The Prokaryotes pp 3745-3753 | Cite as

The Genus Thermus and Related Microorganisms

  • R. A. D. Williams
  • Milton S. Da Costa


Bacteria of the genus Thermus have been isolated from many natural and artificial thermal environments throughout the world. The first strains of the type species Thermus aquaticus were isolated from neutral and alkaline hot springs in Yellowstone National Park, USA (Brock and Freeze, 1969). Since then, strains have also been isolated from Yellowstone Park (Munster et al., 1986), and from other terrestrial hot springs in Iceland (Cometta et al., 1982b; Hudson et al., 1987a; Kristjansson and Alfredsson, 1983; Pask-Hughes and Williams, 1977), New Zealand (Hudson et al., 1986, 1987b), and Continental Portugal and the Azores Islands (Prado et al., 1988; Santos et al., 1989). In Japan, early isolates were named “Flavobacterium thermophilum” (Oshima and Imahori, 1971), and then renamed “Thermus thermophilus” (Oshima and Imahori, 1974). Other isolates have been given invalid species names (Saiki et al., 1972; Taguchi et al., 1982). In addition to terrestrial thermal environments, strains of Thermus have also been isolated from shallow marine thermal vents off Iceland (Kristjansson et al., 1986).


Thermus Strain None None Single Carbon Source Extreme Thermophile Thermus Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alfredsson, G. A., S. Baldursson, and J. K. Kristjansson. 1985. Nutritional diversity among Thermus spp. isolated from Icelandic hot springs. Syst. Appl. Microbiol. 6: 308–311.Google Scholar
  2. Alfredsson, G. A., J. K. Kristjansson, S. Hjorleifsdottir, and K. O. Stetter. 1988. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol. 134: 299–306.Google Scholar
  3. Barker, D., M. Hoft, A. Oliphant, and R. White, 1984. A second type II restriction endonuclease from Therm us aquaticus with unusual sequence specificity. Nucl. Acids Res. 12: 5567–5581.Google Scholar
  4. Becker, R. J. and M. J. Starzyk. 1984. Morphology and rotund body formation in Thermus aquaticus. Microbios 41: 115–129.Google Scholar
  5. Berenguer, J., M. L. M. Faraldo, and de Pedro, M. A. 1988. Cat’-stabilized oligomeric protein complexes are major components of the cell envelope of “Therm us thermophilus” HB-8. J. Bacteriol. 170: 2441–2447.PubMedPubMedCentralGoogle Scholar
  6. Bernal, W. M., N. D. H. Raven and R. A. D. Williams, 1986. Restriction endonuclease from Thermus ruber. Proc. 14th Cong. Microbiol., P14–21.Google Scholar
  7. Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  8. Brock, T. D. 1981. Extreme thermophiles of the genera Thermus and Sulfolobus, p. 978–984. In: M. P. Starr, H. Stolp, H. G. Truper, A. Ballows and H. G. Schlegel (ed.), The prokaryotes: A handbook on habitats, isolation and identification of bacteria. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Brock, T. D. and L. K. Boylen. 1973. Presence of thermophilic bacteria in laundry and hot-water heaters. Appl. Microbiol. 25: 72–76.Google Scholar
  10. Brock, T. D. and M. R. Edwards. 1970. Fine structure of Thermus aquaticus, an extreme thermophile. J. Bacteriol. 104: 509–517.PubMedPubMedCentralGoogle Scholar
  11. Brock, T. D. and H. Freeze, 1969. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 98: 289–297.Google Scholar
  12. Brock, T. D. and I. Yoder. 1971. Thermal pollution of a small river by a large university: bacteriological studies. Proc. Indiana Acad. Sci. 80: 183–188.Google Scholar
  13. Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33: 476–504.Google Scholar
  14. Chien, A., D. B. Edgar, and J. M. Trela, 1976. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127: 1550–1557.PubMedPubMedCentralGoogle Scholar
  15. Collins, M. D. and D. Jones, 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Revs. 45: 316–354.Google Scholar
  16. Cometta, S., B. Sonnleitner, and A. Feichter, 1982a. The growth behavior of Thermus aquaticus in continuous cultivation. Eur. J. Appl. Microbiol. Biotechnol. 15: 6974.Google Scholar
  17. Cometta, S., B. Sonnleitner, W. Sidler, and A. Fiechter. 1982b. Population distribution of aerobic extremely thermophilic microorganisms from an Icelandic natural hot spring. Eur. J. Appl. Microbiol. Biotechnol. 16: 151–156.Google Scholar
  18. Cowan, D. A. and R. M. Daniel. 1982a. Purification and properties of an extracellular protease (caldolysin) from an extreme thermophile Biochim. Biophys. Acta 705: 293–305.Google Scholar
  19. Cowan, D. A. and R. M. Daniel. 1982b. The properties of immobilized caldolysin, a thermostable protease from an extreme thermophile. Biotechnol. Bioeng. 24: 20522061.Google Scholar
  20. Cowan, D. A., R. M. Daniel, A. M. Martin, and H. W. Morgan. 1984. Some properties of a ß-galactosidase from an extremely thermophilic bacterium. Biotechnol. Bioeng. 26: 1141–1145.Google Scholar
  21. Cowan, D. A. R. M. Daniel, and H. W. Morgan. 1987. A comparison of extracellular serine proteases from four strains of Thermus aquaticus. FEMS Microbiol. Let. 43: 155–159.Google Scholar
  22. Degryse, E. and N. Glansdorff. 1976. Metabolic function of the glyoxylic shunt in an extreme thermophilic strain of the genus Thermus. Arch. Intern. Physiol. Biochem. 84: 598–599Google Scholar
  23. Degryse, E., N. Glansdorff, and A. Pierard. 1978. A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch. Microbiol. 177: 189–196.Google Scholar
  24. Golovacheva, R. S. 1977. Complex spherical bodies of Ther- mus ruber. Mikrobiologiya (translation) 46: 410–415Google Scholar
  25. Gyllensten, U. B. and H. A. Ehrlich. 1988. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLADQA locus. Proc. Natl. Acad. Sci. USA. 85: 7652–7656.Google Scholar
  26. Hartmann, R. K., J. Wolters, B. Kroger, S. Schultze, T. Specht, and V. A. Erdmann. 1989. Does Thermus represent another deep eubacterial branching? Syst. Appl. Microbiol. 11: 243–249.Google Scholar
  27. Hensel, R., W. Demharter, O. Kandler, R. M. Kroppenstedt, and E. Stackebrandt 1986. Chemotaxonomic and molecular-genetic studies of the genus Thermus: Evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus Int. J. Syst. Bacteriol. 36: 444–453Google Scholar
  28. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1986. A numerical classification of some Thermus isolates. J. Gen. Microbiol. 132: 532–540.Google Scholar
  29. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1987a. Numerical classification of some Thermus isolates from Icelandic hot springs. Syst. Appl. Microbiol. 9: 218–223.Google Scholar
  30. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1987b. Thermus fzliformis sp. nov., a filamentous caldoactive bacterium. Int. J. Syst. Bacteriol. 37: 431–436.Google Scholar
  31. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1989. Numerical classification of Thermus isolates from globally distributed hot springs. Syst. Appl. Microbiol. 11: 250256.Google Scholar
  32. Innis, M. A., K. B. Myambo, D. H. Gelfand, and M. A. D. Brow. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction,amplified DNA. Proc. Natl. Acad. Sci. USA. 85: 9436–9440.Google Scholar
  33. Kaledin, A. S., A. G. Slyusarenko, and S. I. Gorodetskii. 1986. Isolation and properties of DNA polymerase from extremely thermophilic bacterium Thermus aquaticus YT1. Biokhimiya (translation) 45: 494–501.Google Scholar
  34. Khoo, C., D. A. Cowan, R. M. Daniel, and H. W. Morgan. 1984. Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351. Biochem. J. 221: 407–413.Google Scholar
  35. Kraepelin G., and H. U. Gravenstein. 1980. Experimentelle induktion von `rotund bodies’ bei Thermus aquaticus. Zeitschr. algm. Mikrobiol. 20: 33–45.Google Scholar
  36. Kristjansson, J. K. and G. A. Alfredsson. 1983. Distribution of Thermus spp. in Icelandic hot springs and a thermal gradient. Appl. Environ. Microbiol. 45: 1785–1798.Google Scholar
  37. Kristjansson, J. K., G. O. Hreggvidsson, and G. A. Alfreds-son. 1986. Isolation of halotolerant Thermus spp. from submarine hot springs in Iceland. Appl. Environ. Mi-crobiol. 52: 1313–1316.Google Scholar
  38. Kwon, S.-T., I. Terada, H. Matsuzawa, and T. Ohta. 1988. Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT1 and characteristics of the deduced primary structure of the enzyme. Eur. J. Biochem. 173: 491–497.Google Scholar
  39. Loginova, L. G., and L. A. Egorova. 1975. An obligately thermophilic bacterium, Thermus ruber, from hot springs in Kamchatka. Mikrobiologiya (translation) 44: 593–597.Google Scholar
  40. Loginova, L. G., L. A. Egorova, R. S. Golovacheva, andGoogle Scholar
  41. L. M. Seregina. 1984. Thermus ruber sp. nov. rev. Int. J. Syst. Bacteriol. 34: 498–499.Google Scholar
  42. Matsuzawa, H., M. Hamaoki, and T. Ohta. 1983. Production of thermophilic extracellular proteases (aqualysins I and II) by Thermus aquaticus YT-1, an extreme thermophile. Agr. Biol. Chem. 47: 25–28.Google Scholar
  43. McClelland, M., L. G. Kessler, and M. Bittner. 1984. Site specific cleavage of DNA at 8- and 10-base pair sequences. Proc. Natl. Acad. Sci. USA. 81: 983–987.Google Scholar
  44. McKay, A., J. Quiller, and C. W. Jones. 1982. Energy conservation in the extreme thermophile Thermus thermophilus HB8. Arch. Microbiol. 131: 43–50.Google Scholar
  45. Merkel, G. J., S. S. Stapleton, and J. J. Perry. 1978 Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria. J. Gen. Microbiol. 109: 141–148.Google Scholar
  46. Minagawa, E., S. Kaminogawa, H. Matsazawa, T. Ohta, and K. Yamauchi. 1988. Isolation and characterization of a thermostable aminopeptidase (aminopeptidase T) from Thermus aquaticus YT1, an extremely thermophilic bacterium Agric. Biol. Chem. 52: 1755–1763.Google Scholar
  47. Munster, M. J., A. P. Munster, J. R. Woodrow, and R. J. Sharp. 1986. Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. J. Gen. Microbiol. 132: 1677–1683.Google Scholar
  48. Nakamura, N., N. Sashihara, H. Nagayama, and K. Horikoshi. 1989. Characterization of pullulanase and a-amylase activities of a Thermus sp. AMD33. Starch. 41: 112–117.CrossRefGoogle Scholar
  49. Oshima, T. 1978. Structure and function of membrane lipids in thermophilic bacteria, p. 1–10. In: S. M. Friedman (ed.), Biochemistry of thermophily. Academic Press, New York.CrossRefGoogle Scholar
  50. Oshima T. and K. Imahori. 1971. Isolation of an extreme thermophile and thermostability of its transfer ribonucleic acid and ribosomes. J. Gen. Appl. Microbiol. 17: 513–517.Google Scholar
  51. Oshima, T. and K. Imahori. 1974. Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24: 102–112.Google Scholar
  52. Owusu, R. K. and D. A. Cowan. 1989. Correlation between microbial protein thermostability and resistance to denaturation in aqueous:organic solvent two-phase systems. Enz. Microb. Technol. 11: 568–574.Google Scholar
  53. Pask-Hughes, R. A., and N. Shaw. 1982. Glycolipids from some thermophilic bacteria belonging to the genus Thermus. J. Bacteriol. 149: 54–58.PubMedPubMedCentralGoogle Scholar
  54. Pask-Hughes, R. A. and R. A. D. Williams. 1975. Extremely thermophilic Gram-negative bacteria from hot tap water. J. Gen. Microbiol. 88: 321–328.Google Scholar
  55. Pask-Hughes, R. A. and R. A. D. Williams. 1977. Yellowpigmented strains of Thermus spp. from Icelandic hot springs. J. Gen. Microbiol. 102: 375–383.Google Scholar
  56. Pask-Hughes, R. A. and R. A. D. Williams. 1978. Cell envelope components of strains belonging to the genus Thermus. J. Gen. Microbiol. 107: 65–72.Google Scholar
  57. Plant, A. R., H. W. Morgan, and R. M. Daniel. 1986. A highly stable pullulanase from Thermus aquaticus YT 1. Enz. Microb. Technol. 8: 668–672.Google Scholar
  58. Prado, A., M. S. da Costa, and V. M. C. Madeira. 1988. Effect of the growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol. 134: 1653–1660.Google Scholar
  59. Ramaley, R. F. and K. Bitzinger. 1975. Types and distribution of obligate thermophilic bacteria in man-made and natural thermal gradients. Appl. Microbiol. 30: 152–155.Google Scholar
  60. Ramaley, R. E and J. Hixson. 1970. Isolation of non-pig-mented, thermophilic bacterium similar to Thermus aquaticus. J. Bacteriol. 103: 527–528.PubMedPubMedCentralGoogle Scholar
  61. Roberts, R. J. 1989. Restriction enzymes and their isoschizomers Nucl. Acids Res. 17: 347–387.CrossRefGoogle Scholar
  62. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich, 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487491.Google Scholar
  63. Saiki, R. K., S. J. Scharf, E Faloona, K. B. Mullis, G. T. Horn, H. A. Ehrlich, and N. Arnheim. 1985. Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230: 1350–1354PubMedCrossRefGoogle Scholar
  64. Saiki, T., R. Kimura, and K. Arima. 1972. Isolation and characterization of extremely thermophilic bacteria from hot springs. Agr. Biol. Chem. 36: 2537–2366.Google Scholar
  65. Santos, M. A., R. A. D. Williams, and M. S. da Costa. 1989. Numerical taxonomic study of Thermus isolates from Portuguese hot springs. Syst. Appl. Microbiol. 12: 221235.Google Scholar
  66. Sashihara, N., N. Nakamura, H. Nagayama, and K. Horikoshi. 1988. Cloning and expression of the thermostable pullulanase gene from Thermus AMD-33 in Escherichia coli. FEMS Microbiol. Lett. 49: 385–388.Google Scholar
  67. Sato, R. K., C. A. Hutchinson, and J. I. Harris, 1977. A thermostable site-specific endonuclease from Thermus aquaticus. Proc. Natl. Acad. Sci. USA 74: 542–546.Google Scholar
  68. Sharp, R. J. and R. A. D. Williams. 1988. Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA:DNA homology of Thermus ruber and Thermus aquaticus. Appl. Environ. Microbiol. 54: 2049–2053.Google Scholar
  69. Shinomiya, T., M. Kobayashi, and S. Sato. 1980. A second site specific endonuclease from Thermus thermophilus 111, Tth111 II. Nucl. Acids Res. 8: 3275–3285.Google Scholar
  70. Shinomiya, T. and S. Sato. 1980. A site specific endonuclease from Thermus thermophilus 111, Tth111 I Nucl. Acids Res. 8: 43–56CrossRefGoogle Scholar
  71. Skerman, V. B. D, V. McGowan, P. H. A. Sneath. 1980 Approved lists of bacterial names. Int. J. Syst. Bacteriol. 30: 225–420.Google Scholar
  72. Sonnleitner, B., S. Cometta, and A. Fiechter. 1982. Growth kinetics of Thermus thermophilus. Eur. J. Appl. Microbiol. Biotechnol. 15: 75–82.Google Scholar
  73. Stramer, S. L. and M. J. Starzyk. 1981. The occurrence and survival of Thermus aquaticus. Microbios 32: 99–110.Google Scholar
  74. Taguchi, H., M. Yamashita, H. Matsuzawa, and T. Ohta. 1982. Heat-stable and fructose 1,6-bisphosphate-activated L-lactate dehydrogenase from an extremely thermophilic bacterium J. Biochem. 91: 1343–1348.PubMedGoogle Scholar
  75. Takase, M. and K. Horikoshi. 1988. A thermostable ß-glu-cosidase isolated from a bacterial species of the genus Thermus Appl. Microbiol. Technol. 29: 55–60.Google Scholar
  76. Takase, M. and K. Horikoshi. 1989. Purification and properties of a ß-glucosidase from Thermus sp. Zl. Agric. Biol. Chem. 53: 559–560.Google Scholar
  77. Tindall, K. R. and T. A. Kunkel. 1988. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 27: 6008–6013.PubMedCrossRefGoogle Scholar
  78. Ulrich, J. T., G. A. McFeters, and K. L. Temple. 1972. Induction and characterization of ß-galactosidase in an extreme thermophile. J. Bacteriol. 110: 691–698.PubMedPubMedCentralGoogle Scholar
  79. Williams, R. A. D. 1975. Caldoactive and thermophilic bacteria and their thermostable proteins. Sci. Prog. 62: 373393.Google Scholar
  80. Williams, R. A. D. 1989. Biochemical taxonomy of the genus Thermus, p. 82–97. In: M. S. da Costa, J. C. Duarte, and R. A. D. Williams (ed.), Microbiology of extreme environments and its potential for biotechnology. Elsevier, London.Google Scholar
  81. Zeikus, J. G., P. W. Hegge, and M. A. Anderson. 1979. Thermoanaerobium brockii gen. nov., and sp. nov., a new chemoorganotrophic, caldoactive anaerobic bacterium Arch. Microbiol. 122: 41–46.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. A. D. Williams
  • Milton S. Da Costa

There are no affiliations available

Personalised recommendations