The Prokaryotes pp 3189-3197 | Cite as

The Genus Deleya

  • Karel Kersters


The genus Deleya, along with the genus Halomonas, comprises the family Halomonadaceae (Franzmann et al., 1988). This family encompasses various halotolerant and moderately halophilic rod-like Gram-negative nonfermentative, chemoorganotrophs that require 75 mM to 200 mM NaC1 for growth. However, some Deleya strains grow optimally only in media containing at least 7.5% salts (1.3 M NaC1). “Salt-loving” is a universal feature of all strains belonging to the genera Deleya and Halomonas, and Deleya strains have been isolated from marine environments, solar salterns, saline soils, and salted food.


Glutamine Synthetase Halophilic Bacterium Salted Food Alcaligenes Faecalis Cellular Fatty Acid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, J. N., J. Williams, and W. J. Payne. 1961. Agar-bacterium alginicum: the appropriate taxonomic designation forAlginomonas alginica. J. Bacteriol. 81: 162–163.PubMedPubMedCentralGoogle Scholar
  2. Akagawa, M., and K. Yamasato. 1989. Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol. 39: 462–466.CrossRefGoogle Scholar
  3. Austin, B., C. J. Rodgers, J. M. Forns, and R. R. Colwell. 1981. Alcaligenes faecalis subsp. homari subsp. nov., a new group of bacteria isolated from moribund lobsters. Int. J. Syst. Bacteriol. 31: 72–76.CrossRefGoogle Scholar
  4. Baumann, L., and P. Baumann. 1973. Enzymes of glucose catabolism in cell-free extracts of non fermentative marine eubacteria. Can. J. Microbiol. 19: 302–304.PubMedCrossRefGoogle Scholar
  5. Baumann, L., and P. Baumann. 1974. Regulation of aspartokinase activity in non fermentative, marine eubacteria. Arch. Microbiol. 95: 1–18.CrossRefGoogle Scholar
  6. Baumann, L., and R. Baumann. 1978. Studies of relationship among terrestrial Pseudomonas, Alcaligenes, and Enterobacteria by an immunological comparison of glutamine synthetase. Arch. Microbiol. 119: 25–30.PubMedCrossRefGoogle Scholar
  7. Baumann, L., R Baumann, M. Mandel, and R. D. Allen. 1972. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402–429.PubMedPubMedCentralGoogle Scholar
  8. Baumann, L., R. D. Bowditch, and R Baumann. 1983. Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int. J. Syst. Bacteriol. 33: 793–802.CrossRefGoogle Scholar
  9. Baumann, R, and L. Baumann. 1981. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes, p. 1302–1331. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Bal-lows, and H. G. Schlegel (ed.), The prokaryotes. Springer-Verlag, Berlin.Google Scholar
  10. Baumann, R, L. Baumann, and M. Mandel. 1971. Taxonomy of marine bacteria: the genus Beneckea. J. Bacteriol. 107: 268–294.PubMedPubMedCentralGoogle Scholar
  11. Bergey, D. H., F. C. Harrison, R. S. Breed, B. W. Hammer, and E. M. Huntoon. 1925. Bergey’s manual of determinative bacteriology, 2nd ed. Williams and Wilkins Baltimore.Google Scholar
  12. Bergey, D. H., E C. Harrison, R. S. Breed, B. W. Hammer, and E. M. Huntoon. 1930. Bergey’s manual of determinative bacteriology, 3rd ed. Williams and Wilkins Baltimore.Google Scholar
  13. Breed, R. S., E. G. D. Murray, and N. R. Smith. 1957. Bergey’s manual of determinative bacteriology, 7th ed. Williams and Wilkins Baltimore.Google Scholar
  14. Calvo, C., A. Garcia de la Paz, V. Bejar, E. Quesada, and A. Ramos-Cormenzana. 1988. Isolation and characterization of phage F9–11 from a lysogenic Deleya halophila strain. Cliff. Microbiol. 17: 49–53.Google Scholar
  15. Collins, M. D., H. N. M. Ross, B. J. Tindall, and W. D. Grant. 1981. Distribution of isoprenoid quinones in halophilic bacteria. J. Appl. Bacteriol. 50: 559–565.CrossRefGoogle Scholar
  16. De Ley, J. 1978. Modern molecular methods in bacterial taxonomy: evaluation, application, prospects, p. 347–357. In: Proceedings of the Fourth International Conference on Plant Pathology and Bacteriology vol. 1. Angers. Gibert-Clarey, Tours, France.Google Scholar
  17. De Ley, J., K. Kersters, J. Khan-Matsubara, and J. M. She-wan. 1970. Comparative D-gluconate metabolism and DNA base composition in Achromobacter and Alcali-genes. Antonie van Leeuwenhoek J. Microbiol. Serol. 36: 193–207.Google Scholar
  18. De Ley, J., P. Segers, K. Kersters, W. Mannheim, and A. Lievens. 1986. Intra-and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36: 405–414.CrossRefGoogle Scholar
  19. del Moral, A., B. Prado, E. Quesada, T. Garcia, R. Ferrer, and A. Ramos-Cormenzana 1988. Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. J. Gen. Microbiol. 134: 733–741.Google Scholar
  20. del Moral, A., E. Quesada, and A. Ramos-Cormenzana. 1987. Distribution and types of bacteria isolated from an inland saltern. Ann. Inst. Pasteur (Microbiol.) 138: 59–66.CrossRefGoogle Scholar
  21. DeLong, E. E, L. Baumann, R. D. Bowditch, and P. Baumann. 1984. Evolutionary relationships of superoxide dismutases and glutamine synthetases from marine species of Alteromonas, Oceanospirillum, Pseudomonas and Deleya. Arch. Microbiol. 138: 170–178.CrossRefGoogle Scholar
  22. De Vos, R, and J. De Ley. 1983. Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33: 487–509.CrossRefGoogle Scholar
  23. De Vos, P, A. Van Landschoot, R Segers, R. Tytgat, M. Gillis, M. Bauwens, R. Rossau, M. Goor, B. Pot, K. Kersters, P. Lizzaraga, and J. De Ley. 1989. Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39: 35–49.CrossRefGoogle Scholar
  24. Elazari-Volcani, B. 1940. Studies on the microflora of the Dead Sea. Ph.D. dissertion, Hebrew University, Jerusalem, Israel.Google Scholar
  25. Eller, J., and W. J. Payne. 1960. Studies on bacterial utilization of uronic acids. IV. Alginolytic and mannuronic acid oxidizing isolates. J. Bacteriol. 80: 193–199.PubMedPubMedCentralGoogle Scholar
  26. Ferrer, M. R., A. del Moral, E. Quesada, and A. RamosCormenzana. 1987. Growth rate and some physiological features of Deleya halophila CCM 3662 at different salt concentrations. Ann. Institut Pasteur (Microbiol.) 138: 49–57.Google Scholar
  27. Franzmann, R. D., H. R. Burton, and T. A. McMeekin. 1987. Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int. J. Syst. Bacteriol. 37: 27–34.CrossRefGoogle Scholar
  28. Franzmann, P. D., and B. J. Tindall. 1990. A chemotaxonomic study of members of the family Halomonadaceae. Syst. Appl. Microbiol. 13: 142–147.CrossRefGoogle Scholar
  29. Franzmann, P. D., U. Wehymeyer, and E. Stackebrandt. 1988. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the general Halomonas and Deleya. Syst. Appl. Microbiol. 11: 16–19.CrossRefGoogle Scholar
  30. Hendrie, M. S., A. J. Holding, and J. M. Shewan. 1974. Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter. Int. J. Syst. Bacteriol. 24: 534–550.CrossRefGoogle Scholar
  31. Hof, T. 1935. An investigation of the micro-organisms commonly present in salted beans. Rec. Tray. Bot. Néerl. 32: 151–173.Google Scholar
  32. Kersters, K., and J. De Ley. 1980. Classification and identification of bacteria by electrophoresis of their proteins, p. 273–298. In: M. Goodfellow, and R. G. Board (ed.) Microbiological classification and identification. Academic Press, London.Google Scholar
  33. Kersters, K., and J. De Ley. 1984. Genus Alcaligenes, p. 361–373. In: N. R. Krieg and J. Holt (ed.), Kersters, K., and J. De Ley. 1. Williams and Wilkins Baltimore.Google Scholar
  34. MacLeod, R. A. 1968. On the role of inorganic ions in the physiology of marine bacteria. Adv. Microbiol. Sea 1: 95–126.Google Scholar
  35. Marquez M. C., A. Ventosa, and F. Ruiz-Berraquero. 1987. A taxonomic study of heterotrophic halophilic and nonhalophilic bacteria from a solar saltern. J. Gen. Microbiol. 133: 45–56.Google Scholar
  36. Monteoliva-Sanchez, M., M. R. Ferrer, A. Ramos-Cormenzana, E Quesada, and M. Monteoliva. 1988. Cellular fatty acid composition of Deleya halophila. effect of growth temperature and salt concentration. J. Gen. Microbiol. 134: 199–203.Google Scholar
  37. Monteoliva-Sanchez, M., and A. Ramos-Cormenzana. 1986. Effect of growth temperature and salt concentration on the fatty acid composition of Flavobacterium halmephilum CCM 2831. FEMS Microbiol. Lett. 33: 51–54.CrossRefGoogle Scholar
  38. Monteoliva-Sanchez, M., and A. Ramos-Cormenzana. 1987. Cellular fatty acid composition in moderately halophilic Gram-negative rods. J. Appl. Bacteriol. 62: 361–366.CrossRefGoogle Scholar
  39. Ohno, Y., I. Yano, and M. Masui. 1979. Effect of NaC1 concentration and temperatures on the phospholipid and fatty acid composition of a moderately halophilic bacterium, Pseudomonas halosaccharolytica. J. Biochem. 85: 413–421.PubMedGoogle Scholar
  40. Palleroni, N. J. 1984. Genus I Pseudomonas, p. 141–199. In: N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, BaltimoreGoogle Scholar
  41. Quesada, E., V. Bejar, M. J. Valderrama, and A. RamosCormenzana. 1987. Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr. Microbiol. 16: 21–25.CrossRefGoogle Scholar
  42. Quesada, E., A. Ventosa, E Rodriguez-Valera, and A. Ramos-Cormenzana. 1982. Types and properties of some bacteria isolated from hypersaline soils. J. Appl. Bacteriol. 53: 155–161.CrossRefGoogle Scholar
  43. Quesada, E., A. Ventosa, F. Rodriguez-Valera, L. Megias, and A. Ramos-Cormenzana. 1983. Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J. Gen. Microbiol. 129: 2649–2657.Google Scholar
  44. Quesada, E., A. Ventosa, E. Ruiz-Berraquem, and A. Ramos-Cormenzana 1984. Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol. 34: 287–292.CrossRefGoogle Scholar
  45. Quigley, M. M., and R. R. Colwell. 1968. Proposal of a new species Pseudomonas bathycetes. Int. J. Syst. Bacteriol. 18: 241–252.CrossRefGoogle Scholar
  46. Sawyer, M. H., P. Baumann, and L. Baumann. 1977. Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis. Arch. Microbiol. 112: 169–172.PubMedCrossRefGoogle Scholar
  47. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988. Proteobacteria classic nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38: 321–325.Google Scholar
  48. Van Landschoot A., and J. De Ley. 1983. Intra-and inter-generic similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.), and some other Gram-negative bacteria. J. Gen. Microbiol. 129: 3057–3074.Google Scholar
  49. Vreeland, R. H., C. D. Litchfield, E. L. Martin, and E. Elliot. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 30: 485–495.CrossRefGoogle Scholar
  50. Williams, A. K., and R. G. Eagon. 1962. Studies on the alginase of Agarbacterium alginicum. Can. J. Microbiol. 8: 649–654.Google Scholar
  51. Yamada, T., and I. Shiio. 1953. Effects of salt concentration on the respiration of a halotolerant bacterium. J. Biochem. 40: 327–337.Google Scholar
  52. ZoBell, C. E., and H. C. Upham. 1944. A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. Univ. Calif. 5: 239–292.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Karel Kersters

There are no affiliations available

Personalised recommendations