Single Charges in 2-Dimensional Junction Arrays

  • J. E. Mooij
  • Gerd Schön
Part of the NATO ASI Series book series (NSSB, volume 294)


Several circuits composed of small-capacitance tunnel junctions have been used to study single-electron and charging effects. Among them two-dimensional arrays take a special place due to the fact that for each junction the presence of all other junctions with high resistance provides an excellent decoupling from the environment. As a result many of the single-electron effects are very pronounced. In addition, properties special for the two-dimensional system are expected and observed [1]. Arrays built from normal junctions may show at low temperature insulating behavior, and only at higher temperature a Kosterlitz-Thouless-Berezinskii (KTB) [2, 3] phase transition to a conducting phase occurs [4]. In arrays built from Josephson junctions a phase transition separates an insulating from a superconducting state [5]. An interesting duality exists [6]–[10] between single charges, whose motion produces a current, and vortices, whose motion produces a voltage. The former dominate in arrays where the charging energy E C exceeds the Josephson coupling E j , the latter in arrays with E j exceeding E C . Moreover, in arrays with low dissipation the vortices can have a very special dynamics [11]–[16], associated with the electric field energy. They are found to show quantum as well as ballistic behavior.


Josephson Junction Cooper Pair Single Charge Screen Length Junction Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    see for instance: Coherence in Superconducting Networks, Proceedings of the NATO Advanced Study Institute, ed. by J. E. Mooij and G. Schön, Physica B 152, 1–302 (1988).Google Scholar
  2. [2]
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).ADSCrossRefGoogle Scholar
  3. [3]
    V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1971)].Google Scholar
  4. [4]
    J. E. Mooij, B. J. van Wees, L. J. Geerligs, M. Peters, R. Fazio, and G. Schön, Phys. Rev. Lett. 65, 645 (1990).ADSCrossRefGoogle Scholar
  5. [5]
    L. J. Geerligs, M. Peters, L. E. M. de Groot, A. Verbruggen, and J. E. Mooij, Phys. Rev. Lett. 63, 326 (1989).ADSCrossRefGoogle Scholar
  6. [6]
    M. Sugahara and N. Yoshikawa, in: Extended Abstracts of 1987 International Superconductivity Electronics Conference (ISEC’87), p. 341.Google Scholar
  7. N. Yoshikawa, T. Akeyoshi, M. Kojima, and M. Sugahara, Jpn. J. Appl. Phys. 26, 949 (1987).CrossRefGoogle Scholar
  8. [7]
    M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett. 64, 587 (1990).ADSCrossRefGoogle Scholar
  9. M. P. A. Fisher, B. P. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B 40, 546 (1989); M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young, preprint.ADSCrossRefGoogle Scholar
  10. [8]
    X. G. Wen and A. Zee, Int. J. Mod. Phys. B 4, 437 (1990).ADSCrossRefGoogle Scholar
  11. [9]
    R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991); R. Fazio and G. Schön, in: Transport Properties of Superconductors — Progress in High T C, ed. by R. Nikolsky, Vol. 25, p. 298 (World Scientific, 1990).ADSCrossRefGoogle Scholar
  12. [10]
    B. J. van Wees, Phys. Rev. B 44, 2264 (1991).ADSCrossRefGoogle Scholar
  13. [11]
    E. Simanek, Solid State Comm. 48, 1023 (1983).ADSCrossRefGoogle Scholar
  14. [12]
    S. E. Korshunov, Physica B 152, 261 (1988).ADSCrossRefGoogle Scholar
  15. [13]
    A. I. Larkin, Yu. N. Ovchinnikov, and A. Schmid, Physica B 152, 266 (1988).ADSCrossRefGoogle Scholar
  16. [14]
    U. Eckern and A. Schmid, Phys. Rev. B 39, 6441 (1989).ADSCrossRefGoogle Scholar
  17. [15]
    U. Eckern, in: Applications of Statistical and Field Theory Methods to Condensed Matter, ed. by D. Baeriswyl, A. R. Bishop, and J. Carmelo, NATO ASI series B Vol. 218, p. 311 (Plenum, 1990).Google Scholar
  18. [16]
    R. Fazio, U. Geigenmüller, and G. Schön, in: Quantum Fluctuations in Mesoscopic and Macroscopic Systems, ed. by H. A. Cerdeira, F. Guinea Lopez, and U. Weiss, p. 214, (World Scientific, 1991).Google Scholar
  19. [17]
    see for instance D. V. Averin and K. K. Likharev in: Mesoscopic Phenomena in Solids, ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb, Ch. 6 (North-Holland, 1991).Google Scholar
  20. [18]
    B. I. Halperin and D. Nelson, J. Low Temp. Phys. 36, 599 (1979).ADSCrossRefGoogle Scholar
  21. [19]
    C. J. Lobb, D. W. Abraham, and M. Tinkham, Phys. Rev. B 27, 150 (1983).ADSCrossRefGoogle Scholar
  22. [20]
    J. E. Mooij, in: Percolation, Localization and Superconductivity, ed. by A. M. Goldman and S.A. Wolf, (Plenum, 1984).Google Scholar
  23. [21]
    P. Delsing et al., in: SQUID’91, Springer Proceedings in Physics, ed. by H. Koch, to be published.Google Scholar
  24. [22]
    V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. B 21, 1806 (1980).ADSCrossRefGoogle Scholar
  25. K. K. Mon and S. Teitel, Phys. Rev. Lett. 62, 673 (1989).ADSCrossRefGoogle Scholar
  26. [23]
    U. Geigenmüller and G. Schön, Europhys. Lett. 10, 765 (1989).ADSCrossRefGoogle Scholar
  27. [24]
    Yu. V. Nazarov, Zh. Eksp. Teor. Fiz. 96, 240 (1989).Google Scholar
  28. [25]
    L. S. Kuzmin, P. Delsing, T. Claeson, and K. K. Likharev, Phys. Rev. Lett. 62, 2539 (1989).ADSCrossRefGoogle Scholar
  29. [26]
    P. Bobbert, R. Fazio, U. Geigenmüller, and G. Schön, in: Macroscopic Quantum Phenomena, ed. by T. D. Clark et al., p. 119, (World Scientific, 1990).Google Scholar
  30. [27]
    L. V. Keldysh, JETP Letters 29, 658 (1979).ADSGoogle Scholar
  31. [28]
    D. Chklovskii, unpublished.Google Scholar
  32. [29]
    A. Widom and S. Badjou, Phys. Rev. B 37, 7915 (1988).ADSCrossRefGoogle Scholar
  33. [30]
    A. van Otterlo, P. Bobbert, and G. Schön, in: Proceedings of the Conference ‘Physics in Two Dimensions’, Neuchâtel (1991), to be published in Helv. Phys. Acta.Google Scholar
  34. [31]
    H. S. J. van der Zant, H. A. Rijken, and J. E. Mooij, J. Low Temp. Phys. 79, 289 (1990).ADSCrossRefGoogle Scholar
  35. [32]
    G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).ADSCrossRefGoogle Scholar
  36. [33]
    A. Widom, G. Megaloudis, T. D. Clark, H. Prance, and R. J. Prance, J. Phys. A 15, 3877 (1982).ADSCrossRefGoogle Scholar
  37. K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).ADSCrossRefGoogle Scholar
  38. [34]
    L. S. Kuzmin and D. Haviland, Phys. Rev. Lett. 67, 2890 (1991).ADSCrossRefGoogle Scholar
  39. [35]
    See for example J. V. Jose et al., Phys. Rev. B 16, 1217 (1977).ADSCrossRefGoogle Scholar
  40. [36]
    S. E. Korshunov, Europhys. Lett. 11, 757 (1990).ADSCrossRefGoogle Scholar
  41. [37]
    U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30, 6419 (1984).ADSCrossRefGoogle Scholar
  42. [38]
    B. G. Orr, H. M. Jaeger, A. M. Goldman, and C. G. Kuper, Phys. Rev. Lett. 56, 378 (1986).ADSCrossRefGoogle Scholar
  43. H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. B 40, 182 (1989); see also [1].ADSCrossRefGoogle Scholar
  44. [39]
    S. Chakravarty, G.-L. Ingold, S. Kivelson, and A. Luther, Phys. Rev. Lett. 56, 2303 (1986).ADSCrossRefGoogle Scholar
  45. A. Kampf and G. Schön, Phys. Rev. B 36, 3651 (1987).ADSCrossRefGoogle Scholar
  46. M. P. A. Fisher, Phys. Rev. B 36, 1917 (1987).ADSCrossRefGoogle Scholar
  47. W. Zwerger, J. Low Temp. Phys. 72, 291 (1988).ADSCrossRefGoogle Scholar
  48. R. Fazio, G. Falci, and G. Giaquinta, Sol. St. Comm. 71, 275 (1989); for further references see also [1].ADSCrossRefGoogle Scholar
  49. [40]
    K. B. Efetov, Sov. Phys. JETP 51, 1015 (1980).ADSGoogle Scholar
  50. [41]
    R. M. Bradley and S. Doniach, Phys. Rev. B 30, 1138 (1984).ADSCrossRefGoogle Scholar
  51. [42]
    B. Mirhashem and R. A. Ferrell, Phys. Rev. B 37, 649 (1988); U. Eckern and G. Schön, in: Advances in Solid State Physics, ed. by U. Rössler, Vol. 29, p. 1, (Vieweg, 1989).CrossRefGoogle Scholar
  52. [43]
    U. Geigenmüller, in: Macroscopic Quantum Phenomena, ed. by T. D. Clark et al., p. 131 (World Scientific, 1990).Google Scholar
  53. [44]
    H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, and J. E. Mooij, Phys. Rev. Lett. 66, 2531 (1991); H. S. J. van der Zant, F. C. Fritschy, W. E. Elion, L. J. Geerligs, and J. E. Mooij, submitted to Phys. Rev. Lett.ADSCrossRefGoogle Scholar
  54. [45]
    Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).MathSciNetADSCrossRefGoogle Scholar
  55. B. Reznik and Y. Aharonov, Phys. Rev. D 40, 4178 (1989).ADSCrossRefGoogle Scholar
  56. [46]
    B. J. van Wees, Phys. Rev. Lett. 65, 255 (1990).ADSCrossRefGoogle Scholar
  57. [47]
    P. Nozieres and W. F. Vinen, Philos. Mag. 14, 667 (1966).ADSCrossRefGoogle Scholar
  58. [48]
    J. Bardeen and M. J. Stephen, Phys. Rev. 140, 1197 (1965).ADSCrossRefGoogle Scholar
  59. [49]
    M. P. A. Fisher, preprint.Google Scholar
  60. [50]
    R. Fazio, A. van Otterlo, G. Schön, H. van der Zant, J. E. Mooij, in: Proceedings of the Conference ‘Physics in Two Dimensions’, Neuchâtel 1991, to be published in Helv. Phys. Acta.Google Scholar
  61. [51]
    R. Fazio and G. Schön, in: SQUID’91, Springer Series in Electronics and Photonics, ed. by H. Koch and H. Lübbig, to be published.Google Scholar
  62. [52]
    R. Fazio and G. Schön, unpublished.Google Scholar
  63. [53]
    see R. P. Feynman, Statistical Mechanics, Chap. 8, (Benjamin/Cummings, 1972).Google Scholar
  64. [54]
    T. P. Orlando, J. E. Mooij, and H. S. J. van der Zant, Phys. Rev. B 43, 10218 (1991).ADSCrossRefGoogle Scholar
  65. [55]
    A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).ADSCrossRefGoogle Scholar
  66. [56]
    S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978 (1976).ADSCrossRefGoogle Scholar
  67. [57]
    S. E. Korshunov, Pis’ma Zh. Eksp. Teor. Fiz. 45, 342 (1987) [JETP Lett. 45, 434 (1987)].Google Scholar
  68. [58]
    A. D. Zaikin, in: Quantum Fluctuations in Mesoscopic and Macroscopic Systems, ed. by H. A. Cerdeira, F. Guinea Lopez, and U. Weiss, p. 255 (World Scientific, 1991); and this volume.Google Scholar
  69. [59]
    Y. Saito and H. Müller-Krumbhaar, in: Applications of the Monte Carlo Method, ed. by K. Binder, (Springer, 1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. E. Mooij
    • 1
  • Gerd Schön
    • 2
  1. 1.Department of Applied PhysicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Institut für Theoretische FestkörperphysikUniversität KarlsruheKarlsruhe 1Germany

Personalised recommendations