The Prokaryotes pp 3171-3180 | Cite as

The Genus Beggiatoa

  • Douglas C. Nelson

Abstract

The genus Beggiatoa is currently represented by a single defined species Beggiatoa alba (Strohl, 1989). However, this species designation is commonly used for any colorless, filamentous, gliding bacterium that deposits internal globules of elemental sulfur but does not form bundles of trichomes within a common sheath. Organisms with a variety of filament widths, ranging from 1–120 gm, have been observed in native material and are assumed to belong to this genus (Jorgensen, 1977; Klas, 1937; Nelson et al., 1989b), but a single phylogenetic affinity group is by no means proven. Beggiatoa is of historical importance because Winogradsky’s (1887) earliest experiments, which ultimately led to development of the concept of bacterial chemoautotrophy, were performed with natural enrichments of this organism (see Brock and Schlegel, 1989).

Keywords

Hydrogen Sulfide Purple Sulfur Bacterium Autotrophic Bacterium Marine Strain Gradient Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ankar, S., and B. O. Jansson. 1973. Effect of an unusual natural temperature increase on a Baltic soft-bottom community. Mar. Biol. 18: 9–18CrossRefGoogle Scholar
  2. Brock, T. D., and H. G. Schlegel. 1989. Introduction, p. 116. In: H. G. Schlegel & B. Bowein (ed.), Autotrophic Bacteria. Science Tech, Madison, WI.Google Scholar
  3. Burton, S. D., and J. D. Lee. 1978. Improved enrichment and isolation procedures for obtaining pure cultures of Beggiatoa. Appl. Environ. Microbiol. 45: 614–617.Google Scholar
  4. Cataldi, M. S. 1940. Aislamiento de Beggiatoa alba en cultivo puro. Rev. Inst. Bacteriol.-Dept. Nac. Hig. ( Buenos Aires ) 9: 393–423.Google Scholar
  5. Castenholz, R. W. 1988 Culturing methods for cyanobacteria. p. 68–93. In: L. Packer and A. N. Glazer (ed.), Methods in enzymology, vol. 167. Academic Press, San Diego.Google Scholar
  6. Chet, I., and R. Mitchell. 1975. Bacterial attack of corals in polluted seawater. Microb. Ecol. 2: 227–233.PubMedCrossRefGoogle Scholar
  7. Faust, L. and R. S. Wolfe. 1961. Enrichment and cultivation of Beggiatoa alba. J. Bacteriol. 81: 99–106.PubMedPubMedCentralGoogle Scholar
  8. Grant, J., and U. V. Bathmann. 1987. Swept away: resuspension of bacterial mats regulates benthic-pelagic exchange of sulfur. Science 236: 1472–1474.PubMedCrossRefGoogle Scholar
  9. Gilde, H., W. R. Strohl, and J. M. Larkin. 1981. Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch. Microbiol. 129: 357–360.CrossRefGoogle Scholar
  10. Jorgensen, B. B. 1977. Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment. Mar. Biol. 41: 19–28.CrossRefGoogle Scholar
  11. Jorgensen, B. B. 1982a. Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil. Trans. Roy. Soc. Lond. B. 298: 543–561.CrossRefGoogle Scholar
  12. Jorgensen, B. B. 1982b. Mineralization of organic matter in the seabed-the role of sulphate reduction. Nature 296: 643–645.CrossRefGoogle Scholar
  13. Jorgensen, B. B. 1989. Biogeochemistry of chemoautotrophic bacteria, p. 117–146. In: H. G. Schlegel & B. Bowien (ed.), Autotrophic Bacteria. Science Tech, Madison, WI.Google Scholar
  14. Jorgensen, B. B., and D. J. Des Marais. 1986. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microb. Ecol. 38: 179–186.CrossRefGoogle Scholar
  15. Jorgensen, B. B., and Revsbech, N. P. 1983. Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp. in 02 and HZS microgradients. Appl. Environ. Microbiol. 45: 1261–1270PubMedPubMedCentralGoogle Scholar
  16. Joshi, M. M., and J. P. Hollis. 1976. Rapid enrichment of Beggiatoa from soils. J. Appl. Bact. 40: 223–224.CrossRefGoogle Scholar
  17. Joshi, M. M., and J. P. Hollis. 1977. Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulfide in the rice rhizosphere. Science. 195: 179–180.PubMedCrossRefGoogle Scholar
  18. Keil, F. 1912. Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitr. Biol. Pflanz. 11: 335–372.Google Scholar
  19. Klaus, Z. 1937. Über den Formenkreis von Beggiatoa mirabilis. Arch. Mikrobiol. 8: 312–320.Google Scholar
  20. Krieg, N. R., and P. B. Hylemon. 1976. The taxonomy of the chemoheterotrophic spirilla. Ann. Rev. Microbiol. 30: 303–325.CrossRefGoogle Scholar
  21. Kuenen, J. G. 1975. Colourless sulfur bacteria and their role in the sulfur cycle. Plant Soil 43: 49–76.CrossRefGoogle Scholar
  22. Lackey, J. B., E. W. Lackey, and G B. Morgan. 1965. Taxonomy and ecology of the sulfur bacteria. Fl. Univ. Eng. Ind. Exp. St. Bull. Ser. 119.Google Scholar
  23. Larkin, J. M., and W. R. Strohl. 1983. Beggiatoa, Thiothrix, and Thioploca. Annu. Rev. Microbiol. 37: 341–367.PubMedCrossRefGoogle Scholar
  24. Leadbetter, E. R. 1974. Beggiatoaceae. p. 112–116. In: R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore.Google Scholar
  25. Maier, S., and R. G. Murray. 1965. Fine structure of Thioploca ingrica and a comparison with Beggiatoa. Can. J. Microbiol. 11: 645–655.PubMedCrossRefGoogle Scholar
  26. Mezzino, M. J., W. R. Strohl, and J. M. Larkin. 1984. Characterization of Beggiatoa alba. Archiv. Microbiol. 137: 139–144.CrossRefGoogle Scholar
  27. Moller, M. M., L. P. Nielsen, and B. B. Jorgensen. 1985. Oxygen responses and mat formation by Beggiatoa. Appl. Environ. Microbiol. 50: 373–382.Google Scholar
  28. Nelson, D. C. 1989. Physiology and biochemistry of filamentous sulfur bacteria. p. 219–238. In: H. G. Schlegel and B. Bowien (ed.), Autotrophic Bacteria. Science Tech, Madison, WI.Google Scholar
  29. Nelson, D. C., and R. W. Castenholz. 1981a. Use of reduced sulfur compounds by Beggiatoa sp. J. Bacteriol. 147: 140–154.PubMedPubMedCentralGoogle Scholar
  30. Nelson, D. C., and R. W. Castenholz. 198 lb. Organic nutrition of Beggiatoa sp. J. Bacteriol. 147: 236–247.Google Scholar
  31. Nelson, D. C., and R. W. Castenholz. 1982. Light responses of Beggiatoa. Arch. Microbiol. 131: 146–155.Google Scholar
  32. Nelson, D. C., and H. W. Jannasch. 1983. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136: 262–269.CrossRefGoogle Scholar
  33. Nelson, D. C., B. B. Jorgensen, and N. P. Revesbech. 1986a. Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl. Environ. Microbiol. 52: 225–233.Google Scholar
  34. Nelson, D. C., N. P. Revesbech, and B. B. Jorgensen. 1986b. The microoxic/anoxic niche of Beggiatoa spp.: a microelectrode survey of marine and freshwater strains. Appl. Environ. Microbiol. 52: 161–168.PubMedPubMedCentralGoogle Scholar
  35. Nelson, D. C., J. B. Waterbury, and H. W. Jannasch. 1982. Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch. Microbiol. 133: 172–177.CrossRefGoogle Scholar
  36. Nelson, D. C., C. A. Williams, B. A. Farah, and J. M. Shively. 1989a. Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains. Arch. Microbiol. 151: 15–19.CrossRefGoogle Scholar
  37. Nelson, D. C., C. O. Wirsen, and H. W. Jannasch. 1989b. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl. Environ. Microbiol. 55: 2909–2917.PubMedPubMedCentralGoogle Scholar
  38. Pfennig, N. and H. Biebl. 1981. The dissimilatory sulfur-reducing bacteria. p. 941–942. In: M. P. Starr, H. Stolp., H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. 1. Springer-Verlag, Berlin.Google Scholar
  39. Polman, J K. and J. M. Larkin. 1986. Abstr. Ann. Meet Amer. Soc. Microbiol.Google Scholar
  40. Prince, R. C., K. E. Stokley, C. E. Haith, and H. W. Jan-nasch. 1988. The cytochromes of a marine Beggiatoa. Arch. Microbiol. 150: 193–196.CrossRefGoogle Scholar
  41. Pringhsheim, E. G. 1964. Heterotrophism and species con-cepts in Beggiatoa. Am. J. Bot. 51: 898–913.CrossRefGoogle Scholar
  42. Pringsheim, E. G. 1967. Die mixotrophie von Beggiatoa. Arch. Mikrobiol. 59: 247–254.PubMedCrossRefGoogle Scholar
  43. Schmidt, T. M., B. Arieli, Y. Cohen, E. Padan, and W. R. Strohl. 1987. Sulfur metabolism in Beggiatoa alba. J. Bacteriol. 169: 5466–5472.PubMedPubMedCentralGoogle Scholar
  44. Scotten, H. L., and J. L. Stokes. 1962. Isolation and prop- erties of Beggiatoa. Arch. Mikrobiol. 42: 353–368.CrossRefGoogle Scholar
  45. Skerman, V. B. D., G. Dementjeva, and B. J. Carey. 1957. Intracellular deposition of sulfur by Sphaerotilus na-tans. J. Bacteriol. 73: 507–512.Google Scholar
  46. Smith, C. R., H. Kukert, R. A. Wheatcroft, P. A. Jumars, and J. W. Deming. 1989. Vent fauna on whale remains. Nature 341: 27–28.CrossRefGoogle Scholar
  47. Stahl, D. A., D. J. Lance, G. J. Olsen, D. J. Heller, T.M. Schmidt, and N. R. Pace. 1987. Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonucleic acid sequences. Int. J. Syst. Bacteriol. 37: 116–122.CrossRefGoogle Scholar
  48. Strohl, W. R. 1989. Beggiatoaceae, p. 2091–2097. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, Baltimore.Google Scholar
  49. Strohl, W. R, G. C. Cannon, J. M. Shively, H. Gilde, L. A. Hook, C. M. Lane, and J. M. Larkin. 1981a. Heterotrophic carbon metabolism by Beggiatoa alba. J. Bacteriol. 148: 572–583.PubMedPubMedCentralGoogle Scholar
  50. Strohl, W. R., I. Geffers, and J. M. Larkin. 198lb. Structure of the sulfur inclusion envelopes from four beggiatoas. Curr. Microbiol. 6: 75–79.Google Scholar
  51. Strohl, W. R., K. S. Howard, and J. M. Larkin. 1982. Ultrastructure of Beggiatoa alba strain Bl5LD. J. Gen. Microbiol. 128: 73–84Google Scholar
  52. Stroh, W. R., and J. M. Larkin. 1978a. Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl. Environ. Microbiol. 36: 755–770.Google Scholar
  53. Strohl, W. R., and J. M. Larkin. 1978b. Cell division and trichome breakage in Beggiatoa. Curr. Microbiol. 1: 151–155.PubMedCrossRefGoogle Scholar
  54. Stroh], W. R., and T. M. Schmidt. 1984. Mixotrophy of the colorless, sulfide-oxidizing gliding bacteria Beggiatoa and Thiothrix. p. 79–95. In: W. R. Strohl and O. H. Tuovinen (ed.), Microbial chemoautotrophy. Ohio State University Press, Columbus.Google Scholar
  55. Vargas, A., and W. R. Strohl. 1985a. Ammonia assimilation and metabolism by Beggiatoa alba. Arch. Microbiol. 142: 275–278.CrossRefGoogle Scholar
  56. Vargas, A., and W. R. Strohl. 1985b. Utilization of nitrate by Beggiatoa alba. Arch. Microbiol. 142: 279–284.CrossRefGoogle Scholar
  57. Williams, T. M., and R. F. Unz. 1985. Filamentous sulfur bacteria of activated sludge: Characterization of Thiothrix, Beggiatoa and Eikelboom type 021N strains. Appl. Environ. Microbiol. 49: 887–898.Google Scholar
  58. Williams, T. M., and R. G. Unz. 1989. The nutrition of Thiothrix, Eikelboom type 021N, Beggiatoa and Leucothrix strains. Wat. Res. 23: 15–22.CrossRefGoogle Scholar
  59. Winogradsky, S. 1887. Über Schwefelbacterien. Bot. Ztg. 45: 489–507.Google Scholar
  60. Woese, C. R., W. Weisburg, C. M. Hahn, B. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt,. 1985. The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6: 25–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Douglas C. Nelson

There are no affiliations available

Personalised recommendations