The Prokaryotes pp 3416-3487 | Cite as

The Myxobacteria

  • Hans Reichenbach
  • Martin Dworkin


The myxobacteria are Gram-negative, unicellular, gliding bacteria with rod-shaped vegetative cells (Fig. 1). Because of their gliding movement, colonies develop as thin, film-like, spreading swarms, particularly on media low in organic constituents (lean media) (Fig. 2). Under starvation conditions, the myxobacteria undergo an impressive process of cooperative morphogenesis: the vegetative cells aggregate and pile up, and the resulting cell mass differentiates into a fruiting body (Fig. 3). Myxobacterial fruiting bodies show various degrees of complexity, both morphologically and structurally. They typically measure between 50 and 500 μm, and they can thus be easily seen with the naked eye. Within the maturing fruiting body, a cellular differentiation takes place during which the vegetative cells convert into short, fat, optically refractile myxospores (Figs. 1 and 3). The myxospores are desiccation resistant and allow the organism to survive unfavorable environmental conditions.

Fig. 1.

Various types of myxobacterial cells. (a to d) Vegetative cells. (a and b) The Cystobacterineae type: (a) Cystobacter ferrugineus, cells from a liquid culture. (b) Stigmatella aurantiaca, cells in situ on agar surface in a chamber culture. (c and d) The Sorangineae type. (c) Chondromyces crocatus in a chamber culture. (d) Sorangium compositum in a chamber culture. (e to h) Myxospores of members of the Cystobacterineae. (e) Myxospores of Cystobacter ferrugineus, from a crushed, degenerated, Archangium-like, fruiting body; under oil immersion, the high optical refractility of the myxospores is not apparent. (f) Myxospores of Cystobacter velatus from a crushed fruiting body sporangiole; oil immersion. (g) Experimentally induced myxospores of Stigmatella aurantiaca on the agar surface in a chamber culture; under the 40 × dry objective, the high optical refractility of the myxospores becomes very conspicuous. (h) Myxospores from a Myxococcus xanthus fruiting body; the optical refractility of these spherical myxospores is so high that it is recognizable even under oil immersion. All photographs are in phase contrast. Bars = 10 μm.


Vegetative Cell Fruiting Body Agar Surface Mature Fruiting Body Bacteriolytic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abadie, M. 1967. Formation intracytoplasmiques du type “mesosome” chez Chondromyces crocatus Berkeley et Curtis. C. R. Acad. Sci. Paris, Sér. D, 265: 2132–2134.Google Scholar
  2. Abadie, M. 1968. Mise en évidence des formations méso- somiques dans les cellules végétatives du Chondro- myces apiculatus Thaxter. C. R. Acad. Sci. Paris, Sér. D, 267: 1538–1540.Google Scholar
  3. Abadie, M. 1971a. Contribution a la connaissance des myxobactéries supérieures I. Recherches culturales et microculturales sur le Chondromyces crocatus Berkeley et Curtis. Ann. Sci. Natur., Botanique (Paris), 12e Sér., 12: 255–344.Google Scholar
  4. Abadie, M. 1971b. Contribution a la connaissance des myxobactéries supérieures II. Donnée ultrastructurales et morphogénétiques sur le Chondromyces crocatus Berkeley et Curtis. Ann. Sci. Natur., Botanique (Paris), 12e Sér., 12: 345–428.Google Scholar
  5. Agnihothrudu, V., G. C. S. Barua, and K. C. Barua. 1959. Occurrence of Chondromyces in the rhizosphere of plants. Indian Phytopathol. 12: 158–160.Google Scholar
  6. Arias, J.M., C. Rodriguez, and E. Montoya. 1979a. Purification and partial characterization of an antibiotic produced by Myxococcus coralloides. J. Antibiot. 32: 205–211.PubMedGoogle Scholar
  7. Arias, J. M., C. Rodriguez, and E. Montoya. 1979b. Biological activity of an antibiotic produced by Myxococcus coralloides. Microbios 24: 123–131.PubMedGoogle Scholar
  8. Arnold, J. W., and L. J. Shimkets. 1988a. Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red. J. Bacteriol. 170: 5765–5770.PubMedPubMedCentralGoogle Scholar
  9. Arnold, J. W., and L. J. Shimkets. 1988b. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170: 5771–5777.PubMedPubMedCentralGoogle Scholar
  10. Aschner, M., and M. Chorin-Kirsch. 1970. Light-oriented locomotion in certain myxobacter species. Arch. Mikrobiol. 74: 308–314.Google Scholar
  11. Bacon, K., and F. A. Eiserling. 1968. A unique structure in microcysts of Myxococcus xanthus. J. Ultrastruct. Res. 21: 378–382.Google Scholar
  12. Balsalobre, J. M., R. Ruiz-Väzques, and F. J. Murillo. 1987. Light induction of gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 84: 2359–2362.PubMedPubMedCentralGoogle Scholar
  13. Baur, E. 1905. Myxobakterien-Studien. Arch. Protistenk. 5: 92–121.Google Scholar
  14. Becker, K. 1990. Antibiotikca-Produktion mit trägerfixierten Myxobakterien. Ph.D. thesis. Technical University, Braunschweig, Germany.Google Scholar
  15. Beebe, J. M. 1941. Studies on the myxobacteria 2. The role of myxobacteria as bacterial parasites. Iowa State College J. Sci. 15: 319–337.Google Scholar
  16. Behrens, J., J. Flossdorf, and H. Reichenbach. 1976. Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). Int. J. Syst. Bacteriol. 26: 561–562.Google Scholar
  17. Bender, H. 1962. Untersuchungen an Myxococcus Xanthus I. Bildungsbedingungen, Isolierung und Eigenschaften eines bakteriolytischen Enzymsystems. Arch. Mikrobiol. 43: 262–279.Google Scholar
  18. Bender, H. 1963. Untersuchungen an Myxococcus Xanthus II. Partielle Lyse von Pullularia pullulans und einigen Hefen durch ein extrazelluläres Enzymsystem. Arch Mikrobiol. 45: 407–422.PubMedGoogle Scholar
  19. Berkeley, M. J. 1857. Introduction to cryptogamic botany (on Stigmatella and Chondromyces), p. 313–315. H. Bailliere Publishers, London.Google Scholar
  20. Beyer, P., and H. Kleinig. 1985. In vitro synthesis of CIS C60 polyprenols in a cell-free system of Myxococcus fulvus and determination of chain length by high-performance liquid chromatography, p. 299–303. In: Methods in enzymology, vol. 110. Academic Press, New York.Google Scholar
  21. Blackhart, B. D., and D. Zusman. 1985. “Frizzy” genes of Myxococcus xanthus are involved in control of the frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82: 8767–8771.Google Scholar
  22. Bojary, M. R., and S. A. Dhala 1989. Coagulase of Myxococcus fulvus NK35 1. Purification and partial characterization. Zbl. Mikrobiol. 144: 347–354.Google Scholar
  23. Borchers, M. 1982. Isolierung und Charakterisierung hefelytischer Enzyme aus dem gleitenden Bakterium Myxococcus fulvus Mx 180 ( Myxobacterales). Ph.D. thesis, Technical University, Braunschweig, Germany.Google Scholar
  24. Brauss, E W., I. Heyne-Katzenberger, and W. Heyne. 1968. Beiträge zur Mikrobiologie von Binnengewässern (II) Arch. Hyg. Bakteriol. 152: 346–349.Google Scholar
  25. Brauss, R. W., I. Heyne-Katzenberger, H. Pech, and H. Barth. 1967. Beiträge zur Mikrobiologie von Binnengewässern (I). Arch. Hyg. Bakteriol. 150: 716–724.PubMedGoogle Scholar
  26. Breton, A. M. 1984. Transposon Tn5 confers streptomycin resistance to Myxococcus xanthus. FEMS Microbiol. Lett. 22: 85–88.Google Scholar
  27. Breton, A. M., and J. F. Guespin-Michel. 1987. Escherichia coli pH 2.5 acid phosphatase and ß-lactamase TEM2 are secreted into the medium by Myxococcus xanthus. FEMS Microbiol. Lett. 40: 183–188.Google Scholar
  28. Breton, A. M., S. Jaoua, and J. Guespin-Michel. 1985. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. J. Bacteriol. 161: 523–528.PubMedPubMedCentralGoogle Scholar
  29. Breton, A. M., J. M. Nicaud, G. Younes, and J. E. GuespinMichel. 1984. Myxococcus xanthus, a Gram-negative nonpathogenic bacterium, that secretes proteins into the extracellular medium growth, is a potential cloning host for excreted proteins production, p. 441–446. In: 3rd European Congress Biotechnol. München, vol. I II. Verlag Chemie, Weinheim, Germany.Google Scholar
  30. Breton, A. M., G. Younes, E van Gijsegem, and J. GuespinMichel. 1986. Expression in Myxococcus xanthus of foreign genes coding for secreted pectate lyases of Erwinia chrysanthemi. J. Biotechnol. 4: 303–311.Google Scholar
  31. Bretscher, A. P., and D. Kaiser. 1978. Nutrion of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133: 763–768.PubMedPubMedCentralGoogle Scholar
  32. Brockman, E. R., 1967. Fruiting myxobacteria from the South Carolina Coast. J. Bacteriol. 94: 1253–1254.PubMedPubMedCentralGoogle Scholar
  33. Brockman, E. R. 1976. Myxobacters from arid Mexican soil. Appl. Environ. Microbiol. 32: 642–644.PubMedPubMedCentralGoogle Scholar
  34. Brockman, E. R., and W. L. Boyd. 1963. Myxobacteria from soils of the Alaskan and Canadian arctic. J. Bacteriol. 86: 605–606.PubMedPubMedCentralGoogle Scholar
  35. Brockman, E. R., and R. L. Todd. 1974. Fruiting myxobacters as viewed with a scanning electron microscope. Int. J. System. Bacteriol. 24: 118–124.Google Scholar
  36. Brown, N. L., R. P. Burchard, D. W. Morris, J. H. Parish, N. D. Stow, and C. Tsopanakis. 1976a. Phage and defective phage of strains of Myxococcus. Arch. Microbiol. 108: 271–279.PubMedGoogle Scholar
  37. Brown, M. L., D. W. Morris, and J. H. Parish. 1976b. DNA of Myxococcus bacteriophage MX-1: macromolecular properties and restriction fragments. Arch. Microbiol. 108: 221–226.PubMedGoogle Scholar
  38. Brown, N. L., and J. H. Parish. 1976. Extrachromosomal DNA in chloramphenicol resistant Myxococcus strains. J. Gen. Microbiol. 93: 63–68.PubMedGoogle Scholar
  39. Burchard, A. C., R. P. Burchard, and J. A. Kloetzel. 1977. Intracellular, periodic structures in the gliding bacterium Myxococcus xanthus. J. Bacteriol. 132: 666–672.Google Scholar
  40. Burchard, R. P. 1980. Gliding motility of bacteria. Bio Science 30: 157–162.Google Scholar
  41. Burchard, R. P. 1981. Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu. Rev. Microbiol. 35: 497–529.PubMedGoogle Scholar
  42. Burchard, R. P. 1984. Gliding motility and taxes, p. 139161. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  43. Burchard, R. R, and D. T. Brown. 1973. Surface structure of gliding bacteria after freeze-etching. J. Bacteriol. 114: 1351–1355.PubMedPubMedCentralGoogle Scholar
  44. Burchard, R. P., A. C. Burchard, and J. H. Parish. 1977. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol. 23: 1657–1662.PubMedGoogle Scholar
  45. Burchard, R. R, and M. Dworkin. 1966a. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 91: 535–545.PubMedPubMedCentralGoogle Scholar
  46. Burchard, R. P., and M. Dworkin. 1966b. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91: 1305–1313.Google Scholar
  47. Burchard, R. R, and S. B. Hendricks. 1969. Action spectrum for carotenogenesis in Myxococcus xanthus. J. Bacteriol. 97: 1165–1168.PubMedPubMedCentralGoogle Scholar
  48. Burchard, R. R, and J. H. Parish. 1975. Mutants of Myxococcus xanthus insensitive to glycerol-induced myxospore formation. Arch. Microbiol. 104: 289–292.PubMedGoogle Scholar
  49. Burchard, R. P., and J. H. Parish. 1976. Chloramphenicol resistance in Myxococcus xanthus. Antimicrobiol. Agents Chemother. 7: 233–238.Google Scholar
  50. Burchard, R. P., and H. Voelz. 1972. Bacteriophage infection of Myxococcus xanthus during cellular differentiation and vegetative growth. Virology 48: 555–556.PubMedGoogle Scholar
  51. Burnham, J. C., S. A. Collart, and M. J. Daft. 1984. Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Arch. Microbiol. 137: 220–225.Google Scholar
  52. Burnham, J. C., S. A. Collart, and B. W. Highison. 1981. Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch. Microbiol. 129: 285–294.Google Scholar
  53. Caillon, E., B. Lubochinsky, and D. Rigomier. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153: 1348–1351.PubMedPubMedCentralGoogle Scholar
  54. Callao, V., R. Alvarado, A. Sedano, J. Olivares, and E. Montoya. 1966. Efecto antagonico del Myxococcus xanthus sobre los Azotobacter. Microbiol. Espafi. 19: 45–51.Google Scholar
  55. Campos, J. M., J. Geisselsoder, and D. R. Zusman. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 167–178.PubMedGoogle Scholar
  56. Chen, H., J. M. Keseler, and L. J. Shimkets. 1990. Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis. J. Bacteriol. 172: 4206–4213.PubMedPubMedCentralGoogle Scholar
  57. Coletta, R L., and R. G. G. Miller. 1986. The extracellular proteases of Myxococcus xanthus. FEMS Microbiol. Lett. 37: 203–207.Google Scholar
  58. Couke, R. 1969. Morphology and morphogenesis of Sor- angium compositum. J. Appl. Bacteriol. 32: 24–29.Google Scholar
  59. Couke, P., and J. R. Voets. 1967. The mineral requirement of Polyangium cellulosum. Zschr. Allgem. Mikrobiol. 7: 175–182.Google Scholar
  60. Couke, R, and J. P. Voets. 1968. Étude de la cellulolyse enzymatique par Sorangium compositum. Ann. Inst. Pasteur 115: 549–560.Google Scholar
  61. Cumsky, M. G., and D. R. Zusman. 1981. Purification and characterization of myxobacterial hemmagglutinin, a development-specific lectin of Myxococcus xanthus. J. Biol. Chem. 256: 12581–12588.PubMedGoogle Scholar
  62. Cunningham, J. L. 1972. A miracle mounting fluid for permanent whole-mounts of microfungi. Mycologia 64: 906–911.Google Scholar
  63. Daft, M. J., J. C. Burnham, and Y. Yamamoto. 1985. Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures. J. Appl. Bacteriol. 59: 73–80.Google Scholar
  64. Dawid, W. 1978. Fruchtkörper-bildende Myxobakterien in Böden Brasiliens. Zschr. Allgem. Mikrobiol. 18: 83–93.Google Scholar
  65. Dawid, W. 1979. Vorkommen und Verbreitung Fruchtkörperbildender Myxobakterien im Siebengebirge. Zschr. Allgem. Mikrobiol. 19: 705–719.Google Scholar
  66. Dawid, W. 1980. Fruchtkörperbildende Myxobakterien VII. Die Chondromyces-Arten: Ch. apiculatus und Ch. Ianuginosus. Entwicklungszyklus. Mikrokosmos 69: 73–79.Google Scholar
  67. Dawid, W. 1984. Myxobakterien in ungestörten Hochmooren des Hohen Venn (Hautes Fagnes, Belgien). Syst. Appl. Microbiol. 5: 555–563.Google Scholar
  68. Dawid, W., C. A. Gallikowski, and P. Hirsch. 1988. Psychrophilic myxobacteria from Antarctic soils. Polarforschung 58: 271–278.Google Scholar
  69. Dérijard, B., M. Ben Aíssa, B. Lubochinsky, and Y. Cenatiempo. 1989. Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell. Biochem. Biophys. Res. Commun. 158: 562–568.PubMedGoogle Scholar
  70. Devi, A. L., and H. D. McCurdy. 1984. Cyclic GMP and cyclic AMP binding proteins in Myxococcus xanthus. J. Gen. Microbiol. 130: 1845–1849.Google Scholar
  71. Dhundale, A., T. Furuichi, M. Inouye, and S. Inouye. 1988a. Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus. J. Bacteriol. 170: 5620–5624.PubMedPubMedCentralGoogle Scholar
  72. Dhundale, A., M. Inouye, and S. Inouye. 1988b. A new species of multicopy single-stranded DNA from Myxococcus xanthus with conserved structural features. J. Biol. Chem. 263: 9055–9058.PubMedGoogle Scholar
  73. Dhundale, A., B. Lampson, T. Furuichi, M. Inouye, and S. Inouye. 1987. Structure of msDNA from Myxococcus xanthus: evidence for a long self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51: 1105–1112.PubMedGoogle Scholar
  74. Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164: 914–917.PubMedPubMedCentralGoogle Scholar
  75. Dill, D., H. Eckau, and H. Budzikiewicz. 1985. Neuartige Cerebroside aus Cystobacter fuscus (Myxobacterales). Zschr. Natuforsch. 40b: 1738–1746.Google Scholar
  76. Ditmar, L. P. F. 1814. Die Pilze Deutschlands. In: J. Sturm (ed.), Deutschlands Flora, III. Abteilung, 1. Bändchen, Heft 2 (on Polyangium), p. 55–56 and plate 27. Nürnberg.Google Scholar
  77. Dobson, W. J., and H. D. McCurdy. 1979. The function of fimbriae in Myxococcus xanthus. I. Purification and properties of M. xanthus fimbriae. Can. J. Microbiol. 25: 1152–1160.Google Scholar
  78. Downard, J. S. 1988. Tn5-mediated transposition of plasmid DNA after transduction to Myxococcus xanthus. J. Bacteriol. 170: 4939–4941.PubMedPubMedCentralGoogle Scholar
  79. Drews, G. 1974. Mikrobiologisches Praktikum, 2nd ed. Springer-Verlag, Berlin.Google Scholar
  80. Dubos, R. 1928. The decomposition of cellulose by aerobic bacteria. J. Bacteriol. 15: 223–234.PubMedPubMedCentralGoogle Scholar
  81. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84: 250–257.PubMedPubMedCentralGoogle Scholar
  82. Dworkin, M. 1969. Sensitivity of gliding bacteria to actinomycin D. J. Bacteriol. 98: 851–852.PubMedPubMedCentralGoogle Scholar
  83. Dworkin, M. 1973. Cell-cell interactions in the myxobacteria. Symp. Gen. Microbiol. 23: 125–142.Google Scholar
  84. Dworkin, M. 1977. The myxobacterales In: A. I. Laskin and H. A. Lechevalier (ed.), Handbook of microbiology, vol. I. CRC Press, Boca Raton, FL.Google Scholar
  85. Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154: 452–459.PubMedPubMedCentralGoogle Scholar
  86. Dworkin, M. 1984. Research on the myxobacteria: past, present, future, p. 221–245. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  87. Dworkin, M. 1985. Developmental biology of the bacteria. Benjamin/Cummings Publishing Co., Reading, MA.Google Scholar
  88. Dworkin, M. 1990. Cell-cell interactions in myxobacteria, In: M. Dworkin (ed.), Microbial cell interactions. ASM Press, Washington, DC. In press.Google Scholar
  89. Dworkin, M., and D. Eide. 1983. Myxococcus xanthus does not respond chemotactically to moderate concentration gradients. J. Bacteriol. 154: 437–442.Google Scholar
  90. Dworkin, M., and S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146: 243–244.PubMedGoogle Scholar
  91. Dworkin, M., and D. Kaiser. 1985. Cell interactions in myxobacterial growth and development. Science 230: 18–24.PubMedGoogle Scholar
  92. Dworkin, M., K.H. Keller, and D. Weisberg. 1983. Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 1367–1371.PubMedPubMedCentralGoogle Scholar
  93. Dworkin, M., and D.J. Niederpruem. 1964. Electron transport system in vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 87: 316–322.PubMedPubMedCentralGoogle Scholar
  94. Dworkin, M., and W. Sadler. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. I. General description. J. Bacteriol. 91: 1516–1519.PubMedPubMedCentralGoogle Scholar
  95. Eckau, H., D. Dill, and H. Budzikiewicz. 1984. Neuartige Ceramide aus Cystobacter fuscus (Myxobacterales). Zschr. Naturforsch. 39c: 1–9.Google Scholar
  96. El Akoum, A., M. Vijayalakshmi, P. Cardon, B. Fournet, M. Sigot, and J. F Guespin-Michel. 1987. Myxococcus xanthus produces an extracellular glycopeptide that displays blood anticoagulant properties. Enzyme Microb. Technol. 9: 426–429.Google Scholar
  97. Fautz, E., L. Grotjahn, and H. Reichenbach. 1981. 2- and 3-hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria, p. 127–133. In: H. Reichenbach and O. B. Weeks (ed.), The FlavobacteriumCytophaga group. Verlag Chemie, Weinheim, Germany.Google Scholar
  98. Fautz, E., G. Rosenfelder, and L. Grotjahn. 1979. Isobranched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.PubMedPubMedCentralGoogle Scholar
  99. Filer, D., S.H. Kindler, and E. Rosenberg. 1977. Myxospore coat synthesis in Myxococcus xanthus: enzymes associated with uridine 5’-diphosphate-N-acetylgalactosamine formation during myxospore development. J. Bacteriol. 131: 745–750.PubMedPubMedCentralGoogle Scholar
  100. Filer, D., E. Rosenberg, and S. H. Kindler. 1973. Aspartokinase of Myxococcus xanthus: “feedback stimulation” by required amino acids. J. Bacteriol. 115: 23–28.PubMedPubMedCentralGoogle Scholar
  101. Finck, G. 1950. Biologische and stoffwechselphysiologische Studien an Myxococcaceen. Arch. Mikrobiol. 15: 358–388.Google Scholar
  102. Fink, J. M., M. Kalos, and J. F. Zissler. 1989. Isolation of cell surface antigen mutants of Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2033–2041.PubMedPubMedCentralGoogle Scholar
  103. Fink, J. M., and J. F. Zissler. 1989a. Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2028–2032.PubMedPubMedCentralGoogle Scholar
  104. Fink, J. M., and J. F. Zissler. 1989b. Defects in motility and development of Myxoccus xanthus lipopolysaccharide mutants. J. Bacteriol. 171: 2042–2048.PubMedPubMedCentralGoogle Scholar
  105. Fluegel, W. 1963. Fruiting chemotaxis in Myxococcus fulvus (myxobacteria). Proc. Minnesota Acad. Sci. 30: 120–123.Google Scholar
  106. Fluegel, W. 1965. Fruiting body populations of Myxococcus fulvus (Myxobacterales). Growth 29: 183–191.PubMedGoogle Scholar
  107. Furuichi, T., A. Dhundale, M. Inouye, and S. Inouye. 1987a. Branched RNA covalently linked to the 5’ end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA. Cell 48: 47–53.PubMedGoogle Scholar
  108. Furuichi, T., S. Inouye, and M. Inouye. 1987b. Biosynthesis and structure of stable branched RNA covalently linked to the 5’ end of multicopy single-stranded DNA of Stigmatella aurantiaca. Cell 48: 55–62.PubMedGoogle Scholar
  109. Galvän, A., R. Anadón, and F. de Castro. 1981. Observation de cuerpos fructiferos de Stigmatella erecta con el microscopio electrónico de barrido. Bol. R. Espar. Hist. Nat. (Biol.) 79: 259–264.Google Scholar
  110. Galvän, A., F. de Castro, and D. Fernández-Galiano. 1986. Ultrastructura de la célula vegetativa de Stigmatella erecta S12. Bol. R. Soc. Espar. Hist. Nat. (Biol.) 81: 59.Google Scholar
  111. Galvän, A., F. de Castro, and D. Fernández-Galiano. 1987. Ultrastructure of the fruiting body of Stigmatella erecta (Myxobacterales). Trans. Am. Microscop. Soc. 106: 89–93.Google Scholar
  112. Geisselsoder, J., J. Campos, and D. R. Zusman. 1978. Physical characterization of MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 179–189.PubMedGoogle Scholar
  113. Geitler, L. 1925. Über Polyangium parasiticum n. sp., eine submerse, parasitische Myxobacteriacee. Arch. Protistenk. 50: 67–88.Google Scholar
  114. Gerth, K. 1975. Untersuchungen über den molekularen Mechanismus der Induktion von Myxosporen bei Stigmatella aurantiaca Sg al (Myxobacterales). Ph.D. thesis, University of Freiburg, Germany.Google Scholar
  115. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1980. Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales) I. Cultivation, isolation, physicochemical and biological properties. J. Antibiot. 33: 1474–1479.PubMedGoogle Scholar
  116. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1982. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. 35: 1454–1459.PubMedGoogle Scholar
  117. Gerth, K., R. Jansen, G. Reifenstahl, G. Höfle, H. Irschik, B. Kunze, H. Reichenbach, and G. Thierbach. 1983. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) I. Production, physicochemical and biological properties and mechanism of action. J. Antibiot. 36: 1150–1156.PubMedGoogle Scholar
  118. Gerth, K., and H. Reichenbach. 1978. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales) I. General characterization of the system. Arch. Microbiol. 177: 173–182.Google Scholar
  119. Gerth, K., and H. Reichenbach. 1986. Determination of bacterial ammonia pools using Myxococcus virescens as an example. Analyt. Biochem. 152: 78–82.PubMedGoogle Scholar
  120. Gerth, K., W. Trowitzsch, G. Piehl, R. Schultze, and J. Lehmann. 1984. Inexpensive media for mass cultivation of myxobacteria. Appl. Microbiol. Biotechnol. 19: 2328.Google Scholar
  121. Gill, J., E. Stellwag, and M. Dworkin. 1985. Monoclonal antibodies against cell-surface antigens of developing cells of Myxococcus xanthus. Ann. Inst. Pasteur/Microbiol. 136A: 11–18.Google Scholar
  122. Gill, J. S., and M. Dworkin. 1986. Cell surface antigens during submerged development of Myxococcus xanthus examined with monoclonal antibodies. J. Bacteriol. 168: 505–511.PubMedPubMedCentralGoogle Scholar
  123. Gill, J. S., and M. Dworkin. 1988. Isolation of additional monoclonal antibodies directed against cell surface antigens of Myxococcus xanthus cells undergoing submerged development. J. Bacteriol. 170: 5953–5955.PubMedPubMedCentralGoogle Scholar
  124. Gnosspelius, G. 1978a. Myxobacterial slime and proteolytic activity. Arch. Microbiol. 116: 51–59.PubMedGoogle Scholar
  125. Gnosspelius, G. 1978b. Purification and properties of an extracellular protease from Myxococcus virescens. J. Bacteriol. 133: 17–25.PubMedPubMedCentralGoogle Scholar
  126. Godchaux, W., and E. R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.PubMedPubMedCentralGoogle Scholar
  127. Gräf, W. 1975. Myxobakterien der Gattung Myxococcus als indirekte Fäkalstoffindikatoren in Oberflächengewässern. Zbl. Bakteriol., 1. Abt. Orig., Reihe B 160: 28–39.Google Scholar
  128. Grilione, P. L. 1968. Serological reactions of some higher myxobacteria. J. Bacteriol. 95: 1202–1204.PubMedPubMedCentralGoogle Scholar
  129. Grimm, K., 1978. Comparison of spontaneous, UV-induced, and nitrosoguanidine-induced mutability to drug resistance in myxobacteria. J. Bacteriol. 135: 748–753.PubMedPubMedCentralGoogle Scholar
  130. Grimm, K., H. K. Galle, and H. H. Heunert. 1971. Archangium violaceum (Myxobacteriales)-Bewegungsaktivität und Kolonieform. Encyclopaedia Cinematographica E 1588, film of the Institut fur den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  131. Grimm, K., and H. Kühlwein. 1973a. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) I. Bewegliche und unbewegliche Zellen von A. violaceum. Arch. Mikrobiol. 89: 105–119.Google Scholar
  132. Grimm, K., and H. Kühlwein. 1973b. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) II. Über den Einfluß des Schleims auf die Bewegung der Zellen und die Entstehung stabiler Suspensionskulturen. Arch. Mikrobiol. 89: 121–132.Google Scholar
  133. Grimm, K., and H. Kühlwein. 1973c. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) III. Über weitere Eigenschaften der K- und S-Zellen. Arch. Mikrobiol. 89: 113–146.Google Scholar
  134. Hagen, D. C., and A. P. Bretscher, and D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Develop. Biol. 64: 284–296.Google Scholar
  135. Hanson, C. W., and M. Dworkin. 1974. Intracellular and extracellular nucleotides and related compounds during the development of Myxococcus xanthus. J. Bacteriol. 118: 486–496.PubMedPubMedCentralGoogle Scholar
  136. Harcke, E., A. Hüttermann, and H. Kühlwein. 1971. Studies on lytic activities of Chondrococcus coralloides (Myxobacteriales) I. Purification and some properties of the bacteriolytic activity. Arch. Mikrobiol. 77: 86–95.PubMedGoogle Scholar
  137. Harcke, E., A. Hüttermann, and H. Kühlwein. 1972. Studies on lytic activities of Chondrococcus coralloides (Myxobacterales) II. Identification of the bacteriolytic enzyme as a muramidase. Arch. Mikrobiol. 85: 6–12.PubMedGoogle Scholar
  138. Hart, B. A., and S. A. Zahler. 1966. Lytic enzyme produced by Myxococcus xanthus. J. Bacteriol. 92: 1632–1637.PubMedPubMedCentralGoogle Scholar
  139. Haskä, G. 1969. Production of lytic exoenzymes in casa-mino acids media by Myxococcus virescens. Physiol. Plant. 22: 1074–1078.Google Scholar
  140. Haskä, G. 1972a. Extracellular lytic enzymes of Myxococcus virescens II. Purification of three bacteriolytic enzymes and determination of their molecular weights and isoelectric points. Physiol. Plant. 26: 221–229.Google Scholar
  141. Haskä, G. 1972b. Extracellular lytic enzymes ofMyxococcus virescens III. Characterization of two endo-ß-B-acetylglucosaminidases. Physiol. Plant. 27: 139–142.Google Scholar
  142. Haskä, G. 1974. Extracellular lytic enzymes of Myxococcus virescens IV. Purification and characterization of a nalanyl-e-N-lysine endopeptidase. Physiol. Plant. 31: 252–256.Google Scholar
  143. Haskä, G. 1975. Influence of clay minerals on sorption of bacteriolytic enzymes. Microb. Ecol. 1: 234–245.Google Scholar
  144. Haskä, G. 1981. Activity of bacteriolytic enzymes adsorbed to clay. Microb. Ecol. 7: 331–341.PubMedGoogle Scholar
  145. Haskä, G., B. Norén, and G. Odham, 19072. Effect of fatty acids on the activity of bacteriolytic enzymes. Physiol. Plant. 27: 187–194.Google Scholar
  146. Haskä, G., and S. Stähl. 1971. Variants of Myxococcus virescens exhibiting dispersed growth. Growth and production of extracellular enzymes and slime. Physiol. Plant. 24: 136–142.Google Scholar
  147. Hecht, V., J. Vorlop, H. Kalbitz, K. Gerth, and J. Lehmann. 1987. Vortex chamber for in situ recovery of the antibiotic myxovirescin A in continuous cultivation. Biotechnol. Bioengineer. 29: 222–227.Google Scholar
  148. Heunert, H. H. 1973. Präparationsmethoden für Vitalbeobachtungen an Mikroorganismen. Zeiss Informationen 20: 40–49.Google Scholar
  149. Heyn, A. N. J. 1957. Bacteriological studies on cotton. Textile Res. J. 27: 591–603.Google Scholar
  150. Hirsch, H. J. 1977. Bacteriocins from Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 115: 45–49.PubMedGoogle Scholar
  151. Hirsch, H. J., H. Tsai, and I. Geffers. 1978. Purification and effects of fulvocin C, a bacteriocin from Myxococcus fulvus Mx f16. Arch. Microbiol. 119: 279–286.PubMedGoogle Scholar
  152. Hodgkin, J., and D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74: 2938–2942.PubMedPubMedCentralGoogle Scholar
  153. Hodgkin, J., and D. Kaiser. 1979a. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171: 167–176.Google Scholar
  154. Hodgkin, J., and D. Kaiser. 1979b. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171: 177–191.Google Scholar
  155. Hook, L. A. 1977. Distribution of myxobacters in aquatic habitats in an alkaline bog. Appl. Environ. Microbiol. 34: 333–335.PubMedPubMedCentralGoogle Scholar
  156. Hüttermann, A. 1969. Studies on bacteriolytic enzyme of Archangium violaceum (Myxobacteriales) II. Partial purification and properties of the enzyme. Arch. Mikrobiol. 67: 306–317.PubMedGoogle Scholar
  157. Imschenezki, A. A. (also: Imshenetski). 1959. Mikrobiologie der Cellulose. (Translated from the Russian edition of 1953.) Akademie Verlag, Berlin.Google Scholar
  158. Imshenetski, A. A., and L. A. Kusjurina. 1951. Bacteriotrophic microorganisms. The evolution of saprophytism and parasitism (in Russian). Mikrobiologiya 20: 312.Google Scholar
  159. Imshenetski, A. A., and L. Solntseva. 1936. On aerobic cellulose-decomposing bacteria. (In Russian, with English summary.) Izvestiia Akad. Nauk SSSR, Classe Sci. Math. Natl. Ser. Biol. 1936: 1115–1172.Google Scholar
  160. Inouye, M., S. Inouye, and D. R. Zusman. 1979a. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Develop. Biol. 68: 579–591.PubMedGoogle Scholar
  161. Inouye, M., S. Inouye, and D. R. Zusman. 1979b. Biosynthesis and self assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 209–213.PubMedPubMedCentralGoogle Scholar
  162. Inouye, S. 1984. Identification of a development-specific promoter of Myxococcus xanthus. J. Mol. Biol. 174: 113–120.PubMedGoogle Scholar
  163. Inouye, S. 1990. Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus. J. Bacteriol. 172: 80–85.PubMedPubMedCentralGoogle Scholar
  164. Inouye, S., T. Franceschini, and M. Inouye. 1983a. Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc. Natl. Acad. Sci. USA 80: 6829–6833.PubMedPubMedCentralGoogle Scholar
  165. Inouye, S., T. Furuichi, A. Dhundale, and M. Inouye. 1987. Stable branched RNA covalently linked to the 5’ end of a single-stranded DNA of myxobacteria, p. 271–284. In: M. Inouye and B. S. Dudock (ed.), Molecular biology of RNA: new perspectives. Academic Press, San Diego.Google Scholar
  166. Inouye, S., P. J. Herzer, and M. Inouye. 1990. Two independent retrons with highly diverse transcriptases in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 87: 942–945.PubMedPubMedCentralGoogle Scholar
  167. Inouye, S., M. Y. Hsu, S. Eagle, and M. Inouye. 1989. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56: 709–717.PubMedGoogle Scholar
  168. Inouye, S., Y. Ike, and M. Inouye. 1983b. Tandem repeat of the genes for protein S, a development-specific protein of Myxococcus xanthus. J. Biol. Chem. 258: 38–40.PubMedGoogle Scholar
  169. Irschik, H., K. Gerth, T. Kemmer, H. Steinmetz, and H. Reichenbach. 1983a. The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales) I. Cultivation, isolation and some chemical and biological properties. J. Antibiot. 36: 6–12.PubMedGoogle Scholar
  170. Irschik, H., K. Gerth, G. Höfle, W. Kohl, and H. Reichenbach. 1983b. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J. Antibiot. 36: 1651–1658.PubMedGoogle Scholar
  171. Irschik, H., R. Jansen, K. Gerth, G. Höfle, and H. Reichenbach. 1987. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J. Antibiot. 40: 7–13.PubMedGoogle Scholar
  172. Irschik, H., R. Jansen, G. Höfle, K. Gerth, and H. Reichenbach. 1985. The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. J. Antibiot. 38: 145–152.PubMedGoogle Scholar
  173. Irschik, H., and H. Reichenbach. 1985. An unusual pattern of carbohydrate utilization in Corallococcus (Myxococcus) coralloides (Myxobacterales). Arch. Microbiol. 142: 40–44.Google Scholar
  174. Jackson, D. J. 1959. The association of a slime bacterium with the inner envelope of the egg of Dytiscus marginalis (Coleoptera), and the less common occurrence of a similar bacterium on the egg of D. semisulcatus. Quart. J. Microscop. Sci. 100: 433–443.Google Scholar
  175. Jahn, E. 1911. Myxobacteriales, p. 187–206. In: Kryptogamenflora der Mark Brandenburg, vol. 5. Gebrüder Borntraeger, Leipzig.Google Scholar
  176. Jahn, E. 1924. Beiträge zur botanischen Protistologie. I. Die Polyangiden. Gebrüder Borntraeger, Leipzig.Google Scholar
  177. Janssen, G. R., J. W. Wireman, and M. Dworkin. 1977. Effect of temperature on the growth of Myxococcus xanthus. J. Bacteriol. 103: 561–562.Google Scholar
  178. Jaoua, S., J. F. Guespin-Michel, and A. M. Breton. 1987. Mode of insertion of the broad-host-range plasmid RP4 and its derivatives into the chromosome of Myxococcus xanthus. Plasmid 18: 111–119.PubMedGoogle Scholar
  179. Jaoua, S., B. Letouvet-Pawlak, C. Monnier, and J. E Guespin-Michel. 1990. Mechanism of integration of the broad-host-range plasmid RP4 into the chromosome of Myxococcus xanthus. Plasmid 23: 183–193.PubMedGoogle Scholar
  180. Jarvis, B. W., and M. Dworkin. 1989a. Purification and properties of Myxococcus xanthus cell surface antigen 1604. J. Bacteriol. 171: 4655–4666.PubMedPubMedCentralGoogle Scholar
  181. Jarvis, B. W., and M. Dworkin. 1989b. Role of Myxococcus xanthus cell surface antigen 1604 in development. J. Bacteriol. 171: 4667–4673.PubMedPubMedCentralGoogle Scholar
  182. Jeffers, E. E. 1964. Myxobacters of a freshwater lake and its environs. Int. Bull. Bact. Nomenclature Taxon. 14: 115136.Google Scholar
  183. Johnson, J. L., and E. J. Ordal. 1969. Deoxyribonucleic acid homology among the fruiting myxobacteria. J. Bacteriol. 98: 319–320.PubMedPubMedCentralGoogle Scholar
  184. Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 5952–5956.PubMedPubMedCentralGoogle Scholar
  185. Kaiser, D. 1984a. Genetics of myxobacteria, p. 163–184. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  186. Kaiser, D. 1984b. Regulation of multicellular development in myxobacteria, p. 197–218. In: R. Losick and L. Shapiro (ed.), Microbial development. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  187. Kaiser, D. 1986. Control of multicellular development: Dictyostelium and Myxococcus. Annu. Rev. Genet. 20: 539–566.PubMedGoogle Scholar
  188. Kaiser, D. 1989. Multicellular development in myxobacteria, p. 243–263. In: A. Hopwood and K. E Chater (ed.), Genetics of bacterial diversity. Academic Press, London.Google Scholar
  189. Kaiser, D., and M. Dworkin. 1975. Gene transfer to a myxobacterium by Escherichia coli phage Pl. Science 187: 653–655.PubMedGoogle Scholar
  190. Kaiser, D., L. Kroos, and A. Kuspa. 1985. Cell interactions govern the temporal pattern of Myxococcus development. Cold Spring Harbor Symp. Quant. Biol. 50: 823–830.Google Scholar
  191. Kaiser, D., C. Manoil, and M. Dworkin. 1979. Myxobacteria: cell interactions, genetics, and development. Annu. Rev. Microbiol. 33: 595–639.PubMedGoogle Scholar
  192. Katô, H. 1955. Notes on myxobacteria II. Antibacterial strains of Myxococcus fulvus. Ecol. Rev. 14: 26–28.Google Scholar
  193. Keller, K. H., M. Grady, and M. Dworkin. 1983. Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 1358–1366.PubMedPubMedCentralGoogle Scholar
  194. Killeen, K. P., and D. R. Nelson. 1988. Acceleration of starvation-and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus. J. Bacteriol. 170: 5200–5207.PubMedPubMedCentralGoogle Scholar
  195. Kim, S. K., and D. Kaiser. 1990. C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61: 19–26.PubMedGoogle Scholar
  196. Kimchi, A., and E. Rosenberg. 1976. Linkages between deoxyribonucleic acid synthesis and cell division in Myxococcus xanthus. J. Bacteriol. 128: 69–79.PubMedPubMedCentralGoogle Scholar
  197. Kleinig, H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides I. Isolation and composition. Biochim. Biophys. Acta 274: 489–498.PubMedGoogle Scholar
  198. Kleinig, H. 1974. Inhibition of carotenoid synthesis in Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 97: 217–226.PubMedGoogle Scholar
  199. Kleinig, H. 1975. On the utilization in vivo of lycopene and phytoene as precursors for the formation of carotenoid glucoside ester and on the regulation of carotenoid biosynthesis in Myxococcus fulvus. Eur. J. Biochem. 57: 301–308.PubMedGoogle Scholar
  200. Kleinig, H., and H. Reichenbach. 1973. Biosynthesis of carotenoid glucoside esters in Myxococcus fulvus (Myxobacterales): Inhibition by nicotine and carotenoid turnover. Biochim. Biophys. Acta 306: 249–256.PubMedGoogle Scholar
  201. Kleinig, H., H. Reichenbach, and H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales) II. Acylated carotenoid glycosides. Arch. Mikrobiol. 74: 223–234.PubMedGoogle Scholar
  202. Kleinig, H., H. Reichenbach, H. Achenbach, and J. Stadler. 1971. Carotenoid pigments of Sorangium cellulosum (Myxobacterales) including two new carotenoid glycoside esters and two new carotenoid rhamnosides. Arch. Mikrobiol. 78: 224–233.PubMedGoogle Scholar
  203. Kleinig, H., H. Reichenbach, N. Theobald, and H. Achenbach. 1974. Flexibacter elegans and Myxococcus fulvus: aerobic Gram-negative bacteria containing menaquinones as the only isoprenoid quinones. Arch. Microbiol. 101: 91–93.Google Scholar
  204. Kofler, L. 1913. Die Myxobakterien der Umgebung von Wien. Sitzber. Kais. Akad. Wiss. Wien. Math. Naturw. Klasse, Abt. 1, 122: 845–876 (including one plate).Google Scholar
  205. Kohl, W., A. Gloe, and H. Reichenbach. 1983. Steroids from the myxobacterium Nannocystis exedens. J. Gen. Microbiol. 129: 1629–1635.Google Scholar
  206. Komano, T., T. Franceschini, and S. Inouye. 1987. Identification of a vegetative promoter in Myxococcus xanthus. A protein that has homology to histones. J. Mol. Biol. 196: 517–524.PubMedGoogle Scholar
  207. Kroos, L., and D. Kaiser. 1984. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81: 5816–5820.PubMedPubMedCentralGoogle Scholar
  208. Kroos, L., A. Kuspa, and D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Develop. Biol. 17: 252–266.Google Scholar
  209. Kroos, L., A. Kuspa, and D. Kaiser. 1990. Defects in fruiting body development caused by Tn5 lac insertions in Myxococcus xanthus. J. Bacteriol. 172: 484–487.PubMedPubMedCentralGoogle Scholar
  210. Krzemieniewska, H., and S. Krzemieniewski. 1926. Miksobakterje Polski. (In Polish, with German summary) Acta Soc. Botan. Polon. 4: 1–54.Google Scholar
  211. Krzemieniewska, H., and S. Krzemieniewski. 1927a. Miksobakterje Polski. Uzupelnienie. (In Polish, with German summary.) Acta Soc. Botan. Polon. 5: 79–98.Google Scholar
  212. Krzemieniewska, H., and S. Krzemieniewski. 1927b. Rozsiedlenie miksobakteryj (Über die Verbreitung der Myxobakterien im Boden). (In Polish, with German summary.) Acta Soc. Botan. Polon. 5: 102–139.Google Scholar
  213. Krzemieniewska, H., and S. Krzemieniewski. 1928. Morphologja komorki miksobakteryj (Zur Morphologie der Myxobakterienzelle). (In Polish, with German summary.) Acta Soc. Botan. Polon. 5: 46–90.Google Scholar
  214. Krzemieniewska, H., S. Krzemieniewski. 1930. Mikrobakterje Polski. Czesc trzecia (Die Myxobakterien von Polen. III. Teil) (In Polish, with German summary.) Acta Soc. Botan. Polon. 7: 250–273.Google Scholar
  215. Krzemieniewska, H., and S. Krzemieniewski. 1937a. Die zellulosezersetzenden Myxobakterien. Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat., Sér. B (I): 11–31.Google Scholar
  216. Krzemieniewska, H., and S. Krzemieniewski. 1937b. Über die Zersetzung der Zellulose durch Myxobakterien. Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat., Sér. B (I): 33–59.Google Scholar
  217. Krzemieniewska, H., and S. Krzemieniewski. 1946. Myxobacteria of the species Chondromyces Berkeley and Curtis. Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat., Sér. B (I): 31–48.Google Scholar
  218. Kühlwein, H. 1950. Beiträge zur Biologie und Entwicklungsgeschichte der Myxobakterien. Arch. Mikrobiol. 14: 678–704.Google Scholar
  219. Kühlwein, H. 1960. Zur Systematik und Verbreitung der Myxobakterien. Zbl. Bakteriol., 2. Abt. 113: 480–490.Google Scholar
  220. Kfilwein, H., and E. Gallwitz. 1958. Polyangium violaceum nov. spec. Ein Beitrag zur Kenntnis der Myxobakterien. Arch. Mikrobiol. 31: 139–145.Google Scholar
  221. Kühlwein, H., and H. Reichenbach. 1965. Anreicherung und Isolierung von Myxobakterien. Zbl. Bakteriol., 1. Abt. Orig., Suppl. 1: 57–80.Google Scholar
  222. Kühlwein, H., B. Schlicke, H. K. Galle, and H. H. Heunert. 1971a. Polyangium fuscum (Myxobacterales)-Cystenkeimung und Schwarmentwicklung. Encyclopaedia Cinematographica E 1582, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  223. Kühlwein, H., B. Schlicke, H. K. Galle, and H. H. Heunert. 1971b. Polyangium fuscum (Myxobacterales-Morphogenese. Encyclopaedia Cinematographica E 1583, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  224. Kuner, J. M., and D. Kaiser. 1981. Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. USA 78: 425–429.PubMedPubMedCentralGoogle Scholar
  225. Kuner, J. M., and D. Kaiser. 1982. Fruiting body morpho-genesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151: 458–461.PubMedPubMedCentralGoogle Scholar
  226. Kunze, B., G. Höfle, and H. Reichenbach. 1987. The aurachins, new quinoline antibiotics from myxobacteria: production, physicochemical and biological properties. J. Antibiot. 40: 258–265.PubMedGoogle Scholar
  227. Kunze, B., T. Kemmer, G. Höfle, and H. Reichenbach. 1984. Stigmatellin, a new antibiotic from Stigmatella aurantiaca (Myxobacterales) I. Production, physicochemical and biological properties. J. Antibiot. 37: 454–461.PubMedGoogle Scholar
  228. Kunze, B., W. Kohl, G. Höfle, and H. Reichenbach. 1985. Production, isolation, physicochemical and biological properties of angiolam A, a new antibiotic from Angiococcus disciformis (Myxobacterales). J. Antibiot. 38: 1649–1654.PubMedGoogle Scholar
  229. Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 231: 1154–1157.PubMedGoogle Scholar
  230. Kuspa, A., D. Vollrath, Y. Cheng, and D. Kaiser. 1989. Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 86: 8917–8921.PubMedPubMedCentralGoogle Scholar
  231. Lampky, J. R. 1976. Ultrastructure of Polyangium cellulosum. J. Bacteriol. 126: 1278–1284.PubMedPubMedCentralGoogle Scholar
  232. Lampky, J. R., and E. R. Brockman. 1977. Fluorescence of Myxococcus stipitatus. Int. syst. Bacteriol. 27: 161.Google Scholar
  233. Lampson, B. C., M. Inouye, and S. Inouye. 1989. Reverse transcriptase with concomitant ribonuclease H. activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56: 701–707.PubMedGoogle Scholar
  234. Li, S., and L. J. Shimkets 1988. Site-specific integration and expression of a developmental promoter in Myxococcus xanthus. J. Bacteriol. 170: 5552–5556.PubMedPubMedCentralGoogle Scholar
  235. Link, H. F. 1809. Observationes in Ordines plantarum naturales. Dissertatio Ima, complectens Anandranim or-dines Epiphytas, Mucedines Gastomycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunds 3:3–42 + 2 plates (in Latin; on Polyangium: p. 42 and Fig. 65 ).Google Scholar
  236. Loebeck, M. E., and H. P. Klein. 1956. Substrates for Myxococcus virescens with special reference to eubacterial fractions. J. Gen. Microbiol. 14: 281–289.PubMedGoogle Scholar
  237. Ludwig, W., H. H. Schleifer, H. Reichenbach, and E. Stackebrandt. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum and Nannocystis exedens. Arch. Microbiol. 135: 58–62.Google Scholar
  238. Lünsdorf, H., and H. Reichenbach. 1989. Ultrastnictural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J. Gen. Microbiol. 135: 1633–1641.Google Scholar
  239. MacRae, T. H., and W. J. Dobson, and H. D. McCurdy. 1977. Fimbriation in gliding bacteria. Can. J. Microbiol. 23: 1096–1108.Google Scholar
  240. MacRae, T. H., and H. D. McCurdy. 1975. Ultrastructural studies of Chondromyces crocatus vegetative cells. Can. J. Microbiol. 21: 1815–1826.PubMedGoogle Scholar
  241. MacRae, T. H., and H. D. McCurdy. 1976. Evidence for motility-related fimbriae in the gliding microorganism Myxococcus xanthus. Can. J. Microbiol. 22: 1589–1593.PubMedGoogle Scholar
  242. Maeba, P. Y. 1983. Iodination of Myxococcus xanthus during development. J. Bacteriol. 155: 1033–1041.PubMedPubMedCentralGoogle Scholar
  243. Maeba, P. Y. 1986. Isolation of a surface glycoproteiri from Myxococcus xanthus. J. Bacteriol. 166: 644–650.PubMedPubMedCentralGoogle Scholar
  244. Mandel, M., and E. R. Leadbetter. 1965. Deoxyribonucleic acid base composition of myxobacteria. J. Bacteriol. 90: 1795–1796.PubMedPubMedCentralGoogle Scholar
  245. Martin, S., E. Sodergren, T. Massuda, and D. Kaiser. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88: 44–53.PubMedGoogle Scholar
  246. Martinez-Laborda, A., J. M. Balsalobre, M. Fontes, and E J. Murillo. 1990. Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol. Gen. Genet. 223: 205–210.PubMedGoogle Scholar
  247. Mason, J., and D. Powelson. 1958. Lysis of Mycoxoccus xanthus. J. Gen. Microbiol. 19: 65–70.PubMedGoogle Scholar
  248. Masson, P. J., and J. F. Guespin-Michel. 1988. An extra-cellular blood-anticoagulant glycopeptide produced exclusively during vegetative growth by Myxococcus xanthus and other myxobacteria is not co-regulated with other extracellular macromolecules. J. Gen. Microbiol. 134: 801–806.PubMedGoogle Scholar
  249. Mathew, S., and A. Dudani. 1955. Lysis of human patho- genic bacteria by myxobacteria. Nature 175: 125.PubMedGoogle Scholar
  250. Mayer, D. 1967. Ernährungsphysiologische Untersuchungen an Archangium violaceum. Arch. Mikrobiol. 58: 186–200.PubMedGoogle Scholar
  251. Mayer, H., and H. Reichenbach. 1978. Restriction endonucleases: general survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.PubMedPubMedCentralGoogle Scholar
  252. McBride, M. J., R. A. Weinberg, and D. R. Zusman. 1989. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natl. Acad. Sci. USA 86:424–428.Google Scholar
  253. McBride, M. J., and D. R. Zusman. 1989. Trehalose accumulation in vegetative cells and spores of Mycococcus xanthus. J. Bacteriol. 171: 6383–6386.PubMedPubMedCentralGoogle Scholar
  254. McCleary, W. R., M. J. McBride, and D. R. Zusman. 1990. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of Frz CD. J. Bacteriol. 172: 4877–4887.PubMedPubMedCentralGoogle Scholar
  255. McCurdy, H. D. 1963. A method for the isolation of myxobacteria in pure culture. Can. J. Microbiol. 9: 282–285.Google Scholar
  256. McCurdy, H. D. 1969a. Studies on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. Can. J. Microbiol. 5: 1453–1461.Google Scholar
  257. McCurdy, H. D. 1969b. Light and electron microscope studies on the fruiting bodies of Chondromyces crocatus. Arch. Mikrobiol. 65: 380–390.Google Scholar
  258. McCurdy, H. D. 1974. Myxobacterales, p. 76–98. In: R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams Wilkins, Baltimore.Google Scholar
  259. McCurdy, H. D. 1989. Order Myxococcales Tchan, Pochon and Prévot 1948, 398 (with contributions of E. R. Brockman, H. Reichenbach, and D. White), p. 2139–2170. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams Wilkins, Baltimore.Google Scholar
  260. McCurdy, H. D., and B. T. Khouw. 1969. Studies on Stig- matella brunea. Can. J. Microbiol. 15: 731–738.PubMedGoogle Scholar
  261. McCurdy, H. D., and T. H. MacRae. 1973. Xanthacin. A bacteriocin of Myxococcus xanthus fb. Can. J. Microbiol. 20: 131–135.Google Scholar
  262. McCurdy, H. D., and S. Wolf. 1967. Deoxyribonucleic acid base compositions of fruiting Myxobacterales. Can. J. Microbiol. 13: 1707–1708.PubMedGoogle Scholar
  263. McDonald, J. C. 1967. Studies on the genus Archangium (Myxobacterales). II. The effect of temperature and carbohydrates on some physiological processes. Mycologia 59: 1059–1068.PubMedGoogle Scholar
  264. McDonald, J. C., and J. E. Peterson. 1962. Liquid cultures of two members of the higher fruiting myxobacteria. Mycologia 54: 368–373.Google Scholar
  265. McVittie, A., and S. A. Zahler. 1962. Chemotaxis in Myxococcus. Nature 194: 1299–1300.Google Scholar
  266. Menne, B., and G. Rückert. 1988. Myxobakterien (Myxobacterales) in Höhlensedimenten des Hagengebirges (Nördliche Kalkalpen). Die Höhle 4: 120–131.Google Scholar
  267. Michoustine, E. (also: Mishustin). 1968. Microorganismes cellulolytiques des sols de l’U.S.S.R. Ann. Inst. Pasteur 115: 596–603.Google Scholar
  268. Miyashiro, S., S. Yamanaka, S. Takayama, and H. Shibai. 1988. Novel macrocyclic antibiotics: myxovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins. J. Ari tibiot. 41: 433–438.Google Scholar
  269. Mizrahi, A., J. Aman, G. Miller, Z. Liron, M. Manai, Y. Batus, and E. Rosenberg. 1977. Scaling-up process for production of antibiotic of Myxococcus xanthus TA. J. Appl. Chem. Biotechnol. 26: 160–166.Google Scholar
  270. Monteoliva-Sanchez, M., C. Ruiz, and A. Ramos-Cormenzana. 1987. Cellular fatty acid composition of Corallococcus coralloides. Curr. Microbiol. 15: 269–271.Google Scholar
  271. Morris, D. W., S. R. Ogden-Swift, V. Virrankowski-Castrodeza, K. Ainley, and J. H. Parish. 1978. Transduction of Myxococcus virescens by coliphage P1CM: generation of plasmids containing both phage and Myxococcus genes. J. Gen. Microbiol. 107: 73–83.PubMedGoogle Scholar
  272. Morris, D. W., and J. H. Parish. 1976. Restriction in Myxo- coccus virescens. Arch. Microbiol. 108: 227–230.PubMedGoogle Scholar
  273. Morris, J., S. R. Kushner, and R. Ivarie. 1986. The simple repeat poly (dT-dG)•poly (dC-dA) common to eukaryotes is absent from eubacteria and archaebacteria and rare in protozoans. Mol. Biol. Evol. 3: 343–355.PubMedGoogle Scholar
  274. Mullings, R., and J. H. Parish. 1984. Mesophilic aerobic Gram-negative cellulose degrading bacteria from aquatic habitats and soils. J. Appl. Bacteriol. 57: 455–468.Google Scholar
  275. Nellis, L. F, and H. R. Garner. 1964. Methods of isolation and purification of Chondromyces. J. Bacteriol. 87: 230–231.PubMedPubMedCentralGoogle Scholar
  276. Nelson, D. R., M. G. Cumsky, and D. R. Zusman. 1981. Localization of myxobacterial hemagglutinin in the periplasmic space and on the cell surface of Myxococcus xanthus during developmental aggregation. J. Biol. Chem. 256: 12589–12595.PubMedGoogle Scholar
  277. Nelson, D. R., and K. R Killeen. 1986. Heat shock proteins of vegetative and fruiting Myxococcus xanthus. J. Bacteriol. 168: 1100–1106.PubMedPubMedCentralGoogle Scholar
  278. Nelson, D. R., and D. R. Zusman. 1983. Evidence for a long-lived mRNA during fruiting body formation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 80: 1467–1471.PubMedPubMedCentralGoogle Scholar
  279. Nicaud, J. M., A. Breton, G. Younes, and J. GuespinMichel. 1984. Mutants of Myxococcus xanthus impaired in protein secretion: an approach to study a secretory mechanism. Appl. Microbiol. Biotechnol. 20: 344–350.Google Scholar
  280. Nigam, J. N., J. Lehmann, K. Gerth, H. Piehl, R. Schultze, and W. Trowitzsch. 1984. Feeding stretegy for the production of the new antibiotic myxovirescin A from Myxococcus virescens (Myxobacterales). Appl. Microbiol. Biotechnol. 19: 157–160.Google Scholar
  281. Nolte, E. M. 1957. Untersuchungen über ernährung und Fruchtkörperbildung von Myxobakterien. Arch. Mikrobiol. 28: 191–218.PubMedGoogle Scholar
  282. Norén, B. 1950. Notes on myxobacteria in Sweden. Svensk Bot. tidskr. 44: 108–112.Google Scholar
  283. Norén, B. 1952. Further notes on the distribution of myxobacteria in Swedish soils. Svensk Bot. Tidskr. 46: 446–453.Google Scholar
  284. Norén, B. 1953. On the production of antibiotics by myxobacteria. Svensk Bot. Tidskr. 47: 402–410.Google Scholar
  285. Norén, B. 1955. Studies on myxobacteria III. Organic fac- tors in nutrition. Botaniska Notiser 108: 81–134.Google Scholar
  286. Norén, B. 1960a. Notes on the bacteriolytic activity of Myxococcus virescens. Svensk Bot. Tdskr. 54: 550–560.Google Scholar
  287. Norén, B. 1960b. Lytic activity on autoclaved and on intact eubacterial cells by a preparation UZD, obtained from a metabolic solution of Myxococcus virescens. Botaniska Notiser 113: 320–336.Google Scholar
  288. Norén, B., and G. Odham. 1973. Antagonistic effects of Myxococcus xanthus on fungi: II. Isolation and characterization of inhibitory lipid factors. Lipids 8: 573–583.PubMedGoogle Scholar
  289. Norén, B., and K. B. Raper. 1962. Antibiotic activity of myxobacteria in relation to their bacteriolytic capacity. J. Bacteriol. 84: 157–162.PubMedPubMedCentralGoogle Scholar
  290. Oetker, H. 1953. Untersuchungen über die Ernährung ei- niger Myxobakterien. Arch. Mikrobiol. 19: 206–246.PubMedGoogle Scholar
  291. Oka, M., Y. Nishiyama, S. Ohta, H. Kamei, M. Konishi, T. Miyaki, T. Oki, and H. Kawaguchi. 1988a. Glidobactins A, B and C, new antitumor antibiotics I. Production, isolation, chemical properties and biological activity. J. Antibiot. 41: 1331–1337.PubMedGoogle Scholar
  292. Oka, M., H. Ohkuma, H. Kamei, M. Konishi, T. Oki, and H. Kawaguchi. 1988b. Glidobactins D, E, F, G and H; minor components of the antitumor antibiotic glidobactin. J. Antibiot. 41: 1906–1909.PubMedGoogle Scholar
  293. Oka, M., K. Yaginuma, K. Numata, M. Konishi, T. Oki, and H. Kawaguchi. 1988e. Glidobactins A, B and C, new antitumor antibiotics II. Structure elucidation. J. Antibiot. 41: 1338–1350.PubMedGoogle Scholar
  294. Onishi, N., K. Izaki, and H. Takahashi. 1984. A macrocyclic antibiotic M-230B produced by Myxococcus xanthus. Isolation and characterization. J. Antibiot. 37: 13–19.PubMedGoogle Scholar
  295. Orlowski, M. 1980. Cyclic adenosine 3’,5’-monophosphate binding protein in developing myxospores of Myxococcus xanthus. Can. J. Microbiol. 26: 905–911.PubMedGoogle Scholar
  296. Orlowski, M., and D. White. 1974. Intracellular proteolytic activity in developing myxospores of Myxococcus xanthus. Arch. Microbiol. 97: 347–357.PubMedGoogle Scholar
  297. Orndorff, P., E. Stellwag, T. Starich, M. Dworkin, and J. Zissler. 1983. Genetic and physical characterization of lysogeny by bacteriophage MX8 in Myxococcus xanthus. J. Bacteriol. 154: 772–779.PubMedPubMedCentralGoogle Scholar
  298. Orndorff, P. E., and M. Dworkin. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141: 914–927.PubMedPubMedCentralGoogle Scholar
  299. Orndorff, P. E., and M. Dworkin. 1982. Synthesis of several membrane proteins during developmental aggregation in Myxococcus xanthus. J. Bacteriol. 149: 29–39.PubMedPubMedCentralGoogle Scholar
  300. Oxford, A. E. 1947. Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium. J. Bacteriol. 53: 129–138.PubMedPubMedCentralGoogle Scholar
  301. Oxford, A. E., and B. N. Singh. 1946. Factors contributing to the bacteriolytic effect of species of myxococci upon viable eubacteria. Nature 1158: 745.Google Scholar
  302. Oyaizu, H., and C. R. Woese. 1985. Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst. Appl. Microbiol. 6: 257263.Google Scholar
  303. Panasenko, S. M. 1985. Methylation of macromolecules during development in Myxococcus xanthus. J. Bacteriol. 164: 495–500.PubMedPubMedCentralGoogle Scholar
  304. Parish, J. H. 1975. Transfer of drug resistance to Myxococcus from bacteria carrying drug-resistance factors, J. Gen. Microbiol. 87: 198–210.PubMedGoogle Scholar
  305. Peterson, J. E. 1965. A group of strongly cellulolytic myxobacteria previously unreported in North American soils. Am. J. Bot. 52: 636.Google Scholar
  306. Peterson, J. E. 1969. Isolation, cultivation and maintenance of the myxobacteria, p. 185–210. In: J. R. Norris and D. W. Ribbons (ed.), Methods in microbiology, vol. 3B. Academic Press, London.Google Scholar
  307. Peterson, J. E., and B. Norén. 1967. The occurrence of the cellulose-decomposing myxobacterium, Sorangium cellulosum, in Scandinavian soils. Am. J. Bot. 54: 648.Google Scholar
  308. Pronina, N. I. 1962. A description of new species and varieties of cellulose decomposing myxobacteria. Microbiology (English translation of Mikrobiologiya) 31: 384390.Google Scholar
  309. Qualls, G. T., K. Stephens, and D. White. 1978. Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca. Science 201: 444–445.PubMedGoogle Scholar
  310. Quehl, A. 1906. Untersuchungen über die Myxobakterien. Abl. Bakteriol. 2. Abt. 16: 9–34 (including one plate).Google Scholar
  311. Ramsey, W. S., and M. Dworkin. 1968. Microcyst germination in Myxococcus xanthus. J. Bacteriol. 95: 2249–2257.PubMedPubMedCentralGoogle Scholar
  312. Reichenbach, H. 1965a. Untersuchungen an Archangium violaceum. Ein Beitrag zur Kenntnis der Myxobakterien. Arch. Mikrobiol. 52: 376–403.PubMedGoogle Scholar
  313. Reichenbach, H. 1965b. Rhapidosomen bei Myxobakterien. Arch. Mikrobiol. 50: 246–255.Google Scholar
  314. Reichenbach, H. 1965e. Rhythmische Vorgänge bei der Schwarmentfaltung von Myxobakterien. Ber. Deutsch. Bot. Ges. 78: 102–105.Google Scholar
  315. Reichenbach, H. 1966. Myxococcus spp. (Myxobacterales). Schwarmentwicklung und Bildung von Protocysten. Institut für den wissenschaftlichen Film, Göttingen, Germany (text with the film EC 778/1965).Google Scholar
  316. Reichenbach, H. 1967. Die wahre Natur der Myxobakterien-“Rhapidosomen.” Arch. Mikrobiol. 56: 371–383.Google Scholar
  317. Reichenbach, H. 1974a. Die Biologie der Myxobakterien. Biologie in unserer Zeit 4: 33–45.Google Scholar
  318. Reichenbach, H. 1974b. Chondromyces apiculatus (Myxobacterales)-Schwarmentwicklung und Morphogenese. Publiktionen zu wissenschaftlichen Filmen, Sektion Biologie 7, p. 245–263. Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  319. Reichenbach, H. 1983. A simple method for the purification of myxobacteria. J. Microbiol. Meth. 1: 77–79.Google Scholar
  320. Reichenbach, H. 1984. Myxobacteria: a most peculiar group of social prokaryotes, p. 1–50. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  321. Reichenbach, H. 1986. The myxobacteria: common organisms with uncommon behaviour. Microbiol. Sciences 3: 268–274.Google Scholar
  322. Reichenbach, H. 1988. Gliding bacteria in biotechnology, p. 673–696. In: H. J. Rehm and G. Reed (ed.), Biotechnology, vol. 6b. BCH Verlagsgesellschaft, Weinheim, Germany.Google Scholar
  323. Reichenbach, H., and M. Dworkin. 1969. Studies on Stigmatella aurantiaca (Myxobacterales). J. Gen. Microbiol. 58: 3–14.Google Scholar
  324. Reichenbach, H., and M. Dworkin. 1970. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales) by monovalent cations. J. Bacteriol. 101: 325–326.Google Scholar
  325. Reichenbach, H., H. K. Galle, and H. H. Heunert. 1980. Stigmatella aurantiaca (Myxobacterales). Schwarmentwicklung und Fruchtkörperbildung. Encyclopaedia Cinematographica E 2421, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  326. Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, G. Höfle, H. Augustiniak, R. Jansen, T. Kemmer, W. Kohl, H. Steinmetz, and W. Trowitzsch. 1984.Google Scholar
  327. Results of a screening for antibiotics with gliding bacteria. 3rd European Congress Biotechnol., München, vol. I, p. 1520. Verlag Chemie, Weinheim, Germany.Google Scholar
  328. Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, and G. Höfle. 1988. Myxobacteria: a source of new antibiotics. Trends Biotechnol. 6: 115–121.Google Scholar
  329. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965a. Schwarmentwicklung und Morphogenese bei Myxobakterien-Archangium, Myxococcus, Chondrococcus, Chondromyces. Film C 893 of the Institut für den wissenschaftlichen Film, Göttingen, Germany. (Sound-film available also in English. )Google Scholar
  330. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965b. Chondromyces apiculatus (Myxobacterales-Schwarmentwicklung und Morphogenese. Encyclopaedia Cinematographica E 779, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  331. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965c. Myxococcus spp. (Myxobacterales)-Schwarmentwicklung und Bildung von Protocysten. Encyclopaedia Cinematographica E. 778, film of the Institut für den wissenschaftlichen Film, Göttingen, GermanyGoogle Scholar
  332. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965d. Archangium violaceum (Myxobacteriales)-Schwarmentwicklung und Bildung von Protocysten. Encyclopaedia Cinematographica E 777, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.Google Scholar
  333. Reichenbach, H., and G. Höfle. 1989. The gliding bacteria: a treasury of secondary metabolites, p. 79–100. In: M. E. Bushell and U. Gräfe (ed.), Bioactive metabolites from microorganisms. Elsevier Science Publishers, Amsterdam.Google Scholar
  334. Reichenbach, H., and H. Kleinig. 1971. The carotenoids of Myxococcus fulvus (Myxobacterales). Arch. Mikrobiol. 76: 364–380.Google Scholar
  335. Reichenbach, H., and H. Kleinig. 1984. Pigments of myxobacteria, p. 127–137. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  336. Reichenbach, H., H. Voelz, and M. Dworkin. 1969. Structural changes in Stigmatella aurantiaca during myxospore induction. J. Bacteriol. 97: 905–911.PubMedPubMedCentralGoogle Scholar
  337. Ringel, S. M., R. C. Greenough, S. Roemer, D. Connor, and M. von Strandtmann. 1977. Ambruticin (W 7783), a new antifungal antibiotic. J. Antibiot. 30: 371–375.PubMedGoogle Scholar
  338. Romeo, J. M., B. Esmon, and D. R. Zusman. 1986. Nucleotide sequence of the myxobacterial hemagglutinin gene contains four homologous domains. Proc. Natl. Acad. Sci. USA 83: 6332–6336.PubMedPubMedCentralGoogle Scholar
  339. Rosenberg, E. (ed.). 1984. Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  340. Rosenberg, E., S. Fytlovitch, S. Carmeli, and Y. Kashman. 1982. Chemical properties of Myxococcus xanthus antibiotic TA. J. Antibiot. 35: 788–793.PubMedGoogle Scholar
  341. Rosenberg, E., K. H. Keller, and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770–777.PubMedPubMedCentralGoogle Scholar
  342. Rosenberg, E., B. Vaks, and A. Zuckerberg. 1973. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob. Agents Chemother. 4: 507–513.PubMedPubMedCentralGoogle Scholar
  343. Rosenfelder, G., O. Lßderitz, and O. Westphal. 1974. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur. J. Biochem. 44:411–420.Google Scholar
  344. Rückert, G. 1975a. Zur Verbreitung bakteriotropher Myxobakterien in Waldböden. Mitteilungen des Vereins für forstliche Standortskunde und Forstpflanzenzüchtung. Heft 24: 43–47.Google Scholar
  345. Rückert, G. 1975b. Zur Verbreitung von Fruchtkörper-bildenden Myxobakterien in europäischen Strand-und Dünenböden. Abl. Bakteriol., 2. Abt. 130: 343–347.Google Scholar
  346. Rückert, G. 1975c. Koprochorie einiger Myxobakterien-Arten (Myxobacterales). Zschr. Allgem. Mikrobiol. 15: 565–567.Google Scholar
  347. Rückert, G. 1976. Myxobakterien (Myxobacterales) in natürlichen und naturnahen Substraten aus der europäischen Subarktis. Acta Bot. Islandica 4: 4–9.Google Scholar
  348. Rückert, G. 1978. Förderung der Fruchtkörper-Bildung von Myxococcus virescens Thaxter (Myxobacterales) in Rohkulturen durch Salzzusatz. Zschr. Allgem. Mikrobiol. 18: 69–71.Google Scholar
  349. Rückert, G. 1979. Myxobakterien-Artenspektren von Böden in Abhängigkeit von bodenbildenden Faktoren unter besonderer Berücksichtigung der Bodenreaktion. Zschr. Pflanzenernähr. Bodenk. 42: 330–343.Google Scholar
  350. Rückert, G. 1981. Myxobakterien (Myxobacterales) auf Blattoberflächen. Zschr. Allgem. Mikrobiol. 21: 76 1763.Google Scholar
  351. Rückert, G. 1983. Myxobakterien in Böden extremer Biotope. Mitt. deutsch. Bodenkundl. Gesellsch. 38: 355–360.Google Scholar
  352. Rückert, G. 1984. Untersuchungen zum Vorkommen von Myxobakterien in von Meerwasser beeinflußten Substraten unter besonderer Berücksichtigung der Insel Helgoland. Helgoländer Meeresunters. 38: 179–184.Google Scholar
  353. Rückert, G. 1985. Myxobacteria from Antarctic soils. Biol. Fert. Soils 1: 215–216.Google Scholar
  354. Rückert, G., and G. Heym. 1977. Bakteriotrophe Myxobakterien (Myxobacterales) in ariden Substraten. Karlsruher Geographische Heft 8: 101–111.Google Scholar
  355. Rudd, K. E., and D. R. Zusman. 1982. RNA polymerase of Myxococcus xanthus: purification and selective transcription in vitro with bacteriophage templates. J. Bacteriol. 151: 89–105.PubMedPubMedCentralGoogle Scholar
  356. Ruiz, C., M. Monteoliva-Sanchez, and A. Ramos-Cormenzana. 1985. Effect of culture age on the cellular fatty acid composition of two strains of Myxococcus xanthus. Microbios Lett. 30: 95–99.Google Scholar
  357. Ruiz, C., A. Ruiz-Bravo, and A. Ramos-Cormenzana. 1987. Endotoxin-like activities in Myxococcus xanthus. Curr. Microbiol. 15: 343–345.Google Scholar
  358. Sabados-Saris, A. 1957. Istrazivanja o miksobacterijama u thina Jugoslavije (Myxobacteria in different types of soils in Yugoslavia). (In Serbo-Croatian, with English summary.) Yugoslavenska Akademija Znanosti i Umjetnosti, Zagreb 312: 5 - n29.Google Scholar
  359. Sadler, W., and M. Dworkin. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. II. Macromolecular synthesis and mechanism of inducer action. J. Bacteriol. 91: 1520–1525.PubMedPubMedCentralGoogle Scholar
  360. Sarao, R., H. D. McCurdy, and L. Passador. 1985. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can. J. Microbiol. 31: 1142–1146.Google Scholar
  361. Schmidt-Lorenz, W., and H. Kühlwein. 1968. Intracelluläre Bewegungsorganellen bei Myxobakterien. Arch. Mikrobiol. 60: 95–98.PubMedGoogle Scholar
  362. Schmidt-Lorenz, W., and H. Kühlwein. 1969. Beiträge zur Kenntnis der Myxobakterienzelle 2. Mitteilung. Oberflächenstrukturen der Schwarmzellen. Arch. Mikrobiol. 68: 405–426.PubMedGoogle Scholar
  363. Schröder, J., and H. Reichenbach. 1970. The fatty acid composition of vegetative cells and myxospores of Stigmatella aurantiaca (Myxobacterales). Arch. Mikrobiol. 71: 384–390.Google Scholar
  364. Schürmann, C. 1967. Growth of myxococci in suspension in liquid media. Appl. Microbiol. 15: 971–974.PubMedPubMedCentralGoogle Scholar
  365. Sharpe, A. N., and D. C. Kilsby. 1971. A rapid, inexpensive bacterial count technique using agar droplets. J. Appl. Bacteriol. 34: 435–440.PubMedGoogle Scholar
  366. Shimkets, L. J. 1984. Nutrition, metabolism, and the initiation of development, p. 91–107. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.Google Scholar
  367. Shimkets, L. J. 1987. Control of morphogenesis in myxobacteria. Crit. Rev. Microbiol. 14: 195–227.PubMedGoogle Scholar
  368. Shimkets, L. J. 1990a. The Myxococcus xanthus Frp A. protein causes increased flavin biosynthesis in Escherichia coli. J. Bacteriol. 172: 24–30.PubMedPubMedCentralGoogle Scholar
  369. Shimkets, L. J. 1990b. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54: 473–501.PubMedPubMedCentralGoogle Scholar
  370. Shimkets, L. J., and D. Kaiser. 1982. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152: 451–461.PubMedPubMedCentralGoogle Scholar
  371. Singh, B. N. 1947. Myxobacteria in soils and composts; their distribution, number and lytic action on bacteria. J. Gen. Microbiol. 1: 1–10.PubMedGoogle Scholar
  372. Singh, B. N., and N. B. Singh. 1971. Distribution of fruiting myxobacteria in Indian soils, bark of trees and dung of herbivorous animals. Indian J. Microbiol. 11: 47–92.Google Scholar
  373. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives. ” Int. J. Syst. Bacteriol. 38: 321–325.Google Scholar
  374. Stanier, R. Y. 1942a. The Cytophaga group: a contribution to the biology of myxobacteria. Bacteriol. Rev. 6: 143–196.PubMedPubMedCentralGoogle Scholar
  375. Stanier, R. Y. 1942b. A note on elasticotaxis in myxobacteria. J. Bacteriol. 44: 405–412.PubMedPubMedCentralGoogle Scholar
  376. Stein, J., and H. Budzikiewicz. 1987. 1–0-(13-Methyl-1-Z-tetradecenyl)2–0-(13-methyltetradecanoyl)-glycero-3-phospho-ethanolamine, ein Plasmalogen aus Myxococcus stipitatus. Zschr. Naturforsch. 42b: 1017–1020.Google Scholar
  377. Stellwag, E., J. M. Fink, and J. Zissler. 1985. Physical characterization of the genome of the Myxococcus xanthus bacteriophage MX-8. Mol. Gen. Genet. 199: 123–132.PubMedGoogle Scholar
  378. Stephens, K., G. D. Hegeman, and D. White. 1982. Pheromone produced by the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 149: 739–747.PubMedPubMedCentralGoogle Scholar
  379. Stephens, K., and D. White. 1980a. Scanning electron micrographs of fruiting bodies of the myxobacterium Stigmatella aurantiaca lacking a coat and revealing a cellular stalk. FEMS Microbiol. Lett. 9: 189–192.Google Scholar
  380. Stephens, K., and D. White. 1980b. Morphogenetic effects of light and guanine derivatives on the fruiting myxobacterium Stigmatella aurantiaca. J. Bacteriol. 144: 322–326.PubMedPubMedCentralGoogle Scholar
  381. Sudo, S., and M. Dworkin. 1972. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110: 236–245.PubMedPubMedCentralGoogle Scholar
  382. Sudo, S. Z., and M. Dworkin. 1969. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 98: 883–887.PubMedPubMedCentralGoogle Scholar
  383. Sutherland, I. W. 1976a. Ultrasonication-an enrichment technique for microcyst-forming bacteria. J. Appl. Bacteriol. 41: 185–188.PubMedGoogle Scholar
  384. Sutherland, I. W. 1976b. Novel surface polymer changes in development of Myxococcus spp. Nature 259: 46–47.PubMedGoogle Scholar
  385. Sutherland, I. W. 1979. Polysaccharides produced by Cystobacter, Archangium, Sorangium, and Stigmatella species. J. Gen. Microbiol. 111: 211–216.Google Scholar
  386. Sutherland, I. W., and C. L. Mackenzie. 1977. Glucan corn-mon to the microcyst walls of cyst-forming bacteria. J. Bacteriol. 129: 599–605.PubMedPubMedCentralGoogle Scholar
  387. Sutherland, I. W., and M. L. Smith. 1973. The lipopolysaccharides of fruiting and non-fruiting myxobacteria. J. Gen. Microbiol. 74: 259–266.Google Scholar
  388. Sutherland, I. W., and S. Thomson. 1975. Comparison of polysaccharides produced by Myxococcus strains. J. Gen. Microbiol. 89: 124–132.PubMedGoogle Scholar
  389. Takayama, S., S. Yamanaka, S. Miyashiro, Y. Yokokawa, and H. Shibai. 1988. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. II. Isolation and chemical structures of megovalicins. J. Antibiot. 41: 439–445.PubMedGoogle Scholar
  390. Teintze, M., M. Inouye, and S. Inouye. 1988. Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis. J. Biol. Chem. 263: 1199–1203.PubMedGoogle Scholar
  391. Thaxter, R. 1892. On the Myxobacteriaceae, a new order of Schizomycetes. Bot. Gaz. 17: 389–406.Google Scholar
  392. Thaxter, R. 1893. A new order of Schizomycetes. Bot. Gaz. 18: 29–30.Google Scholar
  393. Thaxter, T. 1897. Further observations on the Myxobacteriaceae. Bot. Gaz. 23: 395–411 (including two plates).Google Scholar
  394. Thaxter, R. 1904. Notes on the Myxobacteriaceae. Bot. Gaz. 37: 405–416 (including two plates).Google Scholar
  395. Trowitzsch, W., L. Witte, and H. Reichenbach. 1981. Geosmin from earthy smelling cultures of Nannocystis exedens (Myxobacterales). FEMS Microbiol. Lett. 12: 257–260.Google Scholar
  396. Trowitzsch, W., V. Wray, K. Gerth, and G. Höfle. 1982. Structure of myxovirescin A, a new macrocyclic antibiotic from gliding bacteria. J. Chem. Soc. Chem. Commun. 1982: 1340–1342.Google Scholar
  397. Trowitzsch-Kienast, W., K. Schober, V. Wray, K. Gerth, H. Reichenbach, and G. Höfle. 1989. Zur Konstitution der A. Liebigs Ann. Chem. 1989: 345–355.Google Scholar
  398. Trzilovä, B., L. Miklosovicovâ, E. Golaisova, and M. Bobkova. 1980. Indikatoren der Verunreinigung des Donauwassers im tschechoslowakischem Abschnitte. Acta Ecologica (Bratislava) 8: 91–102.Google Scholar
  399. Trzilovâ, B., L. Miklosovicovâ, G. Morhâcova, and E. Golaisovâ. 1981. Die Wasserqualität der Zuflüsse des tschechoslowakischen Donauabschnittes von limnologischer und hygienischer Sicht. Biologa (Bratislava) 36: 765–774.Google Scholar
  400. Tsai, H., and H. J. Hirsch. 1981. The primary structure of fulvocin C from Myxococcus fulvus. Biochim. Biophys. Acta 667: 213–217.PubMedGoogle Scholar
  401. Tsopanakis, C., and J. H. Parish. 1976. Bacteriophage MX-1: Properties of the phage and its structural proteins. J. Gen. V irol. 30: 99–112.Google Scholar
  402. Vacheron, M. J., N. Arpin, and G. Michel. 1970. Isolement d’esters de phleixanthophylle de Nocardia kirovani. C. R. Acad. Sci., Sér. C 271: 881–884.Google Scholar
  403. Vahle, C. 1910. Vergleichende Untersuchungen über die Myxobakteriazeen und Bakteriazeen, sowie die Rhodobakteriazeen und Spirillazeen. Zbl. Bakteriol., 2. Abt. 25: 178–260 (including two plates).Google Scholar
  404. Voelz, H. 1964. Sites of adenosine triphosphatase: activity in bacteria. J. Bacteriol. 88: 1196–1198.PubMedPubMedCentralGoogle Scholar
  405. Voelz, H. 1965. Formation and structure of mesosomes in Myxococcus xanthus. Arch. Mikrobiol. 51: 60–70.PubMedGoogle Scholar
  406. Voelz, H. 1966a. The fate of the cell envelopes of Myxococcus xanthus during microcyst germination. Arch. Mikrobiol. 55: 110–115.PubMedGoogle Scholar
  407. Voelz, H. 1966b. In vivo induction of “polysomes” by limiting phosphate and the structural consequences in Myxococcus xanthus. 6th International Congress Electron Microscopy, Kyoto, Japan, p. 255–256.Google Scholar
  408. Voelz, H. 1967. The physical organization of the cytoplasm in Myxococcus xanthus and the fine structure of its components. Arch. Mikrobiol. 57: 181–195.PubMedGoogle Scholar
  409. Voelz, H. 1968. Structural comparison between intramitochondrial and bacterial crystalloids. J. Ultrastruct. Res. 25: 29–36.PubMedGoogle Scholar
  410. Voelz, H., and R. P. Burchard. 1971. Fine structure of bacteriophage-infected Myxococcus xanthus. I. The lytic cycle in vegetative cells. Virology 43: 243–250.PubMedGoogle Scholar
  411. Voelz, H., and M. Dworkin. 1962. Fine structure of Myxococcus xanthus during morphogenesis. J. Bacteriol. 84: 943–952.PubMedPubMedCentralGoogle Scholar
  412. Voelz, H., and H. Reichenbach. 1969. Fine structure of fruiting bodies of Stigmatella aurantiaca (Myxobacterales). J. Bacteriol. 99: 856–866.PubMedPubMedCentralGoogle Scholar
  413. Voelz, H., U. Voelz, and R. O. Ortigoza. 1966. The “polyphosphate overplus” phenomenon in Myxococcus xanthus and its influence on the architecture of the cell. Arch. Mikrobiol. 53: 371–388.PubMedGoogle Scholar
  414. Vuillemard, J. C., S. Terré, S. Benoit, and J. Amiot. 1988. Protease production by immobilized growing cells of Serratia marcescens and Myxococcus xanthus in calcium alginate gel beads. Appl. Microbiol. Biotechnol. 27: 423–431.Google Scholar
  415. Ware, J. C., and M. Dworkin. 1973. Fatty acids of Myxococcus xanthus. J. Bacteriol. 115: 253–261.PubMedPubMedCentralGoogle Scholar
  416. Watson, B. E, and M. Dworkin. 1968. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 96: 1465–1473.PubMedPubMedCentralGoogle Scholar
  417. Weckesser, J., G. Rosenfelder, H. Mayer, and O. Luderitz. 1971. The identification of 3-O-methyl-D-xylose and 3O-methyl-L-xylose as constituents of the lipopolysaccharides of Myxococcus fulvus and Rhodopseudomonas viridis, respectively. Eur. J. Biochem. 24: 112–115.PubMedGoogle Scholar
  418. Weinberg, R. A., and D. R. Zusman. 1989. Evidence that the Myxococcus xanthus frz genes are developmentally regulated. J. Bacteriol. 171: 6174–6186.PubMedPubMedCentralGoogle Scholar
  419. White, D. 1975. Myxospores of Myxococcus xanthus, p. 4451. In: P. Gerhardt, H. I. Sadoff, and R. N. Costilow (ed.) Spores VI. American Society for Microbiology, Washington, DC.Google Scholar
  420. White, D. 1981. Cell interactions and control of development in myxobacteria populations. Int. Rev. Cytol. 72: 203–227.Google Scholar
  421. White, D., M. Dworkin, and D. J. Tipper. 1968. Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. J. Bacteriol. 95: 2186–2197.PubMedPubMedCentralGoogle Scholar
  422. Wireman, J. W., and M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189: 516–523.PubMedGoogle Scholar
  423. Wistow, G. 1990. Evolution of a protein superfamily relationships between vertebrate lens crystallins and microorganism dormancy proteins. J. Mol. Evol. 30: 140–145.Google Scholar
  424. Witkin, S., and E. Rosenberg. 1970. Induction of morpho-genesis by methionine starvation in Myxococcus xanthus. Polyamine control. J. Bacteriol. 103: 641–649.PubMedPubMedCentralGoogle Scholar
  425. Woods, N. A. 1948. Studies on the myxobacteria. M.S. thesis, University of Washington, Seattle.Google Scholar
  426. Yamanaka, S., R. Fudo, A. Kawaguchi, and K. Komagata. 1988. Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids. J. Gen. Appl. Microbiol. 34: 57–66.Google Scholar
  427. Yamanaka, S., A. Kawaguchi, and K. Komagata. 1987. Isolation and identification of myxobacteria from soils and plant materials, with special reference to DNA base composition, quinone system, and cellular fatty acid composition, and with a description of a new species, Myxococcus flavescens. J. Gen. Appl. Microbiol. 33: 247–265.Google Scholar
  428. Yee, T., T. Furuichi, S. Inouye, and M. Inouye. 1984. Multicopy single-stranded DNA isolated from a Gram-negative bacterium, Myxococcus xanthus. Cell 38: 203–209.PubMedGoogle Scholar
  429. Yee, T., and M. Inouye. 1981. Reexamination of the genome size of myxobacteria, including the use of a new method for genome size analysis. J. Bacteriol. 145: 1257–1265.PubMedPubMedCentralGoogle Scholar
  430. Yee, T., and M. Inouye. 1982. Two-dimensional DNA electrophoresis applied to the study of DNA methylation and the analysis of genome size in Myxococcus xanthus. J. Mol. Biol. 154: 181–196.PubMedGoogle Scholar
  431. Younes, G., A. M. Breton, and J. Guespin-Michel. 1987. Production of extracellular native and foreign proteins by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biotechnol. 25: 507–512.Google Scholar
  432. Younes, G., J. M. Nicaud, and J. Guespin-Michel. 1984. Enhancement of extracellular enzymatic activities produced by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biotechnol. 19: 67–69.Google Scholar
  433. Zukal, H. 1896. Myxobotrys variabilis Zuk., als Repräsentant einer neuen Myxomyceten-Ordnung. Ber. Deutsch. Bot. Gesellsch. 14: 340–347.Google Scholar
  434. Zukal, H. 1897. Über die Myxobacterien. Ber. Deutsch. Bot. Gesellsch. 15: 542–552.Google Scholar
  435. Zusman, D., and E. Rosenberg. 1968. Deoxyribonucleic acid synthesis during microcyst germination in Myxococcus xanthus. J. Bacteriol. 96: 981–986.PubMedPubMedCentralGoogle Scholar
  436. Zusman, D. R. 1980. Genetic approaches to the study of development in the myxobacteria, p. 41–78. In: T. Leighton and W. E Loomis (ed.), The molecular genetics of development: an introduction to recent research in experimental systems. Academic Press, New York.Google Scholar
  437. Zusman, D. R. 1984. Cell-cell interactions and development in Myxococcus xanthus. Quart. Rev. Microbiol. 59: 119–138.Google Scholar
  438. Zusman, D. R. 1990. Cellular aggregation during fruiting body formation in Myxococcus xanthus. In: M. Inouye, J. Campisi, D. Cunningham, and M. Riley (ed.), Gene expression and regulation of cell growth and development. John Wiley Sons, New York. In press.Google Scholar
  439. Zusman, D. R., D. M. Krotoski, and M. Cumsky. 1978. Chromosome replication in Myxococcus xanthus. J. Bacteriol. 133: 122–129.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Hans Reichenbach
  • Martin Dworkin

There are no affiliations available

Personalised recommendations