Skip to main content

Prokaryotic Symbionts of Marine Invertebrates

  • Chapter
The Prokaryotes

Abstract

The symbiosis of prokaryotic organisms with eukaryotic taxa is a widespread phenomenon that has had profound impact on the physiology, ecology, and evolution of the host organisms. Although these symbioses range from relatively loose coexistence to highly interdependent intracellular associations, in this chapter we will mainly discuss symbionts and symbioses of the latter type, as exemplified by the symbiotic associations of chemoautotrophic bacteria with marine invertebrates. We will also discuss the symbioses of methane-oxidizing bacteria with marine invertebrates and the symbioses of cellulolytic/nitrogen-fixing bacteria with wood-boring marine bivalves (ship-worms).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Alayse-Danet, A. M., D. Desbruyeres, and F. Gaill. 1987. The possible nutritional of detoxification role of the epibiotic bacteria of Alvinellid polychaetes: Review of current data. Symbiosis 4: 51–62.

    Google Scholar 

  • Anderson, A. E., J. J. Childress, and J. A. Favuzzi. 1987. Net uptake of CO, driven by sulphide and thiosulphate oxidation in the bacterial symbiont-containing clam Solemya reidi. J. Exp. Biol. 133: 1–31.

    CAS  Google Scholar 

  • Arp, A. J., and J. J. Childress. 1983. Sulfide binding by the blood of the hydrothermal vent vestimentiferan tube worm Riftia pachyptila. Science 219: 295–297.

    Article  PubMed  CAS  Google Scholar 

  • Belkin, S., Nelson, D. C., and H. W. Jannasch. 1986. Symbiotic assimilation of CO, in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. 170: 110–121.

    Article  Google Scholar 

  • Bosch, C., and P. P. Grasse. 1984. Cycle partiel des bacteries chimioautotrophes symbiotiques et leurs rapports avec les bacteriocytes chez Riftia pachyptila Jones (Pogonophhore Vestimentifere). I. Le trophosome et les bacteriocytes. C. R. Acad. Sci. Paris (ser. III) 299: 413–419.

    Google Scholar 

  • Brooks, J. M., M. C. Kennicutt II, C. R. Fisher, S. A. Macko, K. Cole, J. J. Childress, R. R. Bidigare, and R. D. Vetter. 1987. Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources. Science 238: 1138–1142.

    Article  PubMed  CAS  Google Scholar 

  • Cary, C., B. Fry, H. Felbeck, and R. D. Vetter. 1989. Multiple trophic resources for a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment. Mar. Biol. 100: 411–418.

    Article  Google Scholar 

  • Cary, S. C., C. R. Fisher, and H. Felbeck. 1988. Mussel growth supported by methane as sole carbon and energy source. Science 240: 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Cary, S. C., R. D. Vetter, and H. Felbeck. 1989. Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar. Ecol. Prog. Ser. 55: 31–45.

    Article  Google Scholar 

  • Cavanaugh, C. M. 1985. Symbiosis of chemolithotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol. Soc. Wash. Bull. 6: 373–388.

    Google Scholar 

  • Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jan-nasch, and J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm. Science 213: 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh, C. M., P. R. Levering, J. S. Maki, R. Mitchell, and M. E. Lidstrom. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325: 346–348.

    Article  Google Scholar 

  • Childress, J. J., C. R. Fisher, J. M. Brooks, M. C. Kennicutt II, R. Bidigare, and A. E. Anderson. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) Symbiosis: Mussels fueled by Gas. Science 233: 1306–1308.

    Article  PubMed  CAS  Google Scholar 

  • Conway, N., J. McDowell-Capuzzo, and B. Fry. 1989. The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from stable isotope analysis of endosymbionts and host. Limnol. Oceanogr. 34: 249–255.

    Article  CAS  Google Scholar 

  • de Burgh, M. E. 1985. Evidence for a physiological gradient in the vestimentiferan trophosome: size-frequency analysis of bacterial populations and trophosome chemistry. Can. J. Zool. 64: 1095–1103.

    Article  Google Scholar 

  • de Burgh, M. E., K. S. Juniper, and C. L. Singla. 1989. Bacterial symbiosis in northeast Pacific vestimentifera: A TEM survey. Mar. Biol. 101: 97–105.

    Google Scholar 

  • Desbruyeres, D., F. Gaill, L. Laubier, and Y. Fouquet. 1985. Polychaetous annelids from hydrothermal vent ecosystems: An ecological overview. Bull. Biol. Soc. Wash. 6: 103–116.

    Google Scholar 

  • Distel, D. L. 1990. Detection, identification, and phylogenetic analysis of endosymbiotic bacteria using ribosomal RNA sequences. p. 339–342. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • Distel, D. L., and H. Felbeck. 1987. Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar. Biol. 96: 79–86.

    Article  Google Scholar 

  • Distel, D. L., and H. Felbeck. 1988a. Pathways of inorganic carbon fixation in the endosymbiont bearing lucinid clam Lucinoma aequizonata: Part 1. Purification and characterization of the endosymbiotic bacteria. J. Exp. Zool. 247: 11–22.

    Article  CAS  Google Scholar 

  • Distel, D. L., and H. Felbeck. 1988b. Pathways of inorganic carbon fixation in the endosymbiont bearing lucinid clam Lucinoma aequizonata: Part 2. Analysis of the individual contributions of host and symbiont to inorganic carbon assimilation. J. Exp. Zool. 247: 1–10.

    Article  CAS  Google Scholar 

  • Distel, D. L., D. J. Lane, G. J. Olsen, S. J. Giovannoni, B. Pace, N. R. Pace, D. A. Stahl, and H. Felbeck. 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16 S rRNA sequences. J. Bacteriol. 170: 2506–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Edwards, D. B. 1989. DNA:DNA homology studies of the bacterial symbionts of the tube worm Riftia pachyptila from widely separated hydrothermal vent sites. 89th Annual Meeting of the American Society for Microbiology, p. 225.

    Google Scholar 

  • Erseus, C. 1984. Taxonomy and phylogeny of the gutless Phallodrilinae (Oligochaeta, Tubificidae), with descriptions of one new genus and twenty-two new species. Zool. Scripta. 13: 239–272.

    Article  Google Scholar 

  • Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213: 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Felbeck, H. 1983. Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J. Comp. Physiol. 152: 3–11.

    CAS  Google Scholar 

  • Felbeck, H., J. J. Childress, and G. N. Somero. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293: 291–293.

    Article  CAS  Google Scholar 

  • Felbeck, H., G. Liebezeit, R. Dawson, and O. Giere. 1982. CO. fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautrophic bacteria. Mar. Biol. 75: 187–191.

    Article  Google Scholar 

  • Felbeck, H., and G. N. Somero. 1983. Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. TIBS. 7: 210–204.

    Google Scholar 

  • Fiala-Medioni, A., H. Felbeck, J. Childress, C. Fisher, and R. Vetter. 1990. Lysosomic resorption of bacterial symbionts in deep-sea bivalves, p. 335–338. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • Fiala-Medioni, A., C. Metivier, A. Henry, and M. Le Pen-nec. 1986. Ultrastructure of the gill filament of an hydrothermal-vent Mytilidae. Mar. Biol. 92: 65–72.

    Article  Google Scholar 

  • Fisher, C. R., and J. J. Childress. 1986. Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalve Solemya reidi. Mar. Biol. 93: 59–68.

    Article  CAS  Google Scholar 

  • Fisher, C. R., J. J. Childress, R. S. Oremland, and R. R. Bidigare. 1987. The importance of methane and thiosulphate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96: 59–71.

    Article  CAS  Google Scholar 

  • Fisher, C. R., Childress, J. J., and N. Sanders. 1988. The role of vestimentiferan hemoglobin in providing an environment suitable for chemoautotrophic sulfide-oxidizing endosymbionts. Symbiosis 5: 229–246.

    CAS  Google Scholar 

  • Gaill, E, D. Desbruyeres, and L. Laubier. 1988. Morphological relationships between the “Pompeii worms” and their epibiotic bacteria. Oceanol. Acta 8: 147–154.

    Google Scholar 

  • Gallager, S. M., R. D. Turner, and C. J. Berg. 1981. Physiological aspects of wood consumption, growth, and reproduction in the shipworm Lyrodus pedicellatus Quatrefages. J. exp. mar. Biol. Ecol. 52: 63–77.

    Article  Google Scholar 

  • Giere, O. 1985. Structure and position of bacterial endosymbionts in the gill filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorphology 105: 296–301.

    Article  Google Scholar 

  • Giere, 0., and C. Langheld. 1987. Structural organization, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641–650.

    Article  Google Scholar 

  • Giere, 0., C. O. Wirsen, C. Schmidt, and H. W. Jannasch. 1988. Contrasting effects of sulfide and thiosulfate on symbiotic COZ assimilation of Phallodrilus leukodermat us (Annelida). Mar. Biol. 97: 413–419.

    Article  Google Scholar 

  • Green, R. V., and S. N. Freer. 1986. Growth characteristics of a novel nitrogen-fixing cellulolytic bacterium. Appl. Environ. Microbiol. 52: 982–986.

    Google Scholar 

  • Hand, S. C. 1987. Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate-sulfur bacteria symbioses. Biol. Bull. 173: 260–276.

    Article  CAS  Google Scholar 

  • Herry, A., M. Diouris, and M. Le Pennec. 1989. Chemoautrotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar. Biol. 101: 305–312.

    Article  Google Scholar 

  • Jannasch, H. W. 1985. The chemosynthetic support of life and the microbial diversity at the deep-sea hydrothermal vents. Proc. R. Soc. Lond. B225: 227–297.

    Google Scholar 

  • Jannasch, H. W., and M. J. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725.

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W., and D. C. Nelson. 1984. Recent progress in microbiology of hydrothermal vents. Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C..

    Google Scholar 

  • Jones, M. L. 1985. On the Vestimentifera, new phylum: Six new species, and other taxa, from hydrothermal vents and elsewhere. Bull. Biol. Soc. Wash. 6: 117–158.

    Google Scholar 

  • Jones, M. L. 1988. The Vestimentifera, their biology, systematic and evolutionary patterns. Oceanol. Acta. 8: 69–82.

    Google Scholar 

  • Nelson, D. C., J. B. Waterbury, and H. W. Jannasch. 1984. DNA base composition and genome size of the prokaryotic symbiont in Riftia pachyptila (Pogonophora). FEMS Microbiol. Lett. 24: 267–271.

    CAS  Google Scholar 

  • Okutani, T., and S. Ohta. 1988. A new gastropod mollusk associated with hydrothermal vents in the Mariana back-arc basin, western Pacific. Venus 47: 1–9.

    Google Scholar 

  • Popham, J. D., and M. R. Dickson. 1973. Bacterial associations in the teredo Bankia australis (Lamellibranchia, Mollusca). Mar. Biol. 19: 338–340.

    Article  Google Scholar 

  • Powell, M. A., and G. N. Somero. 1986. Adaptations to sulfide by hydrothermal vent animals: Sites and mechanisms of detoxification and metabolism. Biol. Bull. 171: 274–290.

    Article  CAS  Google Scholar 

  • Rau, G. H. 1981a. Hydrothermal vent clam and tubeworm 13C/12C: Further evidence of nonphotosynthetic food sources. Science 213: 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Rau, G. H. 1981b. Low 15N/14N in hydrothermal vent an- imals: ecological implications. Nature 289: 484–485.

    Article  CAS  Google Scholar 

  • Rau, G. H. 1985. 13C/12C and 15N/14N in hydrothermal vent organisms: Ecological and biogeochemical implications. Bull. Biol. Soc. Wash. 6: 243–248.

    Google Scholar 

  • Reid, R. G. B., and D. G. Brand. 1986. Sulfide-oxidizing symbiosis in Lucinaceans: implications for bivalve evolution. Veliger 29: 3–24.

    Google Scholar 

  • Ruby, E. G., and H. W. Jannasch, 1982. The physiological characteristics of Thiomicrospira sp. strain L12 isolated from deep sea hydrothermal vents. J. Bacteriol. 149: 161–165.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruby, E. G., H. W. Jannasch, and W. G. Deuser. 1987. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Appl. Envir. Micro. 53: 1940–1945.

    CAS  Google Scholar 

  • Schmaljohann, R. 1987. Endosymbiosen zwischen methylotrophen Bakterien und marinen Invertebraten. Forum Mikrobiologie 10: 166–171.

    Google Scholar 

  • Schmaljohann, R., and H. J. Flügel. 1987. Methane-oxidizing bacteria in pogonophora. Sarsia. 72: 91–98.

    CAS  Google Scholar 

  • Southward, A. J., E. C. Southward, P. R. Dando, R. L. Barrett, and R. Ling. 1986. Chemoautotrophic function of bacterial symbionts in small pogonophoran. J. Mar. Bio. Ass. UK. 66: 415–437.

    Article  CAS  Google Scholar 

  • Southward, A. J., E. C. Southward, P. R. Dando, G. H. Rau, H. Felbeck, and H. Flügel. 1981. Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293: 616–620.

    Article  Google Scholar 

  • Southward, E. C. 1982. Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U. K. 62: 889–906.

    Article  Google Scholar 

  • Southward, E. C. 1987. Contribution of symbiotic chemoautotrophs to the nutrition of benthic invertebrates, p. 83–118. In: M. A. Sleigh (ed.), Microbes in the sea. Ellis Horwood Ltd., Chichester, U.K.

    Google Scholar 

  • Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409–11.

    Article  PubMed  CAS  Google Scholar 

  • Stein, J. L., S. C. Cary, J. J. Childress, R. R. Hessler, S. Ohta, R. D. Vetter, and H. Felbeck. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol. Bull. 174: 373–378.

    Article  CAS  Google Scholar 

  • Trytek, R. E., and W. V. Allen. 1980. Synthesis of essential amino acids by bacterial symbionts in the gills of the shipworm Bankia setacea (Tryon). Comp. Biochem. Physiol. 67A: 419–427.

    Article  Google Scholar 

  • Vetter, R. D. 1985. Elemental sulfur in the gills of three species of clams containing chemoautrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88: 33–42.

    Article  CAS  Google Scholar 

  • Waterbury, J. B., C. B. Calloway, and R. D. Turner. 1983. A cellulolytic-nitrogen fixing bacterium cultured from the Gland of Deshayes in shipworms ( Bivalvia: Teredinidae). Science 221: 1401–1403.

    Google Scholar 

  • Waterbury, J. B., D. L. Distel, and B. Kamicker. Teredinibacter turnerii: A novel Gram-negative bacterial genus capable of nitrogen fixation and cellulose degradation. (in press.)

    Google Scholar 

  • Wilmot, D. B., and R. D. Vetter 1990. The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar. Biol. 106: 273–283.

    Article  CAS  Google Scholar 

  • Wood, A. R, and D. P. Kelly. 1989. Methylotrophic and autotrophie bacteria isolated from Lucinid and Thyasirid bivalves containing symbiotic bacteria in their gills. J. Mar. Biol. Ass. U.K. 69: 165–179.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Felbeck, H., Distel, D.L. (1992). Prokaryotic Symbionts of Marine Invertebrates. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_53

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics