. N. Moll, and S. P. Van Vuuren. 1974. Control of citrus greening and its psylla vector by trunk injection of tetracyclines and insecticides, p. 26–29. In: L. G. Weathers, and M. Cohen (ed.), Proc. Sixth Conf. Int. Organ. Citrus Virologists. University of California Press, Berkeley.Google Scholar
  137. Schwarz, R. E., and S. P. Van Vuuren. 1971. Decrease of fruit greening of sweet orange by trunk injection of tetracyclines. Plant Dis. Reptr. 55: 747–749.Google Scholar
  138. Severin, H. H. P. 1949. Transmission of the virus of Pierce’s disease of grapevines by leafhoppers. Hilgardia 19: 190–206.Google Scholar
  139. Severin, H. H. P. 1950. Spittle-insect vectors of Pierce’s disease virus: Life history and virus transmission. Hilgardia 19: 357–382.Google Scholar
  140. Sherald, J. L., S. S. Hearon, S. J. Kostka, and D. L. Morgan. 1983. Sycamore leaf scorch: Culture and pathogenicity of the fastidious xylem-limited bacteria from scorch-affected trees. Plant Disease 67: 849–852.Google Scholar
  141. Sherald, J. L., J. M. Wells, S. S. Hurtt, and S. J. Kostka. 1987. Association of fastidious xylem-inhabitung bacteria with leaf scorch in red maple. Plant Disease 71: 930–933.Google Scholar
  142. Steiner, K. G., E Nienhaus, and K. J. Marschall. 1977. Rickettsia-like organisms associated with a decline of coconut palms in Tanzania. Z. Pflanzenkr. Pflanzenschultz 84: 345–351.Google Scholar
  143. Su, H. J., and S. C. Chang. 1976. The response of the likubin pathogen to antibiotics and heat therapy, p. 27–34. In: E. C. Calavan (ed.), Proc. Seventh Conf. Int. Organ. Citrus Virologists. International Organization of Citrus Virologists, Riverside, California.Google Scholar
  144. Teakle, D. S., P. M. Smith, and D. L. Steindl. 1973. Association of a small coryneform bacterium with ratoon stunting disease of sugarcane. Australian J. Agric. Res. 24: 869–874.Google Scholar
  145. Thomson, S. V., M. J. Davis, J. W. Kloepper, and A. H. Purcell. 1978. Alfalfa dwarf: Relationship to the bacterium causing Pierce’s disease of grapevine and almond leaf scorch disease (abstr.), p. 65. In: Proc. Third Int. Congr. Plant Pathol., Munich.Google Scholar
  146. Timmer, L. W., R. H. Brlansky, R. E Lee, and B. C. Raju. 1981. A fastidious xylem-limited bacterium infecting ragweed. Phytopathol. 73: 975–979.Google Scholar
  147. Turner, W. F., and H. N. Pollard. 1959. Insect transmission of phony peach disease. U.S. Dept. Agric. Tech. Bull. No. 1193. U. S. Dept. Agric., Washington, D.C.Google Scholar
  148. Ulrychova, M., G. Vanek, M. Jokes, Z. Klobaska, and D. Kraliik 1975. Association of rickettsialike organisms with infectious necrosis of grapevines and remission of symptoms after penicillin treatment. Phytopath. Z. 82: 254–265.Google Scholar
  149. Uribina-Vidal, C. 1974. Non-viral agents associated with sugar beet yellow wilt in Chile. Phytopathol. Z. 81: 114–123.Google Scholar
  150. Van Alfen, N6 K. 1982. Wilts: Concepts and mechanisms, p. 459–474. In: M. S. Mount, and G. L. Lacy (ed.), Phytopathogenic prokaryotes, vol. I. Academic Press, New York.Google Scholar
  151. Vanek, G., M. Ulrychova, C. Blattny, M. Jokes, and M. Novak. 1976. Rickettsialike structures in hop plants with krinkle disease and therapeutic effect of antibiotics. Phytopathol. Z. 87: 224–230.Google Scholar
  152. Vinson, J. W. 1966. In vitro cultivation of the rickettsial agent of trench fever. Bull. World Health Organ. 35: 155–164.PubMedPubMedCentralGoogle Scholar
  153. Wells, J. M., and B. C. Raju. 1984. Cellular fatty acid composition of six fastidious, Gram-negative, xylem-limited bacteria from plants. Curr. Microbiol. 10: 231–236.Google Scholar
  154. Wells, J. M., B. C. Raju, H. Y. Hung, W. G. Weisburg, L. Mandelco-Paul, and D. J. Brenner. 1987. Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bact. 37: 136–143.Google Scholar
  155. Wells, J. M., B. C. Raju, and G. Nyland. 1983. Isolation, culture and pathogenicity of the bacterium causing phony disease of peach. Phytopathol. 73: 859–862.Google Scholar
  156. Wells, J. M., B. C. Raju, G. Nyland, and S. K. Lowe. 1981. Medium for the isolation and growth of the bacteria associated with plum leaf scald and phony peach disease. Appl. Environ. Microbiol. 42: 357–363.PubMedPubMedCentralGoogle Scholar
  157. Wells, J. M., D. J. Weaver, and B. C. Raju. 1980. Distribution of rickettsia-like bacteria in peach, and their occurrence in plum, cherry, and some perennial weeds. Phytopathol. 70: 817–820.Google Scholar
  158. Whitcomb, R. F, and D. L. Williamson 1979. Pathogenicity and host-parasite relationships of mycoplasmas in arthropods. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten and Hygiene, Abt. 1 Orig. Reihe A 245: 200–220.Google Scholar
  159. Windsor, J. M., and L. M. Black. 1973a. Remission of symptoms of clover club leaf following treatment with penicillin. Phytopathol. 63: 1139–1148.Google Scholar
  160. Windsor, I. M., and L. M. Black. 1973b. Evidence that clover club leaf is caused by a rickettsia-like organism. Phytopathol. 63: 1139–1148.Google Scholar
  161. Wormall, A. 1924. The constituents of the sap of the vine (Vitis vinifera L.). Biochem. J. 18: 1187–1202.PubMedPubMedCentralGoogle Scholar
  162. Yehsiung, S., W. Chuang, and Z. Jingning. 1986. Studies on isolation, culture and pathogenicity of dieback of chinaberry caused by bacteria-like organism (in Chinese with English abstract). J. South China Agric. Univer. 7: 21–27.Google Scholar
  163. Zimmerman, M. H., and J. McDonough. 1978. Dysfunction of the water system, p. 117–140. In: J. G. Horsfall and E. B. Cowling (ed.), Plant disease, an advanced treatise, vol. 3. Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Michael J. Davis

There are no affiliations available

Personalised recommendations