The Prokaryotes pp 3775-3779 | Cite as

The Genus Thermomicrobium

  • Jerome J. Perry


Thermomicrobium roseum (ATCC 27502) is the sole representative of a phylogenetically distinct branch of the eubacteria. It is an obligately thermophilic organism originally isolated from the effluent of a hot spring in Yellowstone National Park, WY (Jackson et al., 1973). T. roseum has been grouped with the green nonsulfur (GNS) bacteria based on ribosomal RNA sequence comparisons (Oyaizu et al., 1987). Herpetosiphon and Chloroflexus,the other representatives in this branch (Fig. 1), are markedly different phenotypically from T. roseum. Although the GNS bacteria share some common ribosomal characters they are the progeny of a deep phylogenetic divergence (Gibson et al., 1985); Herpetosiphon is a mesophile and more rapidly evolving than either Chloroflexus or Thermomicrobium. The deepest branching in eubacterial evolution is predominantly represented by thermophiles (Fig. 1), and these organisms evolved more slowly than the mesophiles. They have consequently retained more of their ancestral character (Achenbach-Richter et al., 1987).


Diaminopimelic Acid Muramic Acid Cyanidium Caldarium Purify Cell Wall Geyser Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Achenbach-Richter, A., R. Gupta, K. O. Stetter, and C. R. Woese. 1987. Were the original eubacteria thermophiles? System. Appl. Microbiol. 9: 34–39.CrossRefGoogle Scholar
  2. Allen, M. B. 1959. Studies with Cyanidium caldarium, an anomously pigmented chlorophyte. Arch. Mikrobiol. 32: 270–277.PubMedCrossRefGoogle Scholar
  3. Allgood, G. S., and J. J. Perry. 1985a. Paraquat toxicity and effect of hydrogen peroxide on thermophilic bacteria. J. Free Rad. Biol. Med. 1: 233–237.CrossRefGoogle Scholar
  4. Allgood, G. S., and J. J. Perry. 1985b. Oxygen defense systems in obligately thermophilic bacteria. Can. J. Microbiol. 31: 1006–1010.PubMedCrossRefGoogle Scholar
  5. Allgood, G. S., and J. J. Perry. 1986. Effect of methyl viologen and oxygen concentration on thermophilic bacteria. J. Basic Microbiol. 26: 379–382.CrossRefGoogle Scholar
  6. Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33: 476–504.PubMedPubMedCentralGoogle Scholar
  7. Gibson, J., W. Ludwig, E. Stackebrandt, and C. R. Woese. 1985. The phylogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System. Appl. Microbiol. 6: 152–156.CrossRefGoogle Scholar
  8. Jackson, T. J., R. E Ramaley and W. G. Meinschein. 1973. Thermomicrobium, a new genus of extremely thermophilic bacteria. Int. J. Syst. Bacteriol. 23: 28–36.Google Scholar
  9. Merkel, G. J., D. R. Durham, and J. J. Perry. 1980. The atypical cell wall composition of Thermomicrobium roseum, Can. J. Microbiol. 26: 556–559.Google Scholar
  10. Merkel, G. J., S. S. Stapleton, and J. J. Perry. 1978. Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria. J. Gen. Microbiol. 109: 141–148.CrossRefGoogle Scholar
  11. Oyaizu, H., D. Debrunner-Vossbrinck, L. Mandelco, J. A. Studier, and C. R. Woese. 1987. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. System. Appl. Microbiol. 9: 47–53.CrossRefGoogle Scholar
  12. Perry, J. J. 1984. Genus Thermomicrobium Jackson, Ramaley and Meinschein 1973, p. 338–339. In: Krieg, N. R., and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  13. Phillips, W. E., and J. J. Perry. 1976. Thermomicrobium fosteri sp. nov., a hydrocarbon-utilizing obligate thermophile. Int. J. System. Bacteriol. 26: 220–225.Google Scholar
  14. Pond, J. L., and T. A. Langworthy. 1987. Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum. J. Bacteriol. 169: 13281330.Google Scholar
  15. Pond, J. L., T. A. Langworthy, and G. Holzer. 1986. Long-chain diols: a new class of membrane lipids from a thermophilic bacterium. Science 231: 1134–1136.PubMedCrossRefGoogle Scholar
  16. Ramaley, R. E, E R. Turner, L. E. Malick, and R. B. Wilson. 1978. The morphology and surface structure of some extremely thermophilic bacteria found in slightly alkaline hot springs, p. 89–102. In: S. M. Friedman (ed.), Biochemistry of thermophily. Academic Press, New York.CrossRefGoogle Scholar
  17. Zarilla, K. A., and J.. Perry. 1986. Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int. J. Syst. Bacteriol. 36: 13–16.CrossRefGoogle Scholar
  18. Zarilla, K. A., and J. J. Perry. 1987. Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endosporeforming bacteria. System. Appl. Microbiol. 9: 258–264.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jerome J. Perry

There are no affiliations available

Personalised recommendations