The Prokaryotes pp 3583-3592 | Cite as

The Family Chlorobiaceae



The species and genera included in the physiological and ecological group of the green sulfur bacteria (Chlorobium and related genera; the Chlorobiaceae) share a number of particular characteristics which suggest that these genera may be genetically related. However, until now only a few strains have been studied with respect to the similarities of the oligonucleotide sequences of their 16S rRNA (Woese, 1987) and their 5S rRNA (van den Eynde et al., 1990). Thus, the Chlorobiaceae cannot yet be considered as a family of genetically related genera comparable to the Chromatiaceae (Fowler et al., 1984) (see also Chapter 170). The closest relatives of the Chlorobiaceae analyzed so far form a cluster containing Bacteroides fragilis and other Bacteroides species; with respect to all other groups of anoxygenic phototrophic bacteria, the Chlorobiaceae appear to be a well-isolated group (SAB value < 0.25).


Phototrophic Bacterium Purple Sulfur Bacterium Meromictic Lake Phototrophic Sulfur Bacterium Green Sulphur 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anagnostides. K., and Overbeck, J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–171.Google Scholar
  2. Antranikian, G., Herzberg, C., and Gottschalk, G. 1982. Characterization of ATP citrate lyase from Chlorobium limicola. Journal of Bacteriology 152:1284–1287.PubMedPubMedCentralGoogle Scholar
  3. Bergstein, T., Henis, Y., and Cavari, B. Z. 1979. Investigations on the phototrophic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Canadian Journal of Microbiology 79:999–1007.CrossRefGoogle Scholar
  4. Bias, U., and Trüper, H. G. 1987. Species specific release of sulfate from adenylyl sulfate by ATP sulfurylase or ADP sulfurylase in the green sulfur bacteria Chlorobium limicola and Chlorobium vibrioforme. Archives of Microbiology 147:406–410.CrossRefGoogle Scholar
  5. Biebl, H., and Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.CrossRefGoogle Scholar
  6. Buder, J. 1913. Chlorobium mirabile. Berichte der Deutschen Botanischen Gesellschaft 31:80–97.Google Scholar
  7. Caldwell, D. E., and Tiedje, J. M. 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Canadian Journal of Microbiology 21:377–385.PubMedCrossRefGoogle Scholar
  8. Caumette, P. 1984. Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Canadian Journal of Microbiology 30:273–284.CrossRefGoogle Scholar
  9. Caumette, R 1986. Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prèvost Lagoon, France). FEMS Microbiology Ecology 38:113–124.Google Scholar
  10. Cork, D. J. 1982. Acid waste gas bioconversion-an alternative to the Claus desulfurization process. Development of Industrial Microbiology 23:379–387.Google Scholar
  11. Cork, D. J., and Cusanovich, M. A. 1979. Continuous disposal of sulfate by a bacterial mutualism. Development of Industrial Microbiology 20:591–602.Google Scholar
  12. Cork, D. J., Garunas, R., and Sajjad, A. 1983. Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the production of sulfur and organic carbon from a gas stream containing HZS and CO,. Applied Environmental Microbiology 45:913–918.Google Scholar
  13. Cork, D. J., and Ma, S. 1982. Acid-gas bioconversion favors sulfur production. Biotechnology and Bioengineering, Sympos. No. 12:285–290.Google Scholar
  14. Cork, D. J., Mathers, J., Maka, A., and Srnak, A. 1985. Control of oxidative sulfur metabolism of Chlorobium limicola f. thiosulfatophilum. Applied Environmental Microbiology 49:269–272.PubMedPubMedCentralGoogle Scholar
  15. Culver, D. A., and Brunskill, G. J. 1969. Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnology and Oceanography 14:862–873.CrossRefGoogle Scholar
  16. Czeczuga, B. 1968. Primary production of the green hydro-sulfuric bacteria Chlorobium limicola Nads. (Chlorobacteriaceae). Photosynthetica 2:11–15.Google Scholar
  17. Drews, G. 1989. Energy transduction in phototrophic bacteria, p. 461–480. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech, Madison, WI. and Springer-Verlag, NY.Google Scholar
  18. Dubinina, G. A., and Kuznetsov, S. J. 1976. The ecological and morphological characteristics of microorganisms in Lesnaya Lamba (Karelia). International Revue der gesamten Hydrobiologie 61:1–19.CrossRefGoogle Scholar
  19. Evans, W. C. W., Buchanan, B. B., and Arnon, D. I. 1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences USA 55:928–933.CrossRefGoogle Scholar
  20. Fischer, U. 1984. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria, p. 383–407. In: Müller, A. and Krebs, B. (ed.), Sulfur, its significance for chemistry, for the geo-, bio-and cosmosphere and technology. Elsevier, Amsterdam.Google Scholar
  21. Fowler, V. J., Pfennig, N., Schubert, W., and Stackebrandt, E. 1984. Toward a phylogeny of phototrophic purple sulfur bacteria-16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Archives of Microbiology 139:382–387.CrossRefGoogle Scholar
  22. Fuchs, G., Stupperich, E., and Jaenchen, R. 1980a. Autotrophic CO, fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Archives of Microbiology 128:56–64.CrossRefGoogle Scholar
  23. Fuchs, G., Stupperich, E., and Jaenchen, R. 1980b. Autotrophic CO, fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Archives of Microbiology 128:64–72.CrossRefGoogle Scholar
  24. Gibson, J., Pfennig, N., and Waterbury, J. B. 1984. Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing and gliding green sulfur bacterium. Archives of Microbiology 138:96–101.Google Scholar
  25. Gloe, A., Pfennig, N., Brockmann, H., Jr., and Trowitzsch, W. 1975. A new bacteriochlorophyll from brown-colored Chlorobiaceae. Archives of Microbiology 102:103–109.PubMedCrossRefGoogle Scholar
  26. Göbel, F. 1978. Direct measurement of pure absorbance spectra of living phototrophic microorganisms. Biochimica et Biophysica Acta 538:593–602.PubMedCrossRefGoogle Scholar
  27. Gogotov, I. N. 1986. Hydrogenases of phototrophic microorganisms. Biochimie 68:181–187.PubMedCrossRefGoogle Scholar
  28. Gorlenko, V. M. 1970. A new phototrophic green sulphur bacterium-Prosthecochloris aestuarii nov. gen., nov. spec. Zeitschrift fur Allgemeine Mikrobiologie 10:147–149.PubMedCrossRefGoogle Scholar
  29. Gorlenko, V. M. 1972. Phototrophic brown sulfur bacteria Pelodictyon phaeum nov. sp. (In Russian, with English summary.) Mikrobiologiya 41:370–371.Google Scholar
  30. Gorlenko, V. M., Chebotarev, E. N., and Kachalkin, V. I. 1973. Microbiological processes of oxidation of hydrogen sulfide in the Repnoe lake (Slavonic lakes). Microbiology (English translation of Mikrobiologiya) 42:723–728.Google Scholar
  31. Gorlenko, V. M., Chebotarev, E. N., and Kachalkin, V. I. 1974. Participation of microorganisms in sulfur turnover in Pomiaretzkoe Lake. (In Russian, with English summary.) Mikrobiologiya 43:908–914.Google Scholar
  32. Gorlenko, V. M., Dubinina, G. A., and Kusnetsov, S. I. 1977. Ecology of aquatic microorganisms. (In Russian.) Moscow: Izdatel’stvo Nauka.Google Scholar
  33. Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I. 1983. The ecology of aquatic micro-organisms. Stuttgart, E. Schweizerbart’ sche Verlagsbuchhandlung.Google Scholar
  34. Gorlenko, V. M., and Kuznetsov, S. I. 1971. Vertical distribution of phototrophic bacteria in the Konon’er Lake of the Mari ASSR. Microbiology 40:651–652.Google Scholar
  35. Gorlenko, V. M., and Lebedeva, E. V. 1971. New green sulphur bacteria with apophyses. (In Russian, with English summary.) Mikrobiologiya 40:1035–1039.Google Scholar
  36. Gorlenko, V. M., Vainstein, M. B., and Kachalkin, V. I. 1978. Microbiological characteristic of lake Mogilnoye. Archiv fir Hydrobiologie 81:475–492.Google Scholar
  37. Guerrero, R., Pedrós-Alió, C., Esteve, I., and Mas, J. 1987. Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Aboensis 47:125–151.Google Scholar
  38. Hallenbeck, P. C. 1987. Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Critical Reviews in Microbiology 14:1–48.PubMedCrossRefGoogle Scholar
  39. Ivanovsky, R. N., Sintsov, N. V., and Kondratieva, E. N. 1980. ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Archives of Microbiology 128:239–242.CrossRefGoogle Scholar
  40. Khanna, S., and Nicholas, D. J. D. 1983. Substrate phosphorylation in Chlorobium vibrioforme f sp. thiosulfatophilum. Journal of General Microbiology 129:1365–1370.Google Scholar
  41. Kirchhoff, J. and Trüper, H. G. 1974. Adenylylsulfate reductase of Chlorobium limicola. Archives of Microbiology 100:115–120.CrossRefGoogle Scholar
  42. Kobayashi, H. A., Stenstrom, M., and Mah, R. A. 1983. Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Res. 17:579–587.CrossRefGoogle Scholar
  43. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R., and Clark, W. A. (ed.). 1975. International code of nomenclature of bacteria. American Society for Microbiology, Washington, DC.Google Scholar
  44. Lauterborn, R. 1915. Die sapropelische Lebewelt. Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg. Neue Folge, vol. 13:395–481.Google Scholar
  45. Lippert, K. D. and Pfennig, N. 1969. Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum Wachstum and CO2 Fixierung. Archiv für Mikrobiologie 65:29–47.PubMedCrossRefGoogle Scholar
  46. Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, H. G. 1971. Deoxyribonucleic acid base compositions of phototrophic bacteria. International Journal of Systematic Bacteriology 21:222–230.CrossRefGoogle Scholar
  47. Matheron, R., and Baulaigue, R. 1972. Bactéries photosynthetiques sulfureuses marines. Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement. Archiv für Mikrobiologie 86:291–304.PubMedCrossRefGoogle Scholar
  48. Montesinos, E., Guerrero, R., Abella, C., and Esteve, I. 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Applied and Environmental Microbiology 46:1007–1016.PubMedPubMedCentralGoogle Scholar
  49. Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and Trüper, H. G. (ed.), 1988. Green photosynthetic bacteria. Plenum Press, New YorkGoogle Scholar
  50. Overmann, J. and Pfennig, N. 1989. Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch. Microbiol. 152:401–406.Google Scholar
  51. Overmann, J., and Tilzer, M. M. 1989. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany Aquatic Sciences 51:261–278.CrossRefGoogle Scholar
  52. Paalme, T., Olivson, A., and Vilu, R. 1982a. ’3C-NMR study of the glucose synthesis pathways in the bacterium Chlorobium thiosulfatophilum. Biochimica et Biophysica Acta 720:303–310.Google Scholar
  53. Paalme, T., Olivson, A., and Vilu, R. 1982b. “C-NMR study of CO2-fixation during the heterotrophic growth in Chlorobium thiosulfatophilum. Biochimica et Biophysica Acta 720:311–319.Google Scholar
  54. Parkin, T. B., and Brock, T. D. 1981. The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnology and Oceanography 26:880–890.CrossRefGoogle Scholar
  55. Pfennig, N. 1980. Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: A review, p. 127–137. In: Gottschalk, G., Pfennig, N., and Werner, H. (ed.), Anaerobes and anaerobic infections. G. Fischer Verlag, Stuttgart, GermanyGoogle Scholar
  56. Pfennig, N. 1989. Ecology of phototrophic purple and green sulfur bacteria, p. 97–116. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech, Madison, WI. and Springer-Verlag, NY.Google Scholar
  57. Pfennig, N., and Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon clathratiforme. Archiv für Mikrobiologie 59:226–236.PubMedCrossRefGoogle Scholar
  58. Pfennig, N., and Trüper, H. G. 1971. Type and neotype strains of the species of phototropic bacteria maintained in pure culture. International Journal of Systematic Bacteriology 21:19–24.CrossRefGoogle Scholar
  59. Pfennig, N., and Trüper, H. G. 1974. The phototrophic bacteria, p. 24–64. In: Buchanan, R. E., and Gibbons, N. E. (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams and Wilkins, Baltimore.Google Scholar
  60. Pfennig, N., and Trüper, H. G. 1977. The Rhodospirillales (phototrophic or photosynthetic bacteria, p. 119–130. In: Laskin, A. I., Lechevalier, H. A. (ed.), CRC Handbook of microbiology, vol. 1. Organismic microbiology, 2nd ed. CRC Press, Cleveland.Google Scholar
  61. Puchkova, N. N., and Gorlenko, V. M. 1976. New brown chlorobacterium, Prosthecochloris phaeoasteroidea nov. sp. (In Russian, with English summary.) Mikrobiologiya 45:655–660.Google Scholar
  62. Repeta, D. J., Simpson, D. J., Jorgensen, B. B., and Jan-nasch, H. W. 1989. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature (London) 342:69–72.CrossRefGoogle Scholar
  63. Sintsov, N. V., Ivanovskii, R. N., and Kondratieva, E. N. 1980. ATP-dependent citrate lyase in the green phototrophic bacterium Chlorobium limicola. Mikrobiologiya (English translation) 49:449–452.Google Scholar
  64. Steinmetz, M., and Fischer, U. 1982. Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum, purification, characterization and sulfur metabolism. Archives of Microbiology 131:19–26.CrossRefGoogle Scholar
  65. Strzeszewski, B. 1913. Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bulletin de l’Academie des Sciences de Cracovie. Serie B. 309–334.Google Scholar
  66. Szafer, W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin de L’Academie des Sciences de Cracovie, Serie B. 161–167.Google Scholar
  67. Trüper, H. G. 1970. Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20:6–16.CrossRefGoogle Scholar
  68. Trüper, H. G. 1981a. Photolithotrophic sulfur oxidation, p. 199–211. In: Bothe, H., and Trebst, A. (ed.), Biology of Inorganic Nitrogen and Sulfur. Springer-Verlag, Berlin.Google Scholar
  69. Trüper, H. G. 1981b. Versatility of carbon metabolism in the phototrophic bacteria, p. 116–121. In: Dalton, H. (ed.), Microbial Growth on C, Compounds. Heyden, London.Google Scholar
  70. Trüper, H. G. 1989. Physiology and biochemistry of phototrophic bacteria, p. 267–282. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech, Madison, WI. and Springer-Verlag, NY.Google Scholar
  71. Trüper, H. G., and Fischer, U. 1982. Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Philosophical Transactions of the Royal Society B 298:529–542.CrossRefGoogle Scholar
  72. Trilper, H. G., and Genovese, S. 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13:225–232.CrossRefGoogle Scholar
  73. Trüper, H. G., and Peck, H. D., Jr. 1970. Formation of adenylylsulfate in photosynthetic bacteria. Archiv für Mikrobiologie 73:125–142.PubMedGoogle Scholar
  74. Trüper, H. G., and Pfennig, N. 1971. Family of phototrophic green sulfur bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species. Request for an opinion. International Journal of Systematic Bacteriology 21:8–10.CrossRefGoogle Scholar
  75. Trüper, H. G., and Yentsch, C. S. 1967. Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria. Journal of Bacteriology 94:1255–1256.PubMedPubMedCentralGoogle Scholar
  76. Trüper, H. G., Lorenz, C., Schedel, M., and Steinmetz, M. 1988. Metabolism of thiosulfate in Chlorobium, p. 189200. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and Trüper, H. G. (ed.), Green photosynthetic bacteria. Plenum Press, New York.Google Scholar
  77. Utermöhl, H. 1925. Limnologische Phytoplanktonstudien. Archiv für Hydrobiologie. Suppl. 5:1–527.Google Scholar
  78. van den Eynde, H., van der Peer, Y., Perry, J., and De Wachter, R. 1990. 5S rRNA sequences of representatives of the genera Chlorobium, Prosthecochloris, Thermomicrobium,Cytophaga, Flavobacterium, Flexibacter and Saprospira and a discussion of the evolution of eubacteria in general. Journal of General Microbiology 136:11–18.Google Scholar
  79. van Niel, C. B. 1931. On the morphology and physiology of the purple and green sulphur bacteria. Archly für Mikrobiologie 3:1–112.CrossRefGoogle Scholar
  80. Veldhuis, M. J. W., and van Gemerden, H. 1986. Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate and light as limiting factors. FEMS Microbiology Ecology 38:31–38.CrossRefGoogle Scholar
  81. Vetter, H. 1937. Limnologische Untersuchungen über das Phytoplankton und seine Beziehungen zur Ernährung des Zooplanktons im Schleinsee bei Langenargen am Bodensee. Internationale Revue der gesamten Hydrobiologie 34:499–561.CrossRefGoogle Scholar
  82. Vignais, P. M., Colbeau, A., Willison, J. C., and Jouanneau, Y. 1985. Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria. Advances in Microbial Physiology 26:155–234.PubMedGoogle Scholar
  83. Woese, C. R. 1987. Bacterial evolution. Microbiological Reviews 51:221–271.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

There are no affiliations available

Personalised recommendations