Tangent Spaces to Grassmannians

  • Joe Harris
Part of the Graduate Texts in Mathematics book series (GTM, volume 133)


We have seen that the Grassmannian 𝔾(k, n) is a smooth variety of dimension (k + 1) (n - k). This follows initially from our explicit description of the covering of 𝔾 (k, n) by open sets U Λ ≅ 𝔸(k+1)(n-k), though we could also deduce this from the fact that it is a homogeneous space for the algebraic group PGL n+1 K. The Zariski tangent spaces to G are thus all vector spaces of this dimension. For many reasons, however, it is important to have a more intrinsic description of the space T Λ(𝔾;) in terms of the linear algebra of Λ ⊂ K n+1. We will derive such an expression here and then use it to describe the tangent spaces of the various varieties constructed in Part I with the use of the Grassmannians.


Projective Space Tangent Space Tangent Vector Tangent Plane Smooth Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Joe Harris
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations