Skip to main content

The Myxobacteria

  • Chapter
Book cover The Prokaryotes

Abstract

The myxobacteria are Gram-negative, unicellular, gliding bacteria with rod-shaped vegetative cells (Fig. 1). Because of their gliding movement, colonies develop as thin, film-like, spreading swarms, particularly on media low in organic constituents (lean media) (Fig. 2). Under starvation conditions, the myxobacteria undergo an impressive process of cooperative morphogenesis: the vegetative cells aggregate and pile up, and the resulting cell mass differentiates into a fruiting body (Fig. 3). Myxobacterial fruiting bodies show various degrees of complexity, both morphologically and structurally. They typically measure between 50 and 500 μm, and they can thus be easily seen with the naked eye. Within the maturing fruiting body, a cellular differentiation takes place during which the vegetative cells convert into short, fat, optically refractile myxospores (Figs. 1 and 3). The myxospores are desiccation resistant and allow the organism to survive unfavorable environmental conditions.

Various types of myxobacterial cells. (a to d) Vegetative cells. (a and b) The Cystobacterineae type: (a) Cystobacter ferrugineus, cells from a liquid culture. (b) Stigmatella aurantiaca, cells in situ on agar surface in a chamber culture. (c and d) The Sorangineae type. (c) Chondromyces crocatus in a chamber culture. (d) Sorangium compositum in a chamber culture. (e to h) Myxospores of members of the Cystobacterineae. (e) Myxospores of Cystobacter ferrugineus, from a crushed, degenerated, Archangium-like, fruiting body; under oil immersion, the high optical refractility of the myxospores is not apparent. (f) Myxospores of Cystobacter velatus from a crushed fruiting body sporangiole; oil immersion. (g) Experimentally induced myxospores of Stigmatella aurantiaca on the agar surface in a chamber culture; under the 40 × dry objective, the high optical refractility of the myxospores becomes very conspicuous. (h) Myxospores from a Myxococcus xanthus fruiting body; the optical refractility of these spherical myxospores is so high that it is recognizable even under oil immersion. All photographs are in phase contrast. Bars = 10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abadie, M. 1967. Formation intracytoplasmiques du type “mesosome” chez Chondromyces crocatus Berkeley et Curtis. C. R. Acad. Sci. Paris, Sér. D, 265: 2132–2134.

    CAS  Google Scholar 

  • Abadie, M. 1968. Mise en évidence des formations méso- somiques dans les cellules végétatives du Chondro- myces apiculatus Thaxter. C. R. Acad. Sci. Paris, Sér. D, 267: 1538–1540.

    CAS  Google Scholar 

  • Abadie, M. 1971a. Contribution a la connaissance des myxobactéries supérieures I. Recherches culturales et microculturales sur le Chondromyces crocatus Berkeley et Curtis. Ann. Sci. Natur., Botanique (Paris), 12e Sér., 12: 255–344.

    Google Scholar 

  • Abadie, M. 1971b. Contribution a la connaissance des myxobactéries supérieures II. Donnée ultrastructurales et morphogénétiques sur le Chondromyces crocatus Berkeley et Curtis. Ann. Sci. Natur., Botanique (Paris), 12e Sér., 12: 345–428.

    Google Scholar 

  • Agnihothrudu, V., G. C. S. Barua, and K. C. Barua. 1959. Occurrence of Chondromyces in the rhizosphere of plants. Indian Phytopathol. 12: 158–160.

    Google Scholar 

  • Arias, J.M., C. Rodriguez, and E. Montoya. 1979a. Purification and partial characterization of an antibiotic produced by Myxococcus coralloides. J. Antibiot. 32: 205–211.

    PubMed  CAS  Google Scholar 

  • Arias, J. M., C. Rodriguez, and E. Montoya. 1979b. Biological activity of an antibiotic produced by Myxococcus coralloides. Microbios 24: 123–131.

    PubMed  CAS  Google Scholar 

  • Arnold, J. W., and L. J. Shimkets. 1988a. Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red. J. Bacteriol. 170: 5765–5770.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arnold, J. W., and L. J. Shimkets. 1988b. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170: 5771–5777.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aschner, M., and M. Chorin-Kirsch. 1970. Light-oriented locomotion in certain myxobacter species. Arch. Mikrobiol. 74: 308–314.

    Google Scholar 

  • Bacon, K., and F. A. Eiserling. 1968. A unique structure in microcysts of Myxococcus xanthus. J. Ultrastruct. Res. 21: 378–382.

    Google Scholar 

  • Balsalobre, J. M., R. Ruiz-Väzques, and F. J. Murillo. 1987. Light induction of gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 84: 2359–2362.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baur, E. 1905. Myxobakterien-Studien. Arch. Protistenk. 5: 92–121.

    Google Scholar 

  • Becker, K. 1990. Antibiotikca-Produktion mit trägerfixierten Myxobakterien. Ph.D. thesis. Technical University, Braunschweig, Germany.

    Google Scholar 

  • Beebe, J. M. 1941. Studies on the myxobacteria 2. The role of myxobacteria as bacterial parasites. Iowa State College J. Sci. 15: 319–337.

    Google Scholar 

  • Behrens, J., J. Flossdorf, and H. Reichenbach. 1976. Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). Int. J. Syst. Bacteriol. 26: 561–562.

    Google Scholar 

  • Bender, H. 1962. Untersuchungen an Myxococcus Xanthus I. Bildungsbedingungen, Isolierung und Eigenschaften eines bakteriolytischen Enzymsystems. Arch. Mikrobiol. 43: 262–279.

    CAS  Google Scholar 

  • Bender, H. 1963. Untersuchungen an Myxococcus Xanthus II. Partielle Lyse von Pullularia pullulans und einigen Hefen durch ein extrazelluläres Enzymsystem. Arch Mikrobiol. 45: 407–422.

    PubMed  CAS  Google Scholar 

  • Berkeley, M. J. 1857. Introduction to cryptogamic botany (on Stigmatella and Chondromyces), p. 313–315. H. Bailliere Publishers, London.

    Google Scholar 

  • Beyer, P., and H. Kleinig. 1985. In vitro synthesis of CIS C60 polyprenols in a cell-free system of Myxococcus fulvus and determination of chain length by high-performance liquid chromatography, p. 299–303. In: Methods in enzymology, vol. 110. Academic Press, New York.

    Google Scholar 

  • Blackhart, B. D., and D. Zusman. 1985. “Frizzy” genes of Myxococcus xanthus are involved in control of the frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82: 8767–8771.

    Google Scholar 

  • Bojary, M. R., and S. A. Dhala 1989. Coagulase of Myxococcus fulvus NK35 1. Purification and partial characterization. Zbl. Mikrobiol. 144: 347–354.

    CAS  Google Scholar 

  • Borchers, M. 1982. Isolierung und Charakterisierung hefelytischer Enzyme aus dem gleitenden Bakterium Myxococcus fulvus Mx 180 ( Myxobacterales). Ph.D. thesis, Technical University, Braunschweig, Germany.

    Google Scholar 

  • Brauss, E W., I. Heyne-Katzenberger, and W. Heyne. 1968. Beiträge zur Mikrobiologie von Binnengewässern (II) Arch. Hyg. Bakteriol. 152: 346–349.

    CAS  Google Scholar 

  • Brauss, R. W., I. Heyne-Katzenberger, H. Pech, and H. Barth. 1967. Beiträge zur Mikrobiologie von Binnengewässern (I). Arch. Hyg. Bakteriol. 150: 716–724.

    PubMed  CAS  Google Scholar 

  • Breton, A. M. 1984. Transposon Tn5 confers streptomycin resistance to Myxococcus xanthus. FEMS Microbiol. Lett. 22: 85–88.

    CAS  Google Scholar 

  • Breton, A. M., and J. F. Guespin-Michel. 1987. Escherichia coli pH 2.5 acid phosphatase and ß-lactamase TEM2 are secreted into the medium by Myxococcus xanthus. FEMS Microbiol. Lett. 40: 183–188.

    Google Scholar 

  • Breton, A. M., S. Jaoua, and J. Guespin-Michel. 1985. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. J. Bacteriol. 161: 523–528.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Breton, A. M., J. M. Nicaud, G. Younes, and J. E. GuespinMichel. 1984. Myxococcus xanthus, a Gram-negative nonpathogenic bacterium, that secretes proteins into the extracellular medium growth, is a potential cloning host for excreted proteins production, p. 441–446. In: 3rd European Congress Biotechnol. München, vol. I II. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Breton, A. M., G. Younes, E van Gijsegem, and J. GuespinMichel. 1986. Expression in Myxococcus xanthus of foreign genes coding for secreted pectate lyases of Erwinia chrysanthemi. J. Biotechnol. 4: 303–311.

    CAS  Google Scholar 

  • Bretscher, A. P., and D. Kaiser. 1978. Nutrion of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133: 763–768.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brockman, E. R., 1967. Fruiting myxobacteria from the South Carolina Coast. J. Bacteriol. 94: 1253–1254.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brockman, E. R. 1976. Myxobacters from arid Mexican soil. Appl. Environ. Microbiol. 32: 642–644.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brockman, E. R., and W. L. Boyd. 1963. Myxobacteria from soils of the Alaskan and Canadian arctic. J. Bacteriol. 86: 605–606.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brockman, E. R., and R. L. Todd. 1974. Fruiting myxobacters as viewed with a scanning electron microscope. Int. J. System. Bacteriol. 24: 118–124.

    Google Scholar 

  • Brown, N. L., R. P. Burchard, D. W. Morris, J. H. Parish, N. D. Stow, and C. Tsopanakis. 1976a. Phage and defective phage of strains of Myxococcus. Arch. Microbiol. 108: 271–279.

    PubMed  CAS  Google Scholar 

  • Brown, M. L., D. W. Morris, and J. H. Parish. 1976b. DNA of Myxococcus bacteriophage MX-1: macromolecular properties and restriction fragments. Arch. Microbiol. 108: 221–226.

    PubMed  CAS  Google Scholar 

  • Brown, N. L., and J. H. Parish. 1976. Extrachromosomal DNA in chloramphenicol resistant Myxococcus strains. J. Gen. Microbiol. 93: 63–68.

    PubMed  CAS  Google Scholar 

  • Burchard, A. C., R. P. Burchard, and J. A. Kloetzel. 1977. Intracellular, periodic structures in the gliding bacterium Myxococcus xanthus. J. Bacteriol. 132: 666–672.

    Google Scholar 

  • Burchard, R. P. 1980. Gliding motility of bacteria. Bio Science 30: 157–162.

    Google Scholar 

  • Burchard, R. P. 1981. Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu. Rev. Microbiol. 35: 497–529.

    PubMed  CAS  Google Scholar 

  • Burchard, R. P. 1984. Gliding motility and taxes, p. 139161. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Burchard, R. R, and D. T. Brown. 1973. Surface structure of gliding bacteria after freeze-etching. J. Bacteriol. 114: 1351–1355.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burchard, R. P., A. C. Burchard, and J. H. Parish. 1977. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol. 23: 1657–1662.

    PubMed  CAS  Google Scholar 

  • Burchard, R. R, and M. Dworkin. 1966a. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 91: 535–545.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burchard, R. P., and M. Dworkin. 1966b. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91: 1305–1313.

    Google Scholar 

  • Burchard, R. R, and S. B. Hendricks. 1969. Action spectrum for carotenogenesis in Myxococcus xanthus. J. Bacteriol. 97: 1165–1168.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burchard, R. R, and J. H. Parish. 1975. Mutants of Myxococcus xanthus insensitive to glycerol-induced myxospore formation. Arch. Microbiol. 104: 289–292.

    PubMed  CAS  Google Scholar 

  • Burchard, R. P., and J. H. Parish. 1976. Chloramphenicol resistance in Myxococcus xanthus. Antimicrobiol. Agents Chemother. 7: 233–238.

    Google Scholar 

  • Burchard, R. P., and H. Voelz. 1972. Bacteriophage infection of Myxococcus xanthus during cellular differentiation and vegetative growth. Virology 48: 555–556.

    PubMed  CAS  Google Scholar 

  • Burnham, J. C., S. A. Collart, and M. J. Daft. 1984. Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Arch. Microbiol. 137: 220–225.

    Google Scholar 

  • Burnham, J. C., S. A. Collart, and B. W. Highison. 1981. Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch. Microbiol. 129: 285–294.

    Google Scholar 

  • Caillon, E., B. Lubochinsky, and D. Rigomier. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153: 1348–1351.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Callao, V., R. Alvarado, A. Sedano, J. Olivares, and E. Montoya. 1966. Efecto antagonico del Myxococcus xanthus sobre los Azotobacter. Microbiol. Espafi. 19: 45–51.

    Google Scholar 

  • Campos, J. M., J. Geisselsoder, and D. R. Zusman. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 167–178.

    PubMed  CAS  Google Scholar 

  • Chen, H., J. M. Keseler, and L. J. Shimkets. 1990. Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis. J. Bacteriol. 172: 4206–4213.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Coletta, R L., and R. G. G. Miller. 1986. The extracellular proteases of Myxococcus xanthus. FEMS Microbiol. Lett. 37: 203–207.

    CAS  Google Scholar 

  • Couke, R. 1969. Morphology and morphogenesis of Sor- angium compositum. J. Appl. Bacteriol. 32: 24–29.

    Google Scholar 

  • Couke, P., and J. R. Voets. 1967. The mineral requirement of Polyangium cellulosum. Zschr. Allgem. Mikrobiol. 7: 175–182.

    Google Scholar 

  • Couke, R, and J. P. Voets. 1968. Étude de la cellulolyse enzymatique par Sorangium compositum. Ann. Inst. Pasteur 115: 549–560.

    Google Scholar 

  • Cumsky, M. G., and D. R. Zusman. 1981. Purification and characterization of myxobacterial hemmagglutinin, a development-specific lectin of Myxococcus xanthus. J. Biol. Chem. 256: 12581–12588.

    PubMed  CAS  Google Scholar 

  • Cunningham, J. L. 1972. A miracle mounting fluid for permanent whole-mounts of microfungi. Mycologia 64: 906–911.

    Google Scholar 

  • Daft, M. J., J. C. Burnham, and Y. Yamamoto. 1985. Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures. J. Appl. Bacteriol. 59: 73–80.

    CAS  Google Scholar 

  • Dawid, W. 1978. Fruchtkörper-bildende Myxobakterien in Böden Brasiliens. Zschr. Allgem. Mikrobiol. 18: 83–93.

    Google Scholar 

  • Dawid, W. 1979. Vorkommen und Verbreitung Fruchtkörperbildender Myxobakterien im Siebengebirge. Zschr. Allgem. Mikrobiol. 19: 705–719.

    CAS  Google Scholar 

  • Dawid, W. 1980. Fruchtkörperbildende Myxobakterien VII. Die Chondromyces-Arten: Ch. apiculatus und Ch. Ianuginosus. Entwicklungszyklus. Mikrokosmos 69: 73–79.

    Google Scholar 

  • Dawid, W. 1984. Myxobakterien in ungestörten Hochmooren des Hohen Venn (Hautes Fagnes, Belgien). Syst. Appl. Microbiol. 5: 555–563.

    Google Scholar 

  • Dawid, W., C. A. Gallikowski, and P. Hirsch. 1988. Psychrophilic myxobacteria from Antarctic soils. Polarforschung 58: 271–278.

    Google Scholar 

  • Dérijard, B., M. Ben Aíssa, B. Lubochinsky, and Y. Cenatiempo. 1989. Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell. Biochem. Biophys. Res. Commun. 158: 562–568.

    PubMed  Google Scholar 

  • Devi, A. L., and H. D. McCurdy. 1984. Cyclic GMP and cyclic AMP binding proteins in Myxococcus xanthus. J. Gen. Microbiol. 130: 1845–1849.

    CAS  Google Scholar 

  • Dhundale, A., T. Furuichi, M. Inouye, and S. Inouye. 1988a. Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus. J. Bacteriol. 170: 5620–5624.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dhundale, A., M. Inouye, and S. Inouye. 1988b. A new species of multicopy single-stranded DNA from Myxococcus xanthus with conserved structural features. J. Biol. Chem. 263: 9055–9058.

    PubMed  CAS  Google Scholar 

  • Dhundale, A., B. Lampson, T. Furuichi, M. Inouye, and S. Inouye. 1987. Structure of msDNA from Myxococcus xanthus: evidence for a long self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51: 1105–1112.

    PubMed  CAS  Google Scholar 

  • Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164: 914–917.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dill, D., H. Eckau, and H. Budzikiewicz. 1985. Neuartige Cerebroside aus Cystobacter fuscus (Myxobacterales). Zschr. Natuforsch. 40b: 1738–1746.

    Google Scholar 

  • Ditmar, L. P. F. 1814. Die Pilze Deutschlands. In: J. Sturm (ed.), Deutschlands Flora, III. Abteilung, 1. Bändchen, Heft 2 (on Polyangium), p. 55–56 and plate 27. Nürnberg.

    Google Scholar 

  • Dobson, W. J., and H. D. McCurdy. 1979. The function of fimbriae in Myxococcus xanthus. I. Purification and properties of M. xanthus fimbriae. Can. J. Microbiol. 25: 1152–1160.

    CAS  Google Scholar 

  • Downard, J. S. 1988. Tn5-mediated transposition of plasmid DNA after transduction to Myxococcus xanthus. J. Bacteriol. 170: 4939–4941.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drews, G. 1974. Mikrobiologisches Praktikum, 2nd ed. Springer-Verlag, Berlin.

    Google Scholar 

  • Dubos, R. 1928. The decomposition of cellulose by aerobic bacteria. J. Bacteriol. 15: 223–234.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84: 250–257.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dworkin, M. 1969. Sensitivity of gliding bacteria to actinomycin D. J. Bacteriol. 98: 851–852.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dworkin, M. 1973. Cell-cell interactions in the myxobacteria. Symp. Gen. Microbiol. 23: 125–142.

    CAS  Google Scholar 

  • Dworkin, M. 1977. The myxobacterales In: A. I. Laskin and H. A. Lechevalier (ed.), Handbook of microbiology, vol. I. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154: 452–459.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dworkin, M. 1984. Research on the myxobacteria: past, present, future, p. 221–245. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Dworkin, M. 1985. Developmental biology of the bacteria. Benjamin/Cummings Publishing Co., Reading, MA.

    Google Scholar 

  • Dworkin, M. 1990. Cell-cell interactions in myxobacteria, In: M. Dworkin (ed.), Microbial cell interactions. ASM Press, Washington, DC. In press.

    Google Scholar 

  • Dworkin, M., and D. Eide. 1983. Myxococcus xanthus does not respond chemotactically to moderate concentration gradients. J. Bacteriol. 154: 437–442.

    Google Scholar 

  • Dworkin, M., and S. M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146: 243–244.

    PubMed  CAS  Google Scholar 

  • Dworkin, M., and D. Kaiser. 1985. Cell interactions in myxobacterial growth and development. Science 230: 18–24.

    PubMed  CAS  Google Scholar 

  • Dworkin, M., K.H. Keller, and D. Weisberg. 1983. Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 1367–1371.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dworkin, M., and D.J. Niederpruem. 1964. Electron transport system in vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 87: 316–322.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dworkin, M., and W. Sadler. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. I. General description. J. Bacteriol. 91: 1516–1519.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eckau, H., D. Dill, and H. Budzikiewicz. 1984. Neuartige Ceramide aus Cystobacter fuscus (Myxobacterales). Zschr. Naturforsch. 39c: 1–9.

    Google Scholar 

  • El Akoum, A., M. Vijayalakshmi, P. Cardon, B. Fournet, M. Sigot, and J. F Guespin-Michel. 1987. Myxococcus xanthus produces an extracellular glycopeptide that displays blood anticoagulant properties. Enzyme Microb. Technol. 9: 426–429.

    Google Scholar 

  • Fautz, E., L. Grotjahn, and H. Reichenbach. 1981. 2- and 3-hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria, p. 127–133. In: H. Reichenbach and O. B. Weeks (ed.), The FlavobacteriumCytophaga group. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Fautz, E., G. Rosenfelder, and L. Grotjahn. 1979. Isobranched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Filer, D., S.H. Kindler, and E. Rosenberg. 1977. Myxospore coat synthesis in Myxococcus xanthus: enzymes associated with uridine 5’-diphosphate-N-acetylgalactosamine formation during myxospore development. J. Bacteriol. 131: 745–750.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Filer, D., E. Rosenberg, and S. H. Kindler. 1973. Aspartokinase of Myxococcus xanthus: “feedback stimulation” by required amino acids. J. Bacteriol. 115: 23–28.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finck, G. 1950. Biologische and stoffwechselphysiologische Studien an Myxococcaceen. Arch. Mikrobiol. 15: 358–388.

    Google Scholar 

  • Fink, J. M., M. Kalos, and J. F. Zissler. 1989. Isolation of cell surface antigen mutants of Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2033–2041.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fink, J. M., and J. F. Zissler. 1989a. Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2028–2032.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fink, J. M., and J. F. Zissler. 1989b. Defects in motility and development of Myxoccus xanthus lipopolysaccharide mutants. J. Bacteriol. 171: 2042–2048.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fluegel, W. 1963. Fruiting chemotaxis in Myxococcus fulvus (myxobacteria). Proc. Minnesota Acad. Sci. 30: 120–123.

    Google Scholar 

  • Fluegel, W. 1965. Fruiting body populations of Myxococcus fulvus (Myxobacterales). Growth 29: 183–191.

    PubMed  CAS  Google Scholar 

  • Furuichi, T., A. Dhundale, M. Inouye, and S. Inouye. 1987a. Branched RNA covalently linked to the 5’ end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA. Cell 48: 47–53.

    PubMed  CAS  Google Scholar 

  • Furuichi, T., S. Inouye, and M. Inouye. 1987b. Biosynthesis and structure of stable branched RNA covalently linked to the 5’ end of multicopy single-stranded DNA of Stigmatella aurantiaca. Cell 48: 55–62.

    PubMed  Google Scholar 

  • Galvän, A., R. Anadón, and F. de Castro. 1981. Observation de cuerpos fructiferos de Stigmatella erecta con el microscopio electrónico de barrido. Bol. R. Espar. Hist. Nat. (Biol.) 79: 259–264.

    Google Scholar 

  • Galvän, A., F. de Castro, and D. Fernández-Galiano. 1986. Ultrastructura de la célula vegetativa de Stigmatella erecta S12. Bol. R. Soc. Espar. Hist. Nat. (Biol.) 81: 59.

    Google Scholar 

  • Galvän, A., F. de Castro, and D. Fernández-Galiano. 1987. Ultrastructure of the fruiting body of Stigmatella erecta (Myxobacterales). Trans. Am. Microscop. Soc. 106: 89–93.

    Google Scholar 

  • Geisselsoder, J., J. Campos, and D. R. Zusman. 1978. Physical characterization of MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 179–189.

    PubMed  CAS  Google Scholar 

  • Geitler, L. 1925. Über Polyangium parasiticum n. sp., eine submerse, parasitische Myxobacteriacee. Arch. Protistenk. 50: 67–88.

    Google Scholar 

  • Gerth, K. 1975. Untersuchungen über den molekularen Mechanismus der Induktion von Myxosporen bei Stigmatella aurantiaca Sg al (Myxobacterales). Ph.D. thesis, University of Freiburg, Germany.

    Google Scholar 

  • Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1980. Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales) I. Cultivation, isolation, physicochemical and biological properties. J. Antibiot. 33: 1474–1479.

    PubMed  CAS  Google Scholar 

  • Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1982. The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J. Antibiot. 35: 1454–1459.

    PubMed  CAS  Google Scholar 

  • Gerth, K., R. Jansen, G. Reifenstahl, G. Höfle, H. Irschik, B. Kunze, H. Reichenbach, and G. Thierbach. 1983. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) I. Production, physicochemical and biological properties and mechanism of action. J. Antibiot. 36: 1150–1156.

    PubMed  CAS  Google Scholar 

  • Gerth, K., and H. Reichenbach. 1978. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales) I. General characterization of the system. Arch. Microbiol. 177: 173–182.

    Google Scholar 

  • Gerth, K., and H. Reichenbach. 1986. Determination of bacterial ammonia pools using Myxococcus virescens as an example. Analyt. Biochem. 152: 78–82.

    PubMed  CAS  Google Scholar 

  • Gerth, K., W. Trowitzsch, G. Piehl, R. Schultze, and J. Lehmann. 1984. Inexpensive media for mass cultivation of myxobacteria. Appl. Microbiol. Biotechnol. 19: 2328.

    Google Scholar 

  • Gill, J., E. Stellwag, and M. Dworkin. 1985. Monoclonal antibodies against cell-surface antigens of developing cells of Myxococcus xanthus. Ann. Inst. Pasteur/Microbiol. 136A: 11–18.

    Google Scholar 

  • Gill, J. S., and M. Dworkin. 1986. Cell surface antigens during submerged development of Myxococcus xanthus examined with monoclonal antibodies. J. Bacteriol. 168: 505–511.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gill, J. S., and M. Dworkin. 1988. Isolation of additional monoclonal antibodies directed against cell surface antigens of Myxococcus xanthus cells undergoing submerged development. J. Bacteriol. 170: 5953–5955.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gnosspelius, G. 1978a. Myxobacterial slime and proteolytic activity. Arch. Microbiol. 116: 51–59.

    PubMed  CAS  Google Scholar 

  • Gnosspelius, G. 1978b. Purification and properties of an extracellular protease from Myxococcus virescens. J. Bacteriol. 133: 17–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Godchaux, W., and E. R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gräf, W. 1975. Myxobakterien der Gattung Myxococcus als indirekte Fäkalstoffindikatoren in Oberflächengewässern. Zbl. Bakteriol., 1. Abt. Orig., Reihe B 160: 28–39.

    Google Scholar 

  • Grilione, P. L. 1968. Serological reactions of some higher myxobacteria. J. Bacteriol. 95: 1202–1204.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grimm, K., 1978. Comparison of spontaneous, UV-induced, and nitrosoguanidine-induced mutability to drug resistance in myxobacteria. J. Bacteriol. 135: 748–753.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grimm, K., H. K. Galle, and H. H. Heunert. 1971. Archangium violaceum (Myxobacteriales)-Bewegungsaktivität und Kolonieform. Encyclopaedia Cinematographica E 1588, film of the Institut fur den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Grimm, K., and H. Kühlwein. 1973a. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) I. Bewegliche und unbewegliche Zellen von A. violaceum. Arch. Mikrobiol. 89: 105–119.

    Google Scholar 

  • Grimm, K., and H. Kühlwein. 1973b. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) II. Über den Einfluß des Schleims auf die Bewegung der Zellen und die Entstehung stabiler Suspensionskulturen. Arch. Mikrobiol. 89: 121–132.

    Google Scholar 

  • Grimm, K., and H. Kühlwein. 1973c. Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales) III. Über weitere Eigenschaften der K- und S-Zellen. Arch. Mikrobiol. 89: 113–146.

    Google Scholar 

  • Hagen, D. C., and A. P. Bretscher, and D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Develop. Biol. 64: 284–296.

    Google Scholar 

  • Hanson, C. W., and M. Dworkin. 1974. Intracellular and extracellular nucleotides and related compounds during the development of Myxococcus xanthus. J. Bacteriol. 118: 486–496.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harcke, E., A. Hüttermann, and H. Kühlwein. 1971. Studies on lytic activities of Chondrococcus coralloides (Myxobacteriales) I. Purification and some properties of the bacteriolytic activity. Arch. Mikrobiol. 77: 86–95.

    PubMed  CAS  Google Scholar 

  • Harcke, E., A. Hüttermann, and H. Kühlwein. 1972. Studies on lytic activities of Chondrococcus coralloides (Myxobacterales) II. Identification of the bacteriolytic enzyme as a muramidase. Arch. Mikrobiol. 85: 6–12.

    PubMed  CAS  Google Scholar 

  • Hart, B. A., and S. A. Zahler. 1966. Lytic enzyme produced by Myxococcus xanthus. J. Bacteriol. 92: 1632–1637.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haskä, G. 1969. Production of lytic exoenzymes in casa-mino acids media by Myxococcus virescens. Physiol. Plant. 22: 1074–1078.

    Google Scholar 

  • Haskä, G. 1972a. Extracellular lytic enzymes of Myxococcus virescens II. Purification of three bacteriolytic enzymes and determination of their molecular weights and isoelectric points. Physiol. Plant. 26: 221–229.

    Google Scholar 

  • Haskä, G. 1972b. Extracellular lytic enzymes ofMyxococcus virescens III. Characterization of two endo-ß-B-acetylglucosaminidases. Physiol. Plant. 27: 139–142.

    Google Scholar 

  • Haskä, G. 1974. Extracellular lytic enzymes of Myxococcus virescens IV. Purification and characterization of a nalanyl-e-N-lysine endopeptidase. Physiol. Plant. 31: 252–256.

    Google Scholar 

  • Haskä, G. 1975. Influence of clay minerals on sorption of bacteriolytic enzymes. Microb. Ecol. 1: 234–245.

    Google Scholar 

  • Haskä, G. 1981. Activity of bacteriolytic enzymes adsorbed to clay. Microb. Ecol. 7: 331–341.

    PubMed  Google Scholar 

  • Haskä, G., B. Norén, and G. Odham, 19072. Effect of fatty acids on the activity of bacteriolytic enzymes. Physiol. Plant. 27: 187–194.

    Google Scholar 

  • Haskä, G., and S. Stähl. 1971. Variants of Myxococcus virescens exhibiting dispersed growth. Growth and production of extracellular enzymes and slime. Physiol. Plant. 24: 136–142.

    Google Scholar 

  • Hecht, V., J. Vorlop, H. Kalbitz, K. Gerth, and J. Lehmann. 1987. Vortex chamber for in situ recovery of the antibiotic myxovirescin A in continuous cultivation. Biotechnol. Bioengineer. 29: 222–227.

    CAS  Google Scholar 

  • Heunert, H. H. 1973. Präparationsmethoden für Vitalbeobachtungen an Mikroorganismen. Zeiss Informationen 20: 40–49.

    Google Scholar 

  • Heyn, A. N. J. 1957. Bacteriological studies on cotton. Textile Res. J. 27: 591–603.

    Google Scholar 

  • Hirsch, H. J. 1977. Bacteriocins from Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 115: 45–49.

    PubMed  CAS  Google Scholar 

  • Hirsch, H. J., H. Tsai, and I. Geffers. 1978. Purification and effects of fulvocin C, a bacteriocin from Myxococcus fulvus Mx f16. Arch. Microbiol. 119: 279–286.

    PubMed  CAS  Google Scholar 

  • Hodgkin, J., and D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74: 2938–2942.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hodgkin, J., and D. Kaiser. 1979a. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171: 167–176.

    Google Scholar 

  • Hodgkin, J., and D. Kaiser. 1979b. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171: 177–191.

    Google Scholar 

  • Hook, L. A. 1977. Distribution of myxobacters in aquatic habitats in an alkaline bog. Appl. Environ. Microbiol. 34: 333–335.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hüttermann, A. 1969. Studies on bacteriolytic enzyme of Archangium violaceum (Myxobacteriales) II. Partial purification and properties of the enzyme. Arch. Mikrobiol. 67: 306–317.

    PubMed  Google Scholar 

  • Imschenezki, A. A. (also: Imshenetski). 1959. Mikrobiologie der Cellulose. (Translated from the Russian edition of 1953.) Akademie Verlag, Berlin.

    Google Scholar 

  • Imshenetski, A. A., and L. A. Kusjurina. 1951. Bacteriotrophic microorganisms. The evolution of saprophytism and parasitism (in Russian). Mikrobiologiya 20: 312.

    Google Scholar 

  • Imshenetski, A. A., and L. Solntseva. 1936. On aerobic cellulose-decomposing bacteria. (In Russian, with English summary.) Izvestiia Akad. Nauk SSSR, Classe Sci. Math. Natl. Ser. Biol. 1936: 1115–1172.

    Google Scholar 

  • Inouye, M., S. Inouye, and D. R. Zusman. 1979a. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Develop. Biol. 68: 579–591.

    PubMed  CAS  Google Scholar 

  • Inouye, M., S. Inouye, and D. R. Zusman. 1979b. Biosynthesis and self assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 209–213.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inouye, S. 1984. Identification of a development-specific promoter of Myxococcus xanthus. J. Mol. Biol. 174: 113–120.

    PubMed  CAS  Google Scholar 

  • Inouye, S. 1990. Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus. J. Bacteriol. 172: 80–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inouye, S., T. Franceschini, and M. Inouye. 1983a. Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc. Natl. Acad. Sci. USA 80: 6829–6833.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inouye, S., T. Furuichi, A. Dhundale, and M. Inouye. 1987. Stable branched RNA covalently linked to the 5’ end of a single-stranded DNA of myxobacteria, p. 271–284. In: M. Inouye and B. S. Dudock (ed.), Molecular biology of RNA: new perspectives. Academic Press, San Diego.

    Google Scholar 

  • Inouye, S., P. J. Herzer, and M. Inouye. 1990. Two independent retrons with highly diverse transcriptases in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 87: 942–945.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inouye, S., M. Y. Hsu, S. Eagle, and M. Inouye. 1989. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56: 709–717.

    PubMed  CAS  Google Scholar 

  • Inouye, S., Y. Ike, and M. Inouye. 1983b. Tandem repeat of the genes for protein S, a development-specific protein of Myxococcus xanthus. J. Biol. Chem. 258: 38–40.

    PubMed  CAS  Google Scholar 

  • Irschik, H., K. Gerth, T. Kemmer, H. Steinmetz, and H. Reichenbach. 1983a. The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales) I. Cultivation, isolation and some chemical and biological properties. J. Antibiot. 36: 6–12.

    PubMed  CAS  Google Scholar 

  • Irschik, H., K. Gerth, G. Höfle, W. Kohl, and H. Reichenbach. 1983b. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J. Antibiot. 36: 1651–1658.

    PubMed  CAS  Google Scholar 

  • Irschik, H., R. Jansen, K. Gerth, G. Höfle, and H. Reichenbach. 1987. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J. Antibiot. 40: 7–13.

    PubMed  CAS  Google Scholar 

  • Irschik, H., R. Jansen, G. Höfle, K. Gerth, and H. Reichenbach. 1985. The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. J. Antibiot. 38: 145–152.

    PubMed  CAS  Google Scholar 

  • Irschik, H., and H. Reichenbach. 1985. An unusual pattern of carbohydrate utilization in Corallococcus (Myxococcus) coralloides (Myxobacterales). Arch. Microbiol. 142: 40–44.

    CAS  Google Scholar 

  • Jackson, D. J. 1959. The association of a slime bacterium with the inner envelope of the egg of Dytiscus marginalis (Coleoptera), and the less common occurrence of a similar bacterium on the egg of D. semisulcatus. Quart. J. Microscop. Sci. 100: 433–443.

    Google Scholar 

  • Jahn, E. 1911. Myxobacteriales, p. 187–206. In: Kryptogamenflora der Mark Brandenburg, vol. 5. Gebrüder Borntraeger, Leipzig.

    Google Scholar 

  • Jahn, E. 1924. Beiträge zur botanischen Protistologie. I. Die Polyangiden. Gebrüder Borntraeger, Leipzig.

    Google Scholar 

  • Janssen, G. R., J. W. Wireman, and M. Dworkin. 1977. Effect of temperature on the growth of Myxococcus xanthus. J. Bacteriol. 103: 561–562.

    Google Scholar 

  • Jaoua, S., J. F. Guespin-Michel, and A. M. Breton. 1987. Mode of insertion of the broad-host-range plasmid RP4 and its derivatives into the chromosome of Myxococcus xanthus. Plasmid 18: 111–119.

    PubMed  CAS  Google Scholar 

  • Jaoua, S., B. Letouvet-Pawlak, C. Monnier, and J. E Guespin-Michel. 1990. Mechanism of integration of the broad-host-range plasmid RP4 into the chromosome of Myxococcus xanthus. Plasmid 23: 183–193.

    PubMed  CAS  Google Scholar 

  • Jarvis, B. W., and M. Dworkin. 1989a. Purification and properties of Myxococcus xanthus cell surface antigen 1604. J. Bacteriol. 171: 4655–4666.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jarvis, B. W., and M. Dworkin. 1989b. Role of Myxococcus xanthus cell surface antigen 1604 in development. J. Bacteriol. 171: 4667–4673.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jeffers, E. E. 1964. Myxobacters of a freshwater lake and its environs. Int. Bull. Bact. Nomenclature Taxon. 14: 115136.

    Google Scholar 

  • Johnson, J. L., and E. J. Ordal. 1969. Deoxyribonucleic acid homology among the fruiting myxobacteria. J. Bacteriol. 98: 319–320.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 5952–5956.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaiser, D. 1984a. Genetics of myxobacteria, p. 163–184. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Kaiser, D. 1984b. Regulation of multicellular development in myxobacteria, p. 197–218. In: R. Losick and L. Shapiro (ed.), Microbial development. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Kaiser, D. 1986. Control of multicellular development: Dictyostelium and Myxococcus. Annu. Rev. Genet. 20: 539–566.

    PubMed  CAS  Google Scholar 

  • Kaiser, D. 1989. Multicellular development in myxobacteria, p. 243–263. In: A. Hopwood and K. E Chater (ed.), Genetics of bacterial diversity. Academic Press, London.

    Google Scholar 

  • Kaiser, D., and M. Dworkin. 1975. Gene transfer to a myxobacterium by Escherichia coli phage Pl. Science 187: 653–655.

    PubMed  CAS  Google Scholar 

  • Kaiser, D., L. Kroos, and A. Kuspa. 1985. Cell interactions govern the temporal pattern of Myxococcus development. Cold Spring Harbor Symp. Quant. Biol. 50: 823–830.

    CAS  Google Scholar 

  • Kaiser, D., C. Manoil, and M. Dworkin. 1979. Myxobacteria: cell interactions, genetics, and development. Annu. Rev. Microbiol. 33: 595–639.

    PubMed  CAS  Google Scholar 

  • Katô, H. 1955. Notes on myxobacteria II. Antibacterial strains of Myxococcus fulvus. Ecol. Rev. 14: 26–28.

    Google Scholar 

  • Keller, K. H., M. Grady, and M. Dworkin. 1983. Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 1358–1366.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Killeen, K. P., and D. R. Nelson. 1988. Acceleration of starvation-and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus. J. Bacteriol. 170: 5200–5207.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim, S. K., and D. Kaiser. 1990. C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61: 19–26.

    PubMed  CAS  Google Scholar 

  • Kimchi, A., and E. Rosenberg. 1976. Linkages between deoxyribonucleic acid synthesis and cell division in Myxococcus xanthus. J. Bacteriol. 128: 69–79.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kleinig, H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides I. Isolation and composition. Biochim. Biophys. Acta 274: 489–498.

    PubMed  CAS  Google Scholar 

  • Kleinig, H. 1974. Inhibition of carotenoid synthesis in Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 97: 217–226.

    PubMed  CAS  Google Scholar 

  • Kleinig, H. 1975. On the utilization in vivo of lycopene and phytoene as precursors for the formation of carotenoid glucoside ester and on the regulation of carotenoid biosynthesis in Myxococcus fulvus. Eur. J. Biochem. 57: 301–308.

    PubMed  CAS  Google Scholar 

  • Kleinig, H., and H. Reichenbach. 1973. Biosynthesis of carotenoid glucoside esters in Myxococcus fulvus (Myxobacterales): Inhibition by nicotine and carotenoid turnover. Biochim. Biophys. Acta 306: 249–256.

    PubMed  CAS  Google Scholar 

  • Kleinig, H., H. Reichenbach, and H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales) II. Acylated carotenoid glycosides. Arch. Mikrobiol. 74: 223–234.

    PubMed  CAS  Google Scholar 

  • Kleinig, H., H. Reichenbach, H. Achenbach, and J. Stadler. 1971. Carotenoid pigments of Sorangium cellulosum (Myxobacterales) including two new carotenoid glycoside esters and two new carotenoid rhamnosides. Arch. Mikrobiol. 78: 224–233.

    PubMed  CAS  Google Scholar 

  • Kleinig, H., H. Reichenbach, N. Theobald, and H. Achenbach. 1974. Flexibacter elegans and Myxococcus fulvus: aerobic Gram-negative bacteria containing menaquinones as the only isoprenoid quinones. Arch. Microbiol. 101: 91–93.

    Google Scholar 

  • Kofler, L. 1913. Die Myxobakterien der Umgebung von Wien. Sitzber. Kais. Akad. Wiss. Wien. Math. Naturw. Klasse, Abt. 1, 122: 845–876 (including one plate).

    Google Scholar 

  • Kohl, W., A. Gloe, and H. Reichenbach. 1983. Steroids from the myxobacterium Nannocystis exedens. J. Gen. Microbiol. 129: 1629–1635.

    CAS  Google Scholar 

  • Komano, T., T. Franceschini, and S. Inouye. 1987. Identification of a vegetative promoter in Myxococcus xanthus. A protein that has homology to histones. J. Mol. Biol. 196: 517–524.

    PubMed  CAS  Google Scholar 

  • Kroos, L., and D. Kaiser. 1984. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81: 5816–5820.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kroos, L., A. Kuspa, and D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Develop. Biol. 17: 252–266.

    Google Scholar 

  • Kroos, L., A. Kuspa, and D. Kaiser. 1990. Defects in fruiting body development caused by Tn5 lac insertions in Myxococcus xanthus. J. Bacteriol. 172: 484–487.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1926. Miksobakterje Polski. (In Polish, with German summary) Acta Soc. Botan. Polon. 4: 1–54.

    Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1927a. Miksobakterje Polski. Uzupelnienie. (In Polish, with German summary.) Acta Soc. Botan. Polon. 5: 79–98.

    Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1927b. Rozsiedlenie miksobakteryj (Über die Verbreitung der Myxobakterien im Boden). (In Polish, with German summary.) Acta Soc. Botan. Polon. 5: 102–139.

    Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1928. Morphologja komorki miksobakteryj (Zur Morphologie der Myxobakterienzelle). (In Polish, with German summary.) Acta Soc. Botan. Polon. 5: 46–90.

    Google Scholar 

  • Krzemieniewska, H., S. Krzemieniewski. 1930. Mikrobakterje Polski. Czesc trzecia (Die Myxobakterien von Polen. III. Teil) (In Polish, with German summary.) Acta Soc. Botan. Polon. 7: 250–273.

    Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1937a. Die zellulosezersetzenden Myxobakterien. Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat., Sér. B (I): 11–31.

    Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1937b. Über die Zersetzung der Zellulose durch Myxobakterien. Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat., Sér. B (I): 33–59.

    Google Scholar 

  • Krzemieniewska, H., and S. Krzemieniewski. 1946. Myxobacteria of the species Chondromyces Berkeley and Curtis. Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat., Sér. B (I): 31–48.

    Google Scholar 

  • Kühlwein, H. 1950. Beiträge zur Biologie und Entwicklungsgeschichte der Myxobakterien. Arch. Mikrobiol. 14: 678–704.

    Google Scholar 

  • Kühlwein, H. 1960. Zur Systematik und Verbreitung der Myxobakterien. Zbl. Bakteriol., 2. Abt. 113: 480–490.

    Google Scholar 

  • Kfilwein, H., and E. Gallwitz. 1958. Polyangium violaceum nov. spec. Ein Beitrag zur Kenntnis der Myxobakterien. Arch. Mikrobiol. 31: 139–145.

    Google Scholar 

  • Kühlwein, H., and H. Reichenbach. 1965. Anreicherung und Isolierung von Myxobakterien. Zbl. Bakteriol., 1. Abt. Orig., Suppl. 1: 57–80.

    Google Scholar 

  • Kühlwein, H., B. Schlicke, H. K. Galle, and H. H. Heunert. 1971a. Polyangium fuscum (Myxobacterales)-Cystenkeimung und Schwarmentwicklung. Encyclopaedia Cinematographica E 1582, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Kühlwein, H., B. Schlicke, H. K. Galle, and H. H. Heunert. 1971b. Polyangium fuscum (Myxobacterales-Morphogenese. Encyclopaedia Cinematographica E 1583, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Kuner, J. M., and D. Kaiser. 1981. Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. USA 78: 425–429.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuner, J. M., and D. Kaiser. 1982. Fruiting body morpho-genesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151: 458–461.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kunze, B., G. Höfle, and H. Reichenbach. 1987. The aurachins, new quinoline antibiotics from myxobacteria: production, physicochemical and biological properties. J. Antibiot. 40: 258–265.

    PubMed  CAS  Google Scholar 

  • Kunze, B., T. Kemmer, G. Höfle, and H. Reichenbach. 1984. Stigmatellin, a new antibiotic from Stigmatella aurantiaca (Myxobacterales) I. Production, physicochemical and biological properties. J. Antibiot. 37: 454–461.

    PubMed  CAS  Google Scholar 

  • Kunze, B., W. Kohl, G. Höfle, and H. Reichenbach. 1985. Production, isolation, physicochemical and biological properties of angiolam A, a new antibiotic from Angiococcus disciformis (Myxobacterales). J. Antibiot. 38: 1649–1654.

    PubMed  CAS  Google Scholar 

  • Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 231: 1154–1157.

    PubMed  CAS  Google Scholar 

  • Kuspa, A., D. Vollrath, Y. Cheng, and D. Kaiser. 1989. Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 86: 8917–8921.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lampky, J. R. 1976. Ultrastructure of Polyangium cellulosum. J. Bacteriol. 126: 1278–1284.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lampky, J. R., and E. R. Brockman. 1977. Fluorescence of Myxococcus stipitatus. Int. syst. Bacteriol. 27: 161.

    Google Scholar 

  • Lampson, B. C., M. Inouye, and S. Inouye. 1989. Reverse transcriptase with concomitant ribonuclease H. activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56: 701–707.

    PubMed  CAS  Google Scholar 

  • Li, S., and L. J. Shimkets 1988. Site-specific integration and expression of a developmental promoter in Myxococcus xanthus. J. Bacteriol. 170: 5552–5556.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Link, H. F. 1809. Observationes in Ordines plantarum naturales. Dissertatio Ima, complectens Anandranim or-dines Epiphytas, Mucedines Gastomycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunds 3:3–42 + 2 plates (in Latin; on Polyangium: p. 42 and Fig. 65 ).

    Google Scholar 

  • Loebeck, M. E., and H. P. Klein. 1956. Substrates for Myxococcus virescens with special reference to eubacterial fractions. J. Gen. Microbiol. 14: 281–289.

    PubMed  CAS  Google Scholar 

  • Ludwig, W., H. H. Schleifer, H. Reichenbach, and E. Stackebrandt. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum and Nannocystis exedens. Arch. Microbiol. 135: 58–62.

    CAS  Google Scholar 

  • Lünsdorf, H., and H. Reichenbach. 1989. Ultrastnictural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J. Gen. Microbiol. 135: 1633–1641.

    Google Scholar 

  • MacRae, T. H., and W. J. Dobson, and H. D. McCurdy. 1977. Fimbriation in gliding bacteria. Can. J. Microbiol. 23: 1096–1108.

    Google Scholar 

  • MacRae, T. H., and H. D. McCurdy. 1975. Ultrastructural studies of Chondromyces crocatus vegetative cells. Can. J. Microbiol. 21: 1815–1826.

    PubMed  CAS  Google Scholar 

  • MacRae, T. H., and H. D. McCurdy. 1976. Evidence for motility-related fimbriae in the gliding microorganism Myxococcus xanthus. Can. J. Microbiol. 22: 1589–1593.

    PubMed  CAS  Google Scholar 

  • Maeba, P. Y. 1983. Iodination of Myxococcus xanthus during development. J. Bacteriol. 155: 1033–1041.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maeba, P. Y. 1986. Isolation of a surface glycoproteiri from Myxococcus xanthus. J. Bacteriol. 166: 644–650.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mandel, M., and E. R. Leadbetter. 1965. Deoxyribonucleic acid base composition of myxobacteria. J. Bacteriol. 90: 1795–1796.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martin, S., E. Sodergren, T. Massuda, and D. Kaiser. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88: 44–53.

    PubMed  CAS  Google Scholar 

  • Martinez-Laborda, A., J. M. Balsalobre, M. Fontes, and E J. Murillo. 1990. Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol. Gen. Genet. 223: 205–210.

    PubMed  CAS  Google Scholar 

  • Mason, J., and D. Powelson. 1958. Lysis of Mycoxoccus xanthus. J. Gen. Microbiol. 19: 65–70.

    PubMed  CAS  Google Scholar 

  • Masson, P. J., and J. F. Guespin-Michel. 1988. An extra-cellular blood-anticoagulant glycopeptide produced exclusively during vegetative growth by Myxococcus xanthus and other myxobacteria is not co-regulated with other extracellular macromolecules. J. Gen. Microbiol. 134: 801–806.

    PubMed  CAS  Google Scholar 

  • Mathew, S., and A. Dudani. 1955. Lysis of human patho- genic bacteria by myxobacteria. Nature 175: 125.

    PubMed  CAS  Google Scholar 

  • Mayer, D. 1967. Ernährungsphysiologische Untersuchungen an Archangium violaceum. Arch. Mikrobiol. 58: 186–200.

    PubMed  CAS  Google Scholar 

  • Mayer, H., and H. Reichenbach. 1978. Restriction endonucleases: general survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McBride, M. J., R. A. Weinberg, and D. R. Zusman. 1989. “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natl. Acad. Sci. USA 86:424–428.

    Google Scholar 

  • McBride, M. J., and D. R. Zusman. 1989. Trehalose accumulation in vegetative cells and spores of Mycococcus xanthus. J. Bacteriol. 171: 6383–6386.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCleary, W. R., M. J. McBride, and D. R. Zusman. 1990. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of Frz CD. J. Bacteriol. 172: 4877–4887.

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCurdy, H. D. 1963. A method for the isolation of myxobacteria in pure culture. Can. J. Microbiol. 9: 282–285.

    Google Scholar 

  • McCurdy, H. D. 1969a. Studies on the taxonomy of the Myxobacterales. I. Record of Canadian isolates and survey of methods. Can. J. Microbiol. 5: 1453–1461.

    Google Scholar 

  • McCurdy, H. D. 1969b. Light and electron microscope studies on the fruiting bodies of Chondromyces crocatus. Arch. Mikrobiol. 65: 380–390.

    Google Scholar 

  • McCurdy, H. D. 1974. Myxobacterales, p. 76–98. In: R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams Wilkins, Baltimore.

    Google Scholar 

  • McCurdy, H. D. 1989. Order Myxococcales Tchan, Pochon and Prévot 1948, 398 (with contributions of E. R. Brockman, H. Reichenbach, and D. White), p. 2139–2170. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams Wilkins, Baltimore.

    Google Scholar 

  • McCurdy, H. D., and B. T. Khouw. 1969. Studies on Stig- matella brunea. Can. J. Microbiol. 15: 731–738.

    PubMed  CAS  Google Scholar 

  • McCurdy, H. D., and T. H. MacRae. 1973. Xanthacin. A bacteriocin of Myxococcus xanthus fb. Can. J. Microbiol. 20: 131–135.

    Google Scholar 

  • McCurdy, H. D., and S. Wolf. 1967. Deoxyribonucleic acid base compositions of fruiting Myxobacterales. Can. J. Microbiol. 13: 1707–1708.

    PubMed  CAS  Google Scholar 

  • McDonald, J. C. 1967. Studies on the genus Archangium (Myxobacterales). II. The effect of temperature and carbohydrates on some physiological processes. Mycologia 59: 1059–1068.

    PubMed  CAS  Google Scholar 

  • McDonald, J. C., and J. E. Peterson. 1962. Liquid cultures of two members of the higher fruiting myxobacteria. Mycologia 54: 368–373.

    Google Scholar 

  • McVittie, A., and S. A. Zahler. 1962. Chemotaxis in Myxococcus. Nature 194: 1299–1300.

    Google Scholar 

  • Menne, B., and G. Rückert. 1988. Myxobakterien (Myxobacterales) in Höhlensedimenten des Hagengebirges (Nördliche Kalkalpen). Die Höhle 4: 120–131.

    Google Scholar 

  • Michoustine, E. (also: Mishustin). 1968. Microorganismes cellulolytiques des sols de l’U.S.S.R. Ann. Inst. Pasteur 115: 596–603.

    Google Scholar 

  • Miyashiro, S., S. Yamanaka, S. Takayama, and H. Shibai. 1988. Novel macrocyclic antibiotics: myxovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins. J. Ari tibiot. 41: 433–438.

    CAS  Google Scholar 

  • Mizrahi, A., J. Aman, G. Miller, Z. Liron, M. Manai, Y. Batus, and E. Rosenberg. 1977. Scaling-up process for production of antibiotic of Myxococcus xanthus TA. J. Appl. Chem. Biotechnol. 26: 160–166.

    Google Scholar 

  • Monteoliva-Sanchez, M., C. Ruiz, and A. Ramos-Cormenzana. 1987. Cellular fatty acid composition of Corallococcus coralloides. Curr. Microbiol. 15: 269–271.

    CAS  Google Scholar 

  • Morris, D. W., S. R. Ogden-Swift, V. Virrankowski-Castrodeza, K. Ainley, and J. H. Parish. 1978. Transduction of Myxococcus virescens by coliphage P1CM: generation of plasmids containing both phage and Myxococcus genes. J. Gen. Microbiol. 107: 73–83.

    PubMed  CAS  Google Scholar 

  • Morris, D. W., and J. H. Parish. 1976. Restriction in Myxo- coccus virescens. Arch. Microbiol. 108: 227–230.

    PubMed  CAS  Google Scholar 

  • Morris, J., S. R. Kushner, and R. Ivarie. 1986. The simple repeat poly (dT-dG)•poly (dC-dA) common to eukaryotes is absent from eubacteria and archaebacteria and rare in protozoans. Mol. Biol. Evol. 3: 343–355.

    PubMed  CAS  Google Scholar 

  • Mullings, R., and J. H. Parish. 1984. Mesophilic aerobic Gram-negative cellulose degrading bacteria from aquatic habitats and soils. J. Appl. Bacteriol. 57: 455–468.

    Google Scholar 

  • Nellis, L. F, and H. R. Garner. 1964. Methods of isolation and purification of Chondromyces. J. Bacteriol. 87: 230–231.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson, D. R., M. G. Cumsky, and D. R. Zusman. 1981. Localization of myxobacterial hemagglutinin in the periplasmic space and on the cell surface of Myxococcus xanthus during developmental aggregation. J. Biol. Chem. 256: 12589–12595.

    PubMed  CAS  Google Scholar 

  • Nelson, D. R., and K. R Killeen. 1986. Heat shock proteins of vegetative and fruiting Myxococcus xanthus. J. Bacteriol. 168: 1100–1106.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson, D. R., and D. R. Zusman. 1983. Evidence for a long-lived mRNA during fruiting body formation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 80: 1467–1471.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nicaud, J. M., A. Breton, G. Younes, and J. GuespinMichel. 1984. Mutants of Myxococcus xanthus impaired in protein secretion: an approach to study a secretory mechanism. Appl. Microbiol. Biotechnol. 20: 344–350.

    CAS  Google Scholar 

  • Nigam, J. N., J. Lehmann, K. Gerth, H. Piehl, R. Schultze, and W. Trowitzsch. 1984. Feeding stretegy for the production of the new antibiotic myxovirescin A from Myxococcus virescens (Myxobacterales). Appl. Microbiol. Biotechnol. 19: 157–160.

    CAS  Google Scholar 

  • Nolte, E. M. 1957. Untersuchungen über ernährung und Fruchtkörperbildung von Myxobakterien. Arch. Mikrobiol. 28: 191–218.

    PubMed  CAS  Google Scholar 

  • Norén, B. 1950. Notes on myxobacteria in Sweden. Svensk Bot. tidskr. 44: 108–112.

    Google Scholar 

  • Norén, B. 1952. Further notes on the distribution of myxobacteria in Swedish soils. Svensk Bot. Tidskr. 46: 446–453.

    Google Scholar 

  • Norén, B. 1953. On the production of antibiotics by myxobacteria. Svensk Bot. Tidskr. 47: 402–410.

    Google Scholar 

  • Norén, B. 1955. Studies on myxobacteria III. Organic fac- tors in nutrition. Botaniska Notiser 108: 81–134.

    Google Scholar 

  • Norén, B. 1960a. Notes on the bacteriolytic activity of Myxococcus virescens. Svensk Bot. Tdskr. 54: 550–560.

    Google Scholar 

  • Norén, B. 1960b. Lytic activity on autoclaved and on intact eubacterial cells by a preparation UZD, obtained from a metabolic solution of Myxococcus virescens. Botaniska Notiser 113: 320–336.

    Google Scholar 

  • Norén, B., and G. Odham. 1973. Antagonistic effects of Myxococcus xanthus on fungi: II. Isolation and characterization of inhibitory lipid factors. Lipids 8: 573–583.

    PubMed  Google Scholar 

  • Norén, B., and K. B. Raper. 1962. Antibiotic activity of myxobacteria in relation to their bacteriolytic capacity. J. Bacteriol. 84: 157–162.

    PubMed  PubMed Central  Google Scholar 

  • Oetker, H. 1953. Untersuchungen über die Ernährung ei- niger Myxobakterien. Arch. Mikrobiol. 19: 206–246.

    PubMed  CAS  Google Scholar 

  • Oka, M., Y. Nishiyama, S. Ohta, H. Kamei, M. Konishi, T. Miyaki, T. Oki, and H. Kawaguchi. 1988a. Glidobactins A, B and C, new antitumor antibiotics I. Production, isolation, chemical properties and biological activity. J. Antibiot. 41: 1331–1337.

    PubMed  CAS  Google Scholar 

  • Oka, M., H. Ohkuma, H. Kamei, M. Konishi, T. Oki, and H. Kawaguchi. 1988b. Glidobactins D, E, F, G and H; minor components of the antitumor antibiotic glidobactin. J. Antibiot. 41: 1906–1909.

    PubMed  CAS  Google Scholar 

  • Oka, M., K. Yaginuma, K. Numata, M. Konishi, T. Oki, and H. Kawaguchi. 1988e. Glidobactins A, B and C, new antitumor antibiotics II. Structure elucidation. J. Antibiot. 41: 1338–1350.

    PubMed  CAS  Google Scholar 

  • Onishi, N., K. Izaki, and H. Takahashi. 1984. A macrocyclic antibiotic M-230B produced by Myxococcus xanthus. Isolation and characterization. J. Antibiot. 37: 13–19.

    PubMed  CAS  Google Scholar 

  • Orlowski, M. 1980. Cyclic adenosine 3’,5’-monophosphate binding protein in developing myxospores of Myxococcus xanthus. Can. J. Microbiol. 26: 905–911.

    PubMed  CAS  Google Scholar 

  • Orlowski, M., and D. White. 1974. Intracellular proteolytic activity in developing myxospores of Myxococcus xanthus. Arch. Microbiol. 97: 347–357.

    PubMed  CAS  Google Scholar 

  • Orndorff, P., E. Stellwag, T. Starich, M. Dworkin, and J. Zissler. 1983. Genetic and physical characterization of lysogeny by bacteriophage MX8 in Myxococcus xanthus. J. Bacteriol. 154: 772–779.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orndorff, P. E., and M. Dworkin. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141: 914–927.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orndorff, P. E., and M. Dworkin. 1982. Synthesis of several membrane proteins during developmental aggregation in Myxococcus xanthus. J. Bacteriol. 149: 29–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oxford, A. E. 1947. Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium. J. Bacteriol. 53: 129–138.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oxford, A. E., and B. N. Singh. 1946. Factors contributing to the bacteriolytic effect of species of myxococci upon viable eubacteria. Nature 1158: 745.

    Google Scholar 

  • Oyaizu, H., and C. R. Woese. 1985. Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst. Appl. Microbiol. 6: 257263.

    Google Scholar 

  • Panasenko, S. M. 1985. Methylation of macromolecules during development in Myxococcus xanthus. J. Bacteriol. 164: 495–500.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parish, J. H. 1975. Transfer of drug resistance to Myxococcus from bacteria carrying drug-resistance factors, J. Gen. Microbiol. 87: 198–210.

    PubMed  CAS  Google Scholar 

  • Peterson, J. E. 1965. A group of strongly cellulolytic myxobacteria previously unreported in North American soils. Am. J. Bot. 52: 636.

    Google Scholar 

  • Peterson, J. E. 1969. Isolation, cultivation and maintenance of the myxobacteria, p. 185–210. In: J. R. Norris and D. W. Ribbons (ed.), Methods in microbiology, vol. 3B. Academic Press, London.

    Google Scholar 

  • Peterson, J. E., and B. Norén. 1967. The occurrence of the cellulose-decomposing myxobacterium, Sorangium cellulosum, in Scandinavian soils. Am. J. Bot. 54: 648.

    Google Scholar 

  • Pronina, N. I. 1962. A description of new species and varieties of cellulose decomposing myxobacteria. Microbiology (English translation of Mikrobiologiya) 31: 384390.

    Google Scholar 

  • Qualls, G. T., K. Stephens, and D. White. 1978. Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca. Science 201: 444–445.

    PubMed  CAS  Google Scholar 

  • Quehl, A. 1906. Untersuchungen über die Myxobakterien. Abl. Bakteriol. 2. Abt. 16: 9–34 (including one plate).

    Google Scholar 

  • Ramsey, W. S., and M. Dworkin. 1968. Microcyst germination in Myxococcus xanthus. J. Bacteriol. 95: 2249–2257.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reichenbach, H. 1965a. Untersuchungen an Archangium violaceum. Ein Beitrag zur Kenntnis der Myxobakterien. Arch. Mikrobiol. 52: 376–403.

    PubMed  CAS  Google Scholar 

  • Reichenbach, H. 1965b. Rhapidosomen bei Myxobakterien. Arch. Mikrobiol. 50: 246–255.

    Google Scholar 

  • Reichenbach, H. 1965e. Rhythmische Vorgänge bei der Schwarmentfaltung von Myxobakterien. Ber. Deutsch. Bot. Ges. 78: 102–105.

    Google Scholar 

  • Reichenbach, H. 1966. Myxococcus spp. (Myxobacterales). Schwarmentwicklung und Bildung von Protocysten. Institut für den wissenschaftlichen Film, Göttingen, Germany (text with the film EC 778/1965).

    Google Scholar 

  • Reichenbach, H. 1967. Die wahre Natur der Myxobakterien-“Rhapidosomen.” Arch. Mikrobiol. 56: 371–383.

    CAS  Google Scholar 

  • Reichenbach, H. 1974a. Die Biologie der Myxobakterien. Biologie in unserer Zeit 4: 33–45.

    Google Scholar 

  • Reichenbach, H. 1974b. Chondromyces apiculatus (Myxobacterales)-Schwarmentwicklung und Morphogenese. Publiktionen zu wissenschaftlichen Filmen, Sektion Biologie 7, p. 245–263. Institut für den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Reichenbach, H. 1983. A simple method for the purification of myxobacteria. J. Microbiol. Meth. 1: 77–79.

    Google Scholar 

  • Reichenbach, H. 1984. Myxobacteria: a most peculiar group of social prokaryotes, p. 1–50. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Reichenbach, H. 1986. The myxobacteria: common organisms with uncommon behaviour. Microbiol. Sciences 3: 268–274.

    CAS  Google Scholar 

  • Reichenbach, H. 1988. Gliding bacteria in biotechnology, p. 673–696. In: H. J. Rehm and G. Reed (ed.), Biotechnology, vol. 6b. BCH Verlagsgesellschaft, Weinheim, Germany.

    Google Scholar 

  • Reichenbach, H., and M. Dworkin. 1969. Studies on Stigmatella aurantiaca (Myxobacterales). J. Gen. Microbiol. 58: 3–14.

    Google Scholar 

  • Reichenbach, H., and M. Dworkin. 1970. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales) by monovalent cations. J. Bacteriol. 101: 325–326.

    Google Scholar 

  • Reichenbach, H., H. K. Galle, and H. H. Heunert. 1980. Stigmatella aurantiaca (Myxobacterales). Schwarmentwicklung und Fruchtkörperbildung. Encyclopaedia Cinematographica E 2421, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, G. Höfle, H. Augustiniak, R. Jansen, T. Kemmer, W. Kohl, H. Steinmetz, and W. Trowitzsch. 1984.

    Google Scholar 

  • Results of a screening for antibiotics with gliding bacteria. 3rd European Congress Biotechnol., München, vol. I, p. 1520. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, and G. Höfle. 1988. Myxobacteria: a source of new antibiotics. Trends Biotechnol. 6: 115–121.

    CAS  Google Scholar 

  • Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965a. Schwarmentwicklung und Morphogenese bei Myxobakterien-Archangium, Myxococcus, Chondrococcus, Chondromyces. Film C 893 of the Institut für den wissenschaftlichen Film, Göttingen, Germany. (Sound-film available also in English. )

    Google Scholar 

  • Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965b. Chondromyces apiculatus (Myxobacterales-Schwarmentwicklung und Morphogenese. Encyclopaedia Cinematographica E 779, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965c. Myxococcus spp. (Myxobacterales)-Schwarmentwicklung und Bildung von Protocysten. Encyclopaedia Cinematographica E. 778, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany

    Google Scholar 

  • Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965d. Archangium violaceum (Myxobacteriales)-Schwarmentwicklung und Bildung von Protocysten. Encyclopaedia Cinematographica E 777, film of the Institut für den wissenschaftlichen Film, Göttingen, Germany.

    Google Scholar 

  • Reichenbach, H., and G. Höfle. 1989. The gliding bacteria: a treasury of secondary metabolites, p. 79–100. In: M. E. Bushell and U. Gräfe (ed.), Bioactive metabolites from microorganisms. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Reichenbach, H., and H. Kleinig. 1971. The carotenoids of Myxococcus fulvus (Myxobacterales). Arch. Mikrobiol. 76: 364–380.

    CAS  Google Scholar 

  • Reichenbach, H., and H. Kleinig. 1984. Pigments of myxobacteria, p. 127–137. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Reichenbach, H., H. Voelz, and M. Dworkin. 1969. Structural changes in Stigmatella aurantiaca during myxospore induction. J. Bacteriol. 97: 905–911.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ringel, S. M., R. C. Greenough, S. Roemer, D. Connor, and M. von Strandtmann. 1977. Ambruticin (W 7783), a new antifungal antibiotic. J. Antibiot. 30: 371–375.

    PubMed  CAS  Google Scholar 

  • Romeo, J. M., B. Esmon, and D. R. Zusman. 1986. Nucleotide sequence of the myxobacterial hemagglutinin gene contains four homologous domains. Proc. Natl. Acad. Sci. USA 83: 6332–6336.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenberg, E. (ed.). 1984. Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Rosenberg, E., S. Fytlovitch, S. Carmeli, and Y. Kashman. 1982. Chemical properties of Myxococcus xanthus antibiotic TA. J. Antibiot. 35: 788–793.

    PubMed  CAS  Google Scholar 

  • Rosenberg, E., K. H. Keller, and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770–777.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenberg, E., B. Vaks, and A. Zuckerberg. 1973. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob. Agents Chemother. 4: 507–513.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenfelder, G., O. Lßderitz, and O. Westphal. 1974. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur. J. Biochem. 44:411–420.

    Google Scholar 

  • Rückert, G. 1975a. Zur Verbreitung bakteriotropher Myxobakterien in Waldböden. Mitteilungen des Vereins für forstliche Standortskunde und Forstpflanzenzüchtung. Heft 24: 43–47.

    Google Scholar 

  • Rückert, G. 1975b. Zur Verbreitung von Fruchtkörper-bildenden Myxobakterien in europäischen Strand-und Dünenböden. Abl. Bakteriol., 2. Abt. 130: 343–347.

    Google Scholar 

  • Rückert, G. 1975c. Koprochorie einiger Myxobakterien-Arten (Myxobacterales). Zschr. Allgem. Mikrobiol. 15: 565–567.

    Google Scholar 

  • Rückert, G. 1976. Myxobakterien (Myxobacterales) in natürlichen und naturnahen Substraten aus der europäischen Subarktis. Acta Bot. Islandica 4: 4–9.

    Google Scholar 

  • Rückert, G. 1978. Förderung der Fruchtkörper-Bildung von Myxococcus virescens Thaxter (Myxobacterales) in Rohkulturen durch Salzzusatz. Zschr. Allgem. Mikrobiol. 18: 69–71.

    Google Scholar 

  • Rückert, G. 1979. Myxobakterien-Artenspektren von Böden in Abhängigkeit von bodenbildenden Faktoren unter besonderer Berücksichtigung der Bodenreaktion. Zschr. Pflanzenernähr. Bodenk. 42: 330–343.

    Google Scholar 

  • Rückert, G. 1981. Myxobakterien (Myxobacterales) auf Blattoberflächen. Zschr. Allgem. Mikrobiol. 21: 76 1763.

    Google Scholar 

  • Rückert, G. 1983. Myxobakterien in Böden extremer Biotope. Mitt. deutsch. Bodenkundl. Gesellsch. 38: 355–360.

    Google Scholar 

  • Rückert, G. 1984. Untersuchungen zum Vorkommen von Myxobakterien in von Meerwasser beeinflußten Substraten unter besonderer Berücksichtigung der Insel Helgoland. Helgoländer Meeresunters. 38: 179–184.

    Google Scholar 

  • Rückert, G. 1985. Myxobacteria from Antarctic soils. Biol. Fert. Soils 1: 215–216.

    Google Scholar 

  • Rückert, G., and G. Heym. 1977. Bakteriotrophe Myxobakterien (Myxobacterales) in ariden Substraten. Karlsruher Geographische Heft 8: 101–111.

    Google Scholar 

  • Rudd, K. E., and D. R. Zusman. 1982. RNA polymerase of Myxococcus xanthus: purification and selective transcription in vitro with bacteriophage templates. J. Bacteriol. 151: 89–105.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ruiz, C., M. Monteoliva-Sanchez, and A. Ramos-Cormenzana. 1985. Effect of culture age on the cellular fatty acid composition of two strains of Myxococcus xanthus. Microbios Lett. 30: 95–99.

    CAS  Google Scholar 

  • Ruiz, C., A. Ruiz-Bravo, and A. Ramos-Cormenzana. 1987. Endotoxin-like activities in Myxococcus xanthus. Curr. Microbiol. 15: 343–345.

    CAS  Google Scholar 

  • Sabados-Saris, A. 1957. Istrazivanja o miksobacterijama u thina Jugoslavije (Myxobacteria in different types of soils in Yugoslavia). (In Serbo-Croatian, with English summary.) Yugoslavenska Akademija Znanosti i Umjetnosti, Zagreb 312: 5 - n29.

    Google Scholar 

  • Sadler, W., and M. Dworkin. 1966. Induction of cellular morphogenesis in Myxococcus xanthus. II. Macromolecular synthesis and mechanism of inducer action. J. Bacteriol. 91: 1520–1525.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sarao, R., H. D. McCurdy, and L. Passador. 1985. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can. J. Microbiol. 31: 1142–1146.

    CAS  Google Scholar 

  • Schmidt-Lorenz, W., and H. Kühlwein. 1968. Intracelluläre Bewegungsorganellen bei Myxobakterien. Arch. Mikrobiol. 60: 95–98.

    PubMed  CAS  Google Scholar 

  • Schmidt-Lorenz, W., and H. Kühlwein. 1969. Beiträge zur Kenntnis der Myxobakterienzelle 2. Mitteilung. Oberflächenstrukturen der Schwarmzellen. Arch. Mikrobiol. 68: 405–426.

    PubMed  CAS  Google Scholar 

  • Schröder, J., and H. Reichenbach. 1970. The fatty acid composition of vegetative cells and myxospores of Stigmatella aurantiaca (Myxobacterales). Arch. Mikrobiol. 71: 384–390.

    Google Scholar 

  • Schürmann, C. 1967. Growth of myxococci in suspension in liquid media. Appl. Microbiol. 15: 971–974.

    PubMed  PubMed Central  Google Scholar 

  • Sharpe, A. N., and D. C. Kilsby. 1971. A rapid, inexpensive bacterial count technique using agar droplets. J. Appl. Bacteriol. 34: 435–440.

    PubMed  CAS  Google Scholar 

  • Shimkets, L. J. 1984. Nutrition, metabolism, and the initiation of development, p. 91–107. In: E. Rosenberg (ed.), Myxobacteria. Development and cell interactions. Springer-Verlag, New York.

    Google Scholar 

  • Shimkets, L. J. 1987. Control of morphogenesis in myxobacteria. Crit. Rev. Microbiol. 14: 195–227.

    PubMed  CAS  Google Scholar 

  • Shimkets, L. J. 1990a. The Myxococcus xanthus Frp A. protein causes increased flavin biosynthesis in Escherichia coli. J. Bacteriol. 172: 24–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shimkets, L. J. 1990b. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54: 473–501.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shimkets, L. J., and D. Kaiser. 1982. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152: 451–461.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Singh, B. N. 1947. Myxobacteria in soils and composts; their distribution, number and lytic action on bacteria. J. Gen. Microbiol. 1: 1–10.

    PubMed  CAS  Google Scholar 

  • Singh, B. N., and N. B. Singh. 1971. Distribution of fruiting myxobacteria in Indian soils, bark of trees and dung of herbivorous animals. Indian J. Microbiol. 11: 47–92.

    Google Scholar 

  • Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives. ” Int. J. Syst. Bacteriol. 38: 321–325.

    Google Scholar 

  • Stanier, R. Y. 1942a. The Cytophaga group: a contribution to the biology of myxobacteria. Bacteriol. Rev. 6: 143–196.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stanier, R. Y. 1942b. A note on elasticotaxis in myxobacteria. J. Bacteriol. 44: 405–412.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stein, J., and H. Budzikiewicz. 1987. 1–0-(13-Methyl-1-Z-tetradecenyl)2–0-(13-methyltetradecanoyl)-glycero-3-phospho-ethanolamine, ein Plasmalogen aus Myxococcus stipitatus. Zschr. Naturforsch. 42b: 1017–1020.

    Google Scholar 

  • Stellwag, E., J. M. Fink, and J. Zissler. 1985. Physical characterization of the genome of the Myxococcus xanthus bacteriophage MX-8. Mol. Gen. Genet. 199: 123–132.

    PubMed  CAS  Google Scholar 

  • Stephens, K., G. D. Hegeman, and D. White. 1982. Pheromone produced by the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 149: 739–747.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stephens, K., and D. White. 1980a. Scanning electron micrographs of fruiting bodies of the myxobacterium Stigmatella aurantiaca lacking a coat and revealing a cellular stalk. FEMS Microbiol. Lett. 9: 189–192.

    Google Scholar 

  • Stephens, K., and D. White. 1980b. Morphogenetic effects of light and guanine derivatives on the fruiting myxobacterium Stigmatella aurantiaca. J. Bacteriol. 144: 322–326.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sudo, S., and M. Dworkin. 1972. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110: 236–245.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sudo, S. Z., and M. Dworkin. 1969. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 98: 883–887.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sutherland, I. W. 1976a. Ultrasonication-an enrichment technique for microcyst-forming bacteria. J. Appl. Bacteriol. 41: 185–188.

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W. 1976b. Novel surface polymer changes in development of Myxococcus spp. Nature 259: 46–47.

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W. 1979. Polysaccharides produced by Cystobacter, Archangium, Sorangium, and Stigmatella species. J. Gen. Microbiol. 111: 211–216.

    CAS  Google Scholar 

  • Sutherland, I. W., and C. L. Mackenzie. 1977. Glucan corn-mon to the microcyst walls of cyst-forming bacteria. J. Bacteriol. 129: 599–605.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sutherland, I. W., and M. L. Smith. 1973. The lipopolysaccharides of fruiting and non-fruiting myxobacteria. J. Gen. Microbiol. 74: 259–266.

    CAS  Google Scholar 

  • Sutherland, I. W., and S. Thomson. 1975. Comparison of polysaccharides produced by Myxococcus strains. J. Gen. Microbiol. 89: 124–132.

    PubMed  CAS  Google Scholar 

  • Takayama, S., S. Yamanaka, S. Miyashiro, Y. Yokokawa, and H. Shibai. 1988. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. II. Isolation and chemical structures of megovalicins. J. Antibiot. 41: 439–445.

    PubMed  CAS  Google Scholar 

  • Teintze, M., M. Inouye, and S. Inouye. 1988. Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis. J. Biol. Chem. 263: 1199–1203.

    PubMed  CAS  Google Scholar 

  • Thaxter, R. 1892. On the Myxobacteriaceae, a new order of Schizomycetes. Bot. Gaz. 17: 389–406.

    Google Scholar 

  • Thaxter, R. 1893. A new order of Schizomycetes. Bot. Gaz. 18: 29–30.

    Google Scholar 

  • Thaxter, T. 1897. Further observations on the Myxobacteriaceae. Bot. Gaz. 23: 395–411 (including two plates).

    Google Scholar 

  • Thaxter, R. 1904. Notes on the Myxobacteriaceae. Bot. Gaz. 37: 405–416 (including two plates).

    Google Scholar 

  • Trowitzsch, W., L. Witte, and H. Reichenbach. 1981. Geosmin from earthy smelling cultures of Nannocystis exedens (Myxobacterales). FEMS Microbiol. Lett. 12: 257–260.

    CAS  Google Scholar 

  • Trowitzsch, W., V. Wray, K. Gerth, and G. Höfle. 1982. Structure of myxovirescin A, a new macrocyclic antibiotic from gliding bacteria. J. Chem. Soc. Chem. Commun. 1982: 1340–1342.

    Google Scholar 

  • Trowitzsch-Kienast, W., K. Schober, V. Wray, K. Gerth, H. Reichenbach, and G. Höfle. 1989. Zur Konstitution der A. Liebigs Ann. Chem. 1989: 345–355.

    Google Scholar 

  • Trzilovä, B., L. Miklosovicovâ, E. Golaisova, and M. Bobkova. 1980. Indikatoren der Verunreinigung des Donauwassers im tschechoslowakischem Abschnitte. Acta Ecologica (Bratislava) 8: 91–102.

    Google Scholar 

  • Trzilovâ, B., L. Miklosovicovâ, G. Morhâcova, and E. Golaisovâ. 1981. Die Wasserqualität der Zuflüsse des tschechoslowakischen Donauabschnittes von limnologischer und hygienischer Sicht. Biologa (Bratislava) 36: 765–774.

    Google Scholar 

  • Tsai, H., and H. J. Hirsch. 1981. The primary structure of fulvocin C from Myxococcus fulvus. Biochim. Biophys. Acta 667: 213–217.

    PubMed  CAS  Google Scholar 

  • Tsopanakis, C., and J. H. Parish. 1976. Bacteriophage MX-1: Properties of the phage and its structural proteins. J. Gen. V irol. 30: 99–112.

    CAS  Google Scholar 

  • Vacheron, M. J., N. Arpin, and G. Michel. 1970. Isolement d’esters de phleixanthophylle de Nocardia kirovani. C. R. Acad. Sci., Sér. C 271: 881–884.

    CAS  Google Scholar 

  • Vahle, C. 1910. Vergleichende Untersuchungen über die Myxobakteriazeen und Bakteriazeen, sowie die Rhodobakteriazeen und Spirillazeen. Zbl. Bakteriol., 2. Abt. 25: 178–260 (including two plates).

    Google Scholar 

  • Voelz, H. 1964. Sites of adenosine triphosphatase: activity in bacteria. J. Bacteriol. 88: 1196–1198.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Voelz, H. 1965. Formation and structure of mesosomes in Myxococcus xanthus. Arch. Mikrobiol. 51: 60–70.

    PubMed  CAS  Google Scholar 

  • Voelz, H. 1966a. The fate of the cell envelopes of Myxococcus xanthus during microcyst germination. Arch. Mikrobiol. 55: 110–115.

    PubMed  CAS  Google Scholar 

  • Voelz, H. 1966b. In vivo induction of “polysomes” by limiting phosphate and the structural consequences in Myxococcus xanthus. 6th International Congress Electron Microscopy, Kyoto, Japan, p. 255–256.

    Google Scholar 

  • Voelz, H. 1967. The physical organization of the cytoplasm in Myxococcus xanthus and the fine structure of its components. Arch. Mikrobiol. 57: 181–195.

    PubMed  CAS  Google Scholar 

  • Voelz, H. 1968. Structural comparison between intramitochondrial and bacterial crystalloids. J. Ultrastruct. Res. 25: 29–36.

    PubMed  CAS  Google Scholar 

  • Voelz, H., and R. P. Burchard. 1971. Fine structure of bacteriophage-infected Myxococcus xanthus. I. The lytic cycle in vegetative cells. Virology 43: 243–250.

    PubMed  CAS  Google Scholar 

  • Voelz, H., and M. Dworkin. 1962. Fine structure of Myxococcus xanthus during morphogenesis. J. Bacteriol. 84: 943–952.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Voelz, H., and H. Reichenbach. 1969. Fine structure of fruiting bodies of Stigmatella aurantiaca (Myxobacterales). J. Bacteriol. 99: 856–866.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Voelz, H., U. Voelz, and R. O. Ortigoza. 1966. The “polyphosphate overplus” phenomenon in Myxococcus xanthus and its influence on the architecture of the cell. Arch. Mikrobiol. 53: 371–388.

    PubMed  CAS  Google Scholar 

  • Vuillemard, J. C., S. Terré, S. Benoit, and J. Amiot. 1988. Protease production by immobilized growing cells of Serratia marcescens and Myxococcus xanthus in calcium alginate gel beads. Appl. Microbiol. Biotechnol. 27: 423–431.

    CAS  Google Scholar 

  • Ware, J. C., and M. Dworkin. 1973. Fatty acids of Myxococcus xanthus. J. Bacteriol. 115: 253–261.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watson, B. E, and M. Dworkin. 1968. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 96: 1465–1473.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weckesser, J., G. Rosenfelder, H. Mayer, and O. Luderitz. 1971. The identification of 3-O-methyl-D-xylose and 3O-methyl-L-xylose as constituents of the lipopolysaccharides of Myxococcus fulvus and Rhodopseudomonas viridis, respectively. Eur. J. Biochem. 24: 112–115.

    PubMed  CAS  Google Scholar 

  • Weinberg, R. A., and D. R. Zusman. 1989. Evidence that the Myxococcus xanthus frz genes are developmentally regulated. J. Bacteriol. 171: 6174–6186.

    PubMed  CAS  PubMed Central  Google Scholar 

  • White, D. 1975. Myxospores of Myxococcus xanthus, p. 4451. In: P. Gerhardt, H. I. Sadoff, and R. N. Costilow (ed.) Spores VI. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • White, D. 1981. Cell interactions and control of development in myxobacteria populations. Int. Rev. Cytol. 72: 203–227.

    Google Scholar 

  • White, D., M. Dworkin, and D. J. Tipper. 1968. Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. J. Bacteriol. 95: 2186–2197.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wireman, J. W., and M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189: 516–523.

    PubMed  CAS  Google Scholar 

  • Wistow, G. 1990. Evolution of a protein superfamily relationships between vertebrate lens crystallins and microorganism dormancy proteins. J. Mol. Evol. 30: 140–145.

    Google Scholar 

  • Witkin, S., and E. Rosenberg. 1970. Induction of morpho-genesis by methionine starvation in Myxococcus xanthus. Polyamine control. J. Bacteriol. 103: 641–649.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Woods, N. A. 1948. Studies on the myxobacteria. M.S. thesis, University of Washington, Seattle.

    Google Scholar 

  • Yamanaka, S., R. Fudo, A. Kawaguchi, and K. Komagata. 1988. Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids. J. Gen. Appl. Microbiol. 34: 57–66.

    CAS  Google Scholar 

  • Yamanaka, S., A. Kawaguchi, and K. Komagata. 1987. Isolation and identification of myxobacteria from soils and plant materials, with special reference to DNA base composition, quinone system, and cellular fatty acid composition, and with a description of a new species, Myxococcus flavescens. J. Gen. Appl. Microbiol. 33: 247–265.

    CAS  Google Scholar 

  • Yee, T., T. Furuichi, S. Inouye, and M. Inouye. 1984. Multicopy single-stranded DNA isolated from a Gram-negative bacterium, Myxococcus xanthus. Cell 38: 203–209.

    PubMed  CAS  Google Scholar 

  • Yee, T., and M. Inouye. 1981. Reexamination of the genome size of myxobacteria, including the use of a new method for genome size analysis. J. Bacteriol. 145: 1257–1265.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yee, T., and M. Inouye. 1982. Two-dimensional DNA electrophoresis applied to the study of DNA methylation and the analysis of genome size in Myxococcus xanthus. J. Mol. Biol. 154: 181–196.

    PubMed  CAS  Google Scholar 

  • Younes, G., A. M. Breton, and J. Guespin-Michel. 1987. Production of extracellular native and foreign proteins by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biotechnol. 25: 507–512.

    CAS  Google Scholar 

  • Younes, G., J. M. Nicaud, and J. Guespin-Michel. 1984. Enhancement of extracellular enzymatic activities produced by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biotechnol. 19: 67–69.

    CAS  Google Scholar 

  • Zukal, H. 1896. Myxobotrys variabilis Zuk., als Repräsentant einer neuen Myxomyceten-Ordnung. Ber. Deutsch. Bot. Gesellsch. 14: 340–347.

    Google Scholar 

  • Zukal, H. 1897. Über die Myxobacterien. Ber. Deutsch. Bot. Gesellsch. 15: 542–552.

    Google Scholar 

  • Zusman, D., and E. Rosenberg. 1968. Deoxyribonucleic acid synthesis during microcyst germination in Myxococcus xanthus. J. Bacteriol. 96: 981–986.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zusman, D. R. 1980. Genetic approaches to the study of development in the myxobacteria, p. 41–78. In: T. Leighton and W. E Loomis (ed.), The molecular genetics of development: an introduction to recent research in experimental systems. Academic Press, New York.

    Google Scholar 

  • Zusman, D. R. 1984. Cell-cell interactions and development in Myxococcus xanthus. Quart. Rev. Microbiol. 59: 119–138.

    CAS  Google Scholar 

  • Zusman, D. R. 1990. Cellular aggregation during fruiting body formation in Myxococcus xanthus. In: M. Inouye, J. Campisi, D. Cunningham, and M. Riley (ed.), Gene expression and regulation of cell growth and development. John Wiley Sons, New York. In press.

    Google Scholar 

  • Zusman, D. R., D. M. Krotoski, and M. Cumsky. 1978. Chromosome replication in Myxococcus xanthus. J. Bacteriol. 133: 122–129.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichenbach, H., Dworkin, M. (1992). The Myxobacteria. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics