The Prokaryotes pp 3907-3913 | Cite as

Prokaryotic Symbionts of the Aphid

  • David L. Gutnick


All aphids have an intimate association with prokaryotic symbionts (Buchner, 1965; Houk, 1987). These symbionts are housed in specialized cells termed mycetocytes, which aggregate to form a subcellular organelle, the mycetome (Houk and Griffiths, 1980). While mycetocytes generally contain only one type of symbiont, the entire mycetomal population may consist of two or at most, three different symbionts (Houk, 1987). For example, the pea aphid (Acyrthosiphon pisum Harris) contains two endosymbionts designated the primary (P) symbiont and secondary (S) symbiont (Griffiths and Beck, 1973; McLean and Houk, 1973; Fig. 1). The P symbiont is the predominant organism and is located in the mycetocyte while the S symbiont, when present, is located in the sheath cells surrounding the mycetome. Within the mycetocyte, the P symbionts are found exclusively in vacuoles (Houk and Griffiths, 1980).


Artificial Diet rRNA Operon Acyrthosiphon Pisum Ficoll Gradient Cotton Aphid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Akey, D. H., and S. D. Beck. 1972. Nutrition of the pea aphid, Acyrthosiphon pisum: requirements for trace metals, sulphur and cholesterol. J. Insect Physiol. 18: 1901–1914.CrossRefGoogle Scholar
  2. Bateman, D. E, and Basham, H. G. 1976. Degradation of plant cell walls and membranes by microbial enzymes. In: Heitefuss, R. and P. H. Williams (ed.), Encyclopedia of Plant Physiology, New Series. Physiological Plant Pathology. Springer-Verlag, Berlin. 316–355.CrossRefGoogle Scholar
  3. Boros, I., A. Kiss, and P. Venetianer. 1979. Physical map of the seven ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 6: 1817–1830.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Buchner, P. 1965. Endosymbiosis of animals with plant microorganisms. Wiley Interscience, New York.Google Scholar
  5. Bruening, G., R. Criddle, J. Preiss, and R. Rudert. 1971. Biochemical Experiments. Wiley Interscience, New York.Google Scholar
  6. Campbell, B. C., and D. L. Dreyer. 1985. Host-plant resistance of sorghum: differential hydrolysis of sorghum pectic substances by polysaccharases of greenbug biotypes (Schizaphis graminum, Homoptera:Aphididae). Arch. Insect Biochem and Physiol. 2: 203–216.CrossRefGoogle Scholar
  7. Campbell, B. C., and W. D. Nes. 1983. A reappraisal of sterol biosynthesis and metabolism in aphids. J. Insect Physiol. 29: 149–156.CrossRefGoogle Scholar
  8. Dadd, R. H., D. L. Krieger, and T. Mittler. 1967. Studies on the artificial feeding of the aphid Myzus persicae (Sulzer).-IV. Requirements for water-soluble vitamins and ascorbic acid. J. Insect Physiol. 13: 249–272.CrossRefGoogle Scholar
  9. Dadd, R. H., and Mittler, T. E. 1966. Permanent culture of an aphid on a totally synthetic diet. Experientia 22: 832.PubMedCrossRefGoogle Scholar
  10. Dasch, G. A., E. Weiss, and K. P. Chang. 1984. Endosymbionts of insects, p. 811–833. In: N. Kreig (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  11. Distel, D. L., D. J. Lane, G. J. Osen, S. J. Giovannoni, B. Pace, N. R. Pace, D. A. Stahl, and H. Felbeck. 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol. 170: 2506–2510.PubMedPubMedCentralGoogle Scholar
  12. Dreyer, D. L., and B. C. Campbell. 1987. Chemical basis of host-plant resistance to aphids. Plant Cell Environ. 10: 353–361.Google Scholar
  13. Ehrhardt, P. 1968a. Der Vitaminbedarf einer siebrohrensaugenden Aphide, Neomyzus circumflexus Buckt. (Homoptera:Insecta). Zeitschrift fur Vergleichende Physiologie 60: 416–426.CrossRefGoogle Scholar
  14. Ehrhardt, P. 1968b. Einfluss von Erhnahrungsfaktoren auf die Entwicklung von Safte saugendenlnsekten unter besonderer Berucksichtigung von Symbionten.n Zeitschrift fur Parasitenkunde 31: 38–66.Google Scholar
  15. Eisenbach, J., and T. E. Mittler 1987. Extra-nuclear inheritance in a sexually produced aphid: the ability to overcome host plant resistance by biotype hybrids of the greenbug, Schizaphis graminum. Experientia 43: 332–334.CrossRefGoogle Scholar
  16. Ehrhardt P., and H. Schmutterer. 1966. Die Wirkung Verschiedener Antibiotica auf Entwicklung und Symbionten Kunstlich ernahrter Bohnenblattlaus (Aphis fabae Scop.). Zeitschrift fur Morphologie und Okologie der Tiere 56: 1–20.CrossRefGoogle Scholar
  17. Fredrick, J. F. (ed.), 1981. Origins and evolution of eukaryotic intracellular organelles. Annals of the New York Academy of Science, vol. 361.Google Scholar
  18. Griffiths, G. W, and S. D. Beck. 1973. Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 19: 75–84.CrossRefGoogle Scholar
  19. Griffiths, G. W., and Beck, S. D. 1974. Effects of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell and Tissue Research 148: 287–300.PubMedCrossRefGoogle Scholar
  20. Griffiths, G. W., and S. D. Beck. 1977a. In vivo sterol biosynthesis by pea aphid symbiotes as determined by digitonin and electron microscopic autoradiography. Cell and Tissue Research 176: 179–190.PubMedGoogle Scholar
  21. Griffiths, G. W., and S. D. Beck. 1977b. Effect of dietary cholesterol on the pattern of osmium deposition in the symbiote-containing cells of the pea aphid. Cell and Tissue Research 176: 191–203.PubMedGoogle Scholar
  22. Henry, S. M. 1962. The significance of microorganisms in the nutrition of insects. Trans. NY. Acad. Sci. 24: 676–683.Google Scholar
  23. Hinde, R. 197la. Maintenance of aphid cells and the intracellular symbiotes of aphids in vitro. J. Inverteb. Pathol. 17: 333–338.Google Scholar
  24. Hinde, R. 197lb. The fine structure of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae. J. Insect Physiol. 17: 2035–2050.Google Scholar
  25. Hinde, R. 1971c. The control of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae.. J. Insect Physiol. 17: 1791–1800.CrossRefGoogle Scholar
  26. Houk, E. J. 1974a Maintenance of the primary symbiote of the pea aphid Acyrthosiphon pisum in liquid media. J. Inverteb. Pathol. 24: 24–28.CrossRefGoogle Scholar
  27. Houk, E. J. 1974b. Lipids of the primary intracellular symbiote of the pea aphid Acyrthosiphon pisum. J. Insect Physiol. 20: 471–478.CrossRefGoogle Scholar
  28. Houk, E. J. 1987. Symbionts, p. 123–129. In: A. K. Minks and P. Harrewijn, (ed.), W. Helle (ed. in chief), World crop pests. Elsevier, AmsterdamGoogle Scholar
  29. Houk, E. J., and G. W. Griffiths. 1980. Intracellular symbiotes of the Homoptera. Ann. Rev. of Entymology 25: 161–187.CrossRefGoogle Scholar
  30. Houk, E. J., Griffiths, G. W., and S. D. Beck. 1976. Lipid metabolism in the symbiotes of the pea aphid Acyrthosiphon pisum. Comp. Biochem. and Physiol. 54B: 427–431.Google Scholar
  31. Houk, E. J., G. W. Griffiths, Hadjokas, N. E., and S. D. Beck. 1977. Peptidoglycan in the cell wall of the primary intracellular symbiote of the pea aphid. Science 198: 401–403.PubMedCrossRefGoogle Scholar
  32. Houk, E. J., and D. L. McLean. 1974. Isolation of the primary intracellular symbiote of the pea aphid, Acyrthosiphon Pison. J. Inverteb. Pathol. 23: 237–241.CrossRefGoogle Scholar
  33. Houk, E. J., D. L. McLean, and R. S. Criddle. 1980. Pea aphid primary symbiote deoxyribonucleic acid. J. Inverteb. Pathol. 35: 105–106.CrossRefGoogle Scholar
  34. Ishikawa, H. 1982a. Isolation of the intracellular symbionts and partial characterizations of their RNA species of the elder aphid, Acyrthosiphon magnoliae. Comp. Biochem. Physiol. 72B: 239–247.Google Scholar
  35. Ishikawa, H. 1982b. DNA, RNA and protein synthesis in the isolated symbionts from the pea aphid, Acyrthosiphon pisum. Insect Biochem. 12: 605–612.CrossRefGoogle Scholar
  36. Ishikawa, H. 1982c. Host-symbiont interactions in the protein synthesis in the pea aphid, Acyrthosiphon pisum. Insect Biochem. 12: 613–622.CrossRefGoogle Scholar
  37. Ishikawa, H. 1984a. Characterization of the protein species synthesized in vivo and in vitro by an aphid endosymbiont. Insect Biochem. 14: 417–425.CrossRefGoogle Scholar
  38. Ishikawa, 1984b. Control of macromolecule synthesis in the aphid endosymbiont by the host insect. Comp. Biochem. Physiol. 72B: 51–57.Google Scholar
  39. Ishikawa, H. 1987. Nucleotide composition and kinetic complexity of the genomic DNA of an intracellular symbiont in the pea aphid Acrythosiphon pisum. J. Mol. Evol. 24: 205–211.CrossRefGoogle Scholar
  40. Ishikawa H., M. Yamaji, and H. Hashimoto. 1985. Symbionin, an aphid endosymbiont-specific protein-II. Diminution of symbionin during post-embryonic development of aposymbiotic insects. Insect Biochem. 15: 165–174.CrossRefGoogle Scholar
  41. Krieger, D. L. 1971. Rearing several aphid species on syn- thetic diet. Ann. Entomol. Soc. Am. 64: 1176–1177.Google Scholar
  42. Lanham, U. N. 1968. The Blochmann bodies: hereditary intracellular symbionts of insects. Biol. Rev. Cambridge Philos. Soc. 43: 269–286.PubMedCrossRefGoogle Scholar
  43. McLean, D. L., and E. J. Houk. 1973. Phase contrast and electron microscopy of the mycetocytes and symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 19: 625–633.CrossRefGoogle Scholar
  44. Minks, A. K, and P. Harreweijn. 1987. In: W. Helle (ed. in chief), World crop pests. Aphids vol. 2A. Elsevier, Amsterdam.Google Scholar
  45. Mittler, T. E. 1971a. Some effects on the aphid Myzus persicae of ingesting antibiotics incorporated into artificial diets. J. Insect Physiol. 17: 1333–1347.CrossRefGoogle Scholar
  46. Mittler, T. E. 197lb. Dietary requirements of the aphid Myzus persicae affected by antibiotic uptake. J. Nutr. 101: 1023–1038.Google Scholar
  47. Neumann, H., A., Tu, J., Leibrock, J., Staiger, D., and Zillig, W. 1983. Organization of the genes for ribosomal RNA in Archaebacteria. Mol. Gen. Genet. 192: 66–72.Google Scholar
  48. Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337–365.PubMedCrossRefGoogle Scholar
  49. Raccah, B. 1986. Nonpersistent viruses: epidemiology and control. Advances in Virus Research 31: 387–429.PubMedGoogle Scholar
  50. Razin, S. 1985. Molecular biology and genetics of myco- plasmas (Mollicutes). Microbiol. Rev. 49: 419–455.PubMedPubMedCentralGoogle Scholar
  51. Rudner, R., Jarvis, E. D., and R. L. Widom. 1988. Chromosomal organization and spontaneous deletions of rrn operons in Bacillus subtilis, p. 115–120. In: A. T. Ganesan and J. A. Hoch (ed.), Genetics and biotechnology of bacilli, vol. 2. Academic Press, San Diego.Google Scholar
  52. Srivastava, P. N., and J. L. Auclair. 1976. Effects of antibiotics on feeding and development of the pea aphid, Acyrthosiphon pisum (Harris). Can. J. Zool. 54: 1025–1029.CrossRefGoogle Scholar
  53. Srivastava, P. N., Auclair, J. L., and Srivastava, U. 1980. Nucleic acid, nucleotide and protein concentrations in the pea aphid, Acyrthosiphon pisum, during larval growth and development. Insect Biochem. 10: 209–213.CrossRefGoogle Scholar
  54. Stackebrandt, E., R. G. E. Murray, and H. G. Truper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38: 321–325.Google Scholar
  55. Tokumitsu, T., and K. Maramorosch. 1966. Survival of aphid cells in vitro. Exp. Cell. Res. 44: 652–655.PubMedCrossRefGoogle Scholar
  56. Turner, R. B. 1971. Dietary requirements for the cotton aphid Aphis gossypii: the sulfur-containing amino acids. J. Insect Physiol. 17: 2451–2456.CrossRefGoogle Scholar
  57. Turner, R. B., 1977. Quantitative requirements for tyrosine, phenylalanine and tryptophan by the cotton aphid, Aphis gossypii (Glover). Comp. Biochem. and Physiol. 56A: 203–205.CrossRefGoogle Scholar
  58. Unterman, B. M., P. Baumann, and D. L. McLean. 1989. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J. Bacteriol. 171: 2970–2974.PubMedPubMedCentralGoogle Scholar
  59. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • David L. Gutnick

There are no affiliations available

Personalised recommendations