The Prokaryotes pp 3181-3188 | Cite as

The Family Halomonadaceae

  • Russell H. Vreeland

Abstract

The Halomonadaceae (Franzmann et al., 1988) presently contains representatives of two genera, the type genus Halomonas and at least one species of the genus Deleya (D. aesta) (see Chapter 168). The establishment of the family was suggested because Sab values obtained from 16S rRNA catalogs show that Halomonas and Deleya are phylogenetically isolated from all other major groups of the gamma subdivision of the Proteobacteria (Stackebrandt et al., 1988 Woese et al., 1985), forming an internally coherent cluster at an Sab of 0.60. Internally, the family contains two subgroups composed of the type species of Halomonas, H. elongata and Halomonas halmophilum (formerly Flavobacterium halmophilum). This cluster forms at an Sab of 0.66. The companion cluster contains H. subglaciescola and D. aesta and forms at an Sab of 0.67. The position of the other halomonads (Table 1) within the phylogeny is not presently known.

Keywords

Salt Tolerance Halophilic Bacterium Salt Resistance Manganese Nodule Halotolerant Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Avi-Dor, Y. and R. Schnaiderman. 1981. Uptake and extrusion of salt by the halotolerant bacterium, Ba,. Studia Biophysica 84: 43–44.Google Scholar
  2. Falkenberg, R, M. Yoguchi, R. C. M. Zucker, and A. T. Matheson. 1986. The primary structure of ribosomal-A protein (L12) from the moderate halophile NRCC41227. Biochem. Cell. Biol. 64: 675–680.PubMedCrossRefGoogle Scholar
  3. Franzmann, R. D., H. R. Burton, and T. A. McMeekin. 1987. Halomonas subglaciescola, a new species of halotolerant bacteria isolated from the Antarctica. Int. J. Syst. Bacteriol. 37: 27–34.CrossRefGoogle Scholar
  4. Franzmann, R. D., U. Wehmeyer, and E. Stackebrandt. 1988. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accomodate the genera Halomonas and Deleya. Syst. Appl. Microbiol. 11: 16–19.CrossRefGoogle Scholar
  5. Galinski, E. A., Pfeiffer, H. R, and Trüper, K. G. 1985. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidine carboxylic acid, a novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur. J. Biochem. 149: 135–139.PubMedCrossRefGoogle Scholar
  6. Hart, D. J. and R. H. Vreeland. 1988. Growth in different NaCl concentrations causes significant changes in the cell surface hydrophobicity of Halomonas elongata. J. Bacteriol. 170: 132–135.PubMedPubMedCentralGoogle Scholar
  7. Hebert, A. M. and R. H. Vreeland. 1987. Phenotypic comparison of halotolerant bacteria: Halomonas halodurans sp. nov., nom. rev., comb. nov. Int. J. Syst. Bacteriol. 30: 485–495.Google Scholar
  8. Ken-Dror, S., J. K. Lanyi, B. Schobert, B. Silver, and Y. Avi-Dor. 1986b. An NADH:Quinone oxidoreductase of the halotolerant bacterium, Ba„ is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244: 766–772.PubMedCrossRefGoogle Scholar
  9. Ken-Dror, S., R. Prefer, and Y. Avi-Dor. 1986a. Functional characterization of the uncoupler-insensitive Na’ pump of the halotolerant bacterium, Ba,. Arch. Biochem. Biophys. 244: 122–127.PubMedCrossRefGoogle Scholar
  10. Ken-Dror, S., R. Schnaiderman, and Y. Avi-Dor. 1984. Un-coupler stimulated Na’ pump and its possible role in the halotolerant bacterium, Ba,. Arch. Biochem. Biophys. 227: 640–649.CrossRefGoogle Scholar
  11. Martin, E. L., T. Duryea-Rice, R. H. Vreeland, L. Hilsabeck, and C. Davis. 1983. Effects of NaC1 on the uptake of alpha-[14C] aminoisobutyric acid by the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 29: 1424–1429.PubMedCrossRefGoogle Scholar
  12. Matheson, A. T., G. D. Sprott, I. J. McDonald, and H. Tessier. 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentrations and morphology. Can. J. Microbiol. 22: 780–786.PubMedCrossRefGoogle Scholar
  13. Peleg, E., A. Tietz, and I. Friedberg. 1980. Effects of salts and ionophores on proline transport in a moderately halophilic halotolerant bacterium. Biochim et Biophys. Acta 596: 118–128.CrossRefGoogle Scholar
  14. Peters, R, Galinski, E. A., and Trüper, H. G. 1990. The bio- synthesis of ectoine. FEMS Microbiol. Lett. (in press)Google Scholar
  15. Quesada, E., A. Ventosa, F. Rodriguez-Valera, L. Megias, and A. Ramos-Cormenzana. 1983. Numerical taxon- omy of moderately halophilic Gram-negative bacteria from hypersaline soils. J. Gen. Microbiol. 129: 2649–2657.Google Scholar
  16. Rafaeli-Eshkol, D. 1968. Studies on halotolerance in a moderately halophilic bacterium: effect of growth on salt resistance of the respiratory system. Biochem. J. 109: 676–685.Google Scholar
  17. Rafaeli-Eshkol, D. and Y. Avi-Dor. 1968. Studies on halo-tolerance in a moderately halophilic bacterium. Biochem. J. 109: 687–691.PubMedPubMedCentralGoogle Scholar
  18. Rosenberg, A. 1983. Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch. Microbiol. 136: 1 17–123.Google Scholar
  19. Shkedy-Vinkler, C. and Y. Avi-Dor. 1975. Betaine induced stimulation of respiration at high osmolarities in a halo-tolerant bacterium. Biochem. J. 150: 219–226.PubMedPubMedCentralGoogle Scholar
  20. Stackebrandt, E., R. G. E. Murray, and H. G. Truper. 1988. Proteobacteria classis nov. A name for the phylogenetic taxon that include the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38: 321–325CrossRefGoogle Scholar
  21. Staley, J. T. 1981. The genera Prothecomicrobium and Ancalomicrobium, p. 456–460 In: M. R Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  22. Ventosa, A., E. Quesada, E Rodriquez-Valera, E Ruiz-Berraquero, and A. Ramos-Cormenzana. 1982. Numerical taxonomy of moderately halophilic Gram-negative bacteria. J. Gen. Microbiol. 128: 1959–1968.Google Scholar
  23. Vreeland, R. H. 1984. Halomonas, p. 340–344. In: N. R. Krieg and J. G. Holt (ed.), Bergeys manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  24. Vreeland, R. H. 1987. Mechanisms of halotolerance in microorganisms. CRC Critical Reviews in Microbiology 14: 311–356.PubMedCrossRefGoogle Scholar
  25. Vreeland, R. H., R. Anderson, and R. G. E. Murray. 1984. Cell wall and lipid composition and its relationship to the salt tolerance of Halomonas elongata. J. Bacteriol. 160: 879–883.PubMedPubMedCentralGoogle Scholar
  26. Vreeland R. H. and J. H. Huval. 1990. Taxonomy of halophilic bacteria from underground saline waters and salt formations. In: E. Rodriguez-Valera (ed.) General and applied aspects of halophilic bacteria, Elsevier Press, Holland. (in press)Google Scholar
  27. Vreeland R. H., S. L. Daigle, S. Fields, and E. L. Martin. 1990. Physiological changes in the halotolerant bacterium Halomonas elongata In: F. Rodriguez-Valera (ed.), General and applied aspects of halophilic bacteria. Elsevier Press, Holland. (In Press).Google Scholar
  28. Vreeland, R. H., C. D. Litchfield, E. L. Martin, and E. Elliot. 1980. Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. Int. J. Syst. Bacteriol. 30: 485–495.CrossRefGoogle Scholar
  29. Vreeland, R. H. and E. L. Martin. 1980. Growth characteristics, effects of temperature and ion specificity of the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 26: 746–752.CrossRefGoogle Scholar
  30. Vreeland, R. H., B. D. Mierau, C. D. Litchfield, and E. L. Martin. 1983. Relationship of the internal solute composition to the salt tolerance of Halomonas elongata. Can. J. Microbiol. 29: 407–414.CrossRefGoogle Scholar
  31. Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985. The phylogeny of purple bacteria: the gamma subdivision. Syst. App. Microbiol. 6: 25–33.CrossRefGoogle Scholar
  32. Wohlfarth, A., J. Severn, and E. A. Galinski. 1990. The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J. Gen. Microbiol. 136: 705–712CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Russell H. Vreeland

There are no affiliations available

Personalised recommendations