Skip to main content

The Family Chlorobiaceae

  • Chapter
The Prokaryotes

Abstract

The species and genera included in the physiological and ecological group of the green sulfur bacteria (Chlorobium and related genera; the Chlorobiaceae) share a number of particular characteristics which suggest that these genera may be genetically related. However, until now only a few strains have been studied with respect to the similarities of the oligonucleotide sequences of their 16S rRNA (Woese, 1987) and their 5S rRNA (van den Eynde et al., 1990). Thus, the Chlorobiaceae cannot yet be considered as a family of genetically related genera comparable to the Chromatiaceae (Fowler et al., 1984) (see also Chapter 170). The closest relatives of the Chlorobiaceae analyzed so far form a cluster containing Bacteroides fragilis and other Bacteroides species; with respect to all other groups of anoxygenic phototrophic bacteria, the Chlorobiaceae appear to be a well-isolated group (SAB value < 0.25).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Anagnostides. K., and Overbeck, J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–171.

    Google Scholar 

  • Antranikian, G., Herzberg, C., and Gottschalk, G. 1982. Characterization of ATP citrate lyase from Chlorobium limicola. Journal of Bacteriology 152:1284–1287.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bergstein, T., Henis, Y., and Cavari, B. Z. 1979. Investigations on the phototrophic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Canadian Journal of Microbiology 79:999–1007.

    Article  Google Scholar 

  • Bias, U., and TrĂ¼per, H. G. 1987. Species specific release of sulfate from adenylyl sulfate by ATP sulfurylase or ADP sulfurylase in the green sulfur bacteria Chlorobium limicola and Chlorobium vibrioforme. Archives of Microbiology 147:406–410.

    Article  CAS  Google Scholar 

  • Biebl, H., and Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.

    Article  CAS  Google Scholar 

  • Buder, J. 1913. Chlorobium mirabile. Berichte der Deutschen Botanischen Gesellschaft 31:80–97.

    Google Scholar 

  • Caldwell, D. E., and Tiedje, J. M. 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Canadian Journal of Microbiology 21:377–385.

    Article  PubMed  CAS  Google Scholar 

  • Caumette, P. 1984. Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Canadian Journal of Microbiology 30:273–284.

    Article  CAS  Google Scholar 

  • Caumette, R 1986. Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prèvost Lagoon, France). FEMS Microbiology Ecology 38:113–124.

    CAS  Google Scholar 

  • Cork, D. J. 1982. Acid waste gas bioconversion-an alternative to the Claus desulfurization process. Development of Industrial Microbiology 23:379–387.

    CAS  Google Scholar 

  • Cork, D. J., and Cusanovich, M. A. 1979. Continuous disposal of sulfate by a bacterial mutualism. Development of Industrial Microbiology 20:591–602.

    Google Scholar 

  • Cork, D. J., Garunas, R., and Sajjad, A. 1983. Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the production of sulfur and organic carbon from a gas stream containing HZS and CO,. Applied Environmental Microbiology 45:913–918.

    Google Scholar 

  • Cork, D. J., and Ma, S. 1982. Acid-gas bioconversion favors sulfur production. Biotechnology and Bioengineering, Sympos. No. 12:285–290.

    CAS  Google Scholar 

  • Cork, D. J., Mathers, J., Maka, A., and Srnak, A. 1985. Control of oxidative sulfur metabolism of Chlorobium limicola f. thiosulfatophilum. Applied Environmental Microbiology 49:269–272.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Culver, D. A., and Brunskill, G. J. 1969. Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnology and Oceanography 14:862–873.

    Article  CAS  Google Scholar 

  • Czeczuga, B. 1968. Primary production of the green hydro-sulfuric bacteria Chlorobium limicola Nads. (Chlorobacteriaceae). Photosynthetica 2:11–15.

    Google Scholar 

  • Drews, G. 1989. Energy transduction in phototrophic bacteria, p. 461–480. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech, Madison, WI. and Springer-Verlag, NY.

    Google Scholar 

  • Dubinina, G. A., and Kuznetsov, S. J. 1976. The ecological and morphological characteristics of microorganisms in Lesnaya Lamba (Karelia). International Revue der gesamten Hydrobiologie 61:1–19.

    Article  Google Scholar 

  • Evans, W. C. W., Buchanan, B. B., and Arnon, D. I. 1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences USA 55:928–933.

    Article  CAS  Google Scholar 

  • Fischer, U. 1984. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria, p. 383–407. In: MĂ¼ller, A. and Krebs, B. (ed.), Sulfur, its significance for chemistry, for the geo-, bio-and cosmosphere and technology. Elsevier, Amsterdam.

    Google Scholar 

  • Fowler, V. J., Pfennig, N., Schubert, W., and Stackebrandt, E. 1984. Toward a phylogeny of phototrophic purple sulfur bacteria-16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Archives of Microbiology 139:382–387.

    Article  CAS  Google Scholar 

  • Fuchs, G., Stupperich, E., and Jaenchen, R. 1980a. Autotrophic CO, fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Archives of Microbiology 128:56–64.

    Article  CAS  Google Scholar 

  • Fuchs, G., Stupperich, E., and Jaenchen, R. 1980b. Autotrophic CO, fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Archives of Microbiology 128:64–72.

    Article  CAS  Google Scholar 

  • Gibson, J., Pfennig, N., and Waterbury, J. B. 1984. Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing and gliding green sulfur bacterium. Archives of Microbiology 138:96–101.

    Google Scholar 

  • Gloe, A., Pfennig, N., Brockmann, H., Jr., and Trowitzsch, W. 1975. A new bacteriochlorophyll from brown-colored Chlorobiaceae. Archives of Microbiology 102:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Göbel, F. 1978. Direct measurement of pure absorbance spectra of living phototrophic microorganisms. Biochimica et Biophysica Acta 538:593–602.

    Article  PubMed  Google Scholar 

  • Gogotov, I. N. 1986. Hydrogenases of phototrophic microorganisms. Biochimie 68:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko, V. M. 1970. A new phototrophic green sulphur bacterium-Prosthecochloris aestuarii nov. gen., nov. spec. Zeitschrift fur Allgemeine Mikrobiologie 10:147–149.

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko, V. M. 1972. Phototrophic brown sulfur bacteria Pelodictyon phaeum nov. sp. (In Russian, with English summary.) Mikrobiologiya 41:370–371.

    CAS  Google Scholar 

  • Gorlenko, V. M., Chebotarev, E. N., and Kachalkin, V. I. 1973. Microbiological processes of oxidation of hydrogen sulfide in the Repnoe lake (Slavonic lakes). Microbiology (English translation of Mikrobiologiya) 42:723–728.

    CAS  Google Scholar 

  • Gorlenko, V. M., Chebotarev, E. N., and Kachalkin, V. I. 1974. Participation of microorganisms in sulfur turnover in Pomiaretzkoe Lake. (In Russian, with English summary.) Mikrobiologiya 43:908–914.

    CAS  Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., and Kusnetsov, S. I. 1977. Ecology of aquatic microorganisms. (In Russian.) Moscow: Izdatel’stvo Nauka.

    Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I. 1983. The ecology of aquatic micro-organisms. Stuttgart, E. Schweizerbart’ sche Verlagsbuchhandlung.

    Google Scholar 

  • Gorlenko, V. M., and Kuznetsov, S. I. 1971. Vertical distribution of phototrophic bacteria in the Konon’er Lake of the Mari ASSR. Microbiology 40:651–652.

    Google Scholar 

  • Gorlenko, V. M., and Lebedeva, E. V. 1971. New green sulphur bacteria with apophyses. (In Russian, with English summary.) Mikrobiologiya 40:1035–1039.

    CAS  Google Scholar 

  • Gorlenko, V. M., Vainstein, M. B., and Kachalkin, V. I. 1978. Microbiological characteristic of lake Mogilnoye. Archiv fir Hydrobiologie 81:475–492.

    CAS  Google Scholar 

  • Guerrero, R., PedrĂ³s-AliĂ³, C., Esteve, I., and Mas, J. 1987. Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Aboensis 47:125–151.

    Google Scholar 

  • Hallenbeck, P. C. 1987. Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Critical Reviews in Microbiology 14:1–48.

    Article  PubMed  CAS  Google Scholar 

  • Ivanovsky, R. N., Sintsov, N. V., and Kondratieva, E. N. 1980. ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Archives of Microbiology 128:239–242.

    Article  Google Scholar 

  • Khanna, S., and Nicholas, D. J. D. 1983. Substrate phosphorylation in Chlorobium vibrioforme f sp. thiosulfatophilum. Journal of General Microbiology 129:1365–1370.

    CAS  Google Scholar 

  • Kirchhoff, J. and TrĂ¼per, H. G. 1974. Adenylylsulfate reductase of Chlorobium limicola. Archives of Microbiology 100:115–120.

    Article  CAS  Google Scholar 

  • Kobayashi, H. A., Stenstrom, M., and Mah, R. A. 1983. Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Res. 17:579–587.

    Article  CAS  Google Scholar 

  • Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R., and Clark, W. A. (ed.). 1975. International code of nomenclature of bacteria. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Lauterborn, R. 1915. Die sapropelische Lebewelt. Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg. Neue Folge, vol. 13:395–481.

    Google Scholar 

  • Lippert, K. D. and Pfennig, N. 1969. Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum Wachstum and CO2 Fixierung. Archiv fĂ¼r Mikrobiologie 65:29–47.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M., Leadbetter, E. R., Pfennig, N., TrĂ¼per, H. G. 1971. Deoxyribonucleic acid base compositions of phototrophic bacteria. International Journal of Systematic Bacteriology 21:222–230.

    Article  Google Scholar 

  • Matheron, R., and Baulaigue, R. 1972. BactĂ©ries photosynthetiques sulfureuses marines. Assimilation des substances organiques et minĂ©rales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur dĂ©veloppement. Archiv fĂ¼r Mikrobiologie 86:291–304.

    Article  PubMed  CAS  Google Scholar 

  • Montesinos, E., Guerrero, R., Abella, C., and Esteve, I. 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Applied and Environmental Microbiology 46:1007–1016.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and TrĂ¼per, H. G. (ed.), 1988. Green photosynthetic bacteria. Plenum Press, New York

    Google Scholar 

  • Overmann, J. and Pfennig, N. 1989. Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch. Microbiol. 152:401–406.

    Google Scholar 

  • Overmann, J., and Tilzer, M. M. 1989. Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake. Mittlerer Buchensee, West-Germany Aquatic Sciences 51:261–278.

    Article  Google Scholar 

  • Paalme, T., Olivson, A., and Vilu, R. 1982a. ’3C-NMR study of the glucose synthesis pathways in the bacterium Chlorobium thiosulfatophilum. Biochimica et Biophysica Acta 720:303–310.

    Google Scholar 

  • Paalme, T., Olivson, A., and Vilu, R. 1982b. “C-NMR study of CO2-fixation during the heterotrophic growth in Chlorobium thiosulfatophilum. Biochimica et Biophysica Acta 720:311–319.

    Google Scholar 

  • Parkin, T. B., and Brock, T. D. 1981. The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnology and Oceanography 26:880–890.

    Article  CAS  Google Scholar 

  • Pfennig, N. 1980. Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: A review, p. 127–137. In: Gottschalk, G., Pfennig, N., and Werner, H. (ed.), Anaerobes and anaerobic infections. G. Fischer Verlag, Stuttgart, Germany

    Google Scholar 

  • Pfennig, N. 1989. Ecology of phototrophic purple and green sulfur bacteria, p. 97–116. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech, Madison, WI. and Springer-Verlag, NY.

    Google Scholar 

  • Pfennig, N., and Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon clathratiforme. Archiv fĂ¼r Mikrobiologie 59:226–236.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., and TrĂ¼per, H. G. 1971. Type and neotype strains of the species of phototropic bacteria maintained in pure culture. International Journal of Systematic Bacteriology 21:19–24.

    Article  Google Scholar 

  • Pfennig, N., and TrĂ¼per, H. G. 1974. The phototrophic bacteria, p. 24–64. In: Buchanan, R. E., and Gibbons, N. E. (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Pfennig, N., and TrĂ¼per, H. G. 1977. The Rhodospirillales (phototrophic or photosynthetic bacteria, p. 119–130. In: Laskin, A. I., Lechevalier, H. A. (ed.), CRC Handbook of microbiology, vol. 1. Organismic microbiology, 2nd ed. CRC Press, Cleveland.

    Google Scholar 

  • Puchkova, N. N., and Gorlenko, V. M. 1976. New brown chlorobacterium, Prosthecochloris phaeoasteroidea nov. sp. (In Russian, with English summary.) Mikrobiologiya 45:655–660.

    CAS  Google Scholar 

  • Repeta, D. J., Simpson, D. J., Jorgensen, B. B., and Jan-nasch, H. W. 1989. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature (London) 342:69–72.

    Article  CAS  Google Scholar 

  • Sintsov, N. V., Ivanovskii, R. N., and Kondratieva, E. N. 1980. ATP-dependent citrate lyase in the green phototrophic bacterium Chlorobium limicola. Mikrobiologiya (English translation) 49:449–452.

    Google Scholar 

  • Steinmetz, M., and Fischer, U. 1982. Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum, purification, characterization and sulfur metabolism. Archives of Microbiology 131:19–26.

    Article  CAS  Google Scholar 

  • Strzeszewski, B. 1913. Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bulletin de l’Academie des Sciences de Cracovie. Serie B. 309–334.

    Google Scholar 

  • Szafer, W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin de L’Academie des Sciences de Cracovie, Serie B. 161–167.

    Google Scholar 

  • TrĂ¼per, H. G. 1970. Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20:6–16.

    Article  Google Scholar 

  • TrĂ¼per, H. G. 1981a. Photolithotrophic sulfur oxidation, p. 199–211. In: Bothe, H., and Trebst, A. (ed.), Biology of Inorganic Nitrogen and Sulfur. Springer-Verlag, Berlin.

    Google Scholar 

  • TrĂ¼per, H. G. 1981b. Versatility of carbon metabolism in the phototrophic bacteria, p. 116–121. In: Dalton, H. (ed.), Microbial Growth on C, Compounds. Heyden, London.

    Google Scholar 

  • TrĂ¼per, H. G. 1989. Physiology and biochemistry of phototrophic bacteria, p. 267–282. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech, Madison, WI. and Springer-Verlag, NY.

    Google Scholar 

  • TrĂ¼per, H. G., and Fischer, U. 1982. Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Philosophical Transactions of the Royal Society B 298:529–542.

    Article  Google Scholar 

  • Trilper, H. G., and Genovese, S. 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13:225–232.

    Article  Google Scholar 

  • TrĂ¼per, H. G., and Peck, H. D., Jr. 1970. Formation of adenylylsulfate in photosynthetic bacteria. Archiv fĂ¼r Mikrobiologie 73:125–142.

    PubMed  Google Scholar 

  • TrĂ¼per, H. G., and Pfennig, N. 1971. Family of phototrophic green sulfur bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species. Request for an opinion. International Journal of Systematic Bacteriology 21:8–10.

    Article  Google Scholar 

  • TrĂ¼per, H. G., and Yentsch, C. S. 1967. Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria. Journal of Bacteriology 94:1255–1256.

    PubMed  PubMed Central  Google Scholar 

  • TrĂ¼per, H. G., Lorenz, C., Schedel, M., and Steinmetz, M. 1988. Metabolism of thiosulfate in Chlorobium, p. 189200. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and TrĂ¼per, H. G. (ed.), Green photosynthetic bacteria. Plenum Press, New York.

    Google Scholar 

  • Utermöhl, H. 1925. Limnologische Phytoplanktonstudien. Archiv fĂ¼r Hydrobiologie. Suppl. 5:1–527.

    Google Scholar 

  • van den Eynde, H., van der Peer, Y., Perry, J., and De Wachter, R. 1990. 5S rRNA sequences of representatives of the genera Chlorobium, Prosthecochloris, Thermomicrobium,Cytophaga, Flavobacterium, Flexibacter and Saprospira and a discussion of the evolution of eubacteria in general. Journal of General Microbiology 136:11–18.

    Google Scholar 

  • van Niel, C. B. 1931. On the morphology and physiology of the purple and green sulphur bacteria. Archly fĂ¼r Mikrobiologie 3:1–112.

    Article  Google Scholar 

  • Veldhuis, M. J. W., and van Gemerden, H. 1986. Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate and light as limiting factors. FEMS Microbiology Ecology 38:31–38.

    Article  CAS  Google Scholar 

  • Vetter, H. 1937. Limnologische Untersuchungen Ă¼ber das Phytoplankton und seine Beziehungen zur Ernährung des Zooplanktons im Schleinsee bei Langenargen am Bodensee. Internationale Revue der gesamten Hydrobiologie 34:499–561.

    Article  Google Scholar 

  • Vignais, P. M., Colbeau, A., Willison, J. C., and Jouanneau, Y. 1985. Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria. Advances in Microbial Physiology 26:155–234.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. 1987. Bacterial evolution. Microbiological Reviews 51:221–271.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

TrĂ¼per, H.G., Pfennig, N. (1992). The Family Chlorobiaceae. In: Balows, A., TrĂ¼per, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics